Ex-2-5a Calculations Set variables to be non-zero and constants to be positive in order to avoid possible zero denominators in the symbolic equations. assume(T1<>0 and T2<>0 and d1<>0 and d2<>0 and aB<>0 and ac<>0 and E1>0 and E2>0 and T1a<>0 and T2a<>0): asume(sin(aB)<>0 and sin(aC)<>0 and a>0 and b>0 and P<>0 and P1<>0 and P2<>0 and d3<>0 and d4<>0): assume(L1>0 and L2>0 and A1>0 and A2>0 and k1<>0 and k2<>0 and P<>0 and s1<>0 and s2<>0): assume(P1a<>0 and P2a<>0): The equilibrium equation for T1 and T2 f1:=T1*b*sin(aB)+T2*2*b*sin(aC)-2*P*b=0 T1 b sin aB - 2 P b + 2 T2 b sin aC = 0 The compability equation for δ1 and δ2 d2:=2*(sin(aC)/sin(aB))*d1 2 d1 sin aC sin aB The force-displacement equations for δ1 and δ2, T1 and T2 are (let k1=(L1/E1*A1 and k2=(L2/E2*A2)) d1:=k1*T1 T1 k1 Note: d3 is just a different name for d2 so the program variables don't get confused. d3:=k2*T2 T2 k2 Solving for δ2 =(d2 in the equation below) solve([d2=2*sin(aC)/sin(aB)*d1,d1=k1*T1],[d2]) 2 T1 k1 sin aC = z sin aB The expression for δ2 as a function of T1 is d2:=(2*T1*k1*sin(aC))/sin(aB) 2 T1 k1 sin aC sin aB Solving for T2 as a function of T1 since δ2 = k2*T2 also solve([d2=d3],[T2]) T2 = 2 T1 k1 sin aC k2 sin aB T2:=(sin(aC)/sin(aB))*(k1/k2)*2*T1 2 T1 k1 sin aC k2 sin aB The equilibrium equation, ΣA is MA:=T1*b*sin(aB)+T2*2*b*sin(aC)-P*2*b=0 4 T1 b k1 sin aC 2 T1 b sin aB - 2 P b + =0 k2 sin aB Solving for T1 using the above expressions for MA andT2 solve(T1*b*sin(aB)+T2*2*b*sin(aC)-P*2*b,T1) C 0 if b = 0 2 P k2 sin aB s1 if s1 ¹ 0 Ù b ¹ 0 Ù aB ÏZ p Æ if s1 = 0 Ù b ¹ 0 Ú aB p ÎZ where s1 = k2 sin aB 2 + 4 k1 sin aC 2 Factoring out the term, k2, a term (k1/k2) emerges as an important coefficient T1:=2*P*sin(aB)/(sin(aB)^2 + 4*(k1/k2)*sin(aC)^2) Going back to the equation for T2 and subsituting the above equation for T1 T2:=(sin(aC)/sin(aB))*(k1/k2)*2*2*P*sin(aB)/(sin(aB)^2 +(k1/k2)*4*sin(aC)^2) 4 P k1 sin aC k2 sin aB 2 + 4 k1 sin aC 2 k2 If P1 is the allowable load for wire BD with tensile force, T1a (a dummy variable for T1), and the allowable stress is σ1=T1a/A1, then, solving for P1 solve([T1a=2*P1*sin(aB)/(sin(aB)^2 + 4*(k1/k2)*sin(aC)^2)],[P1]) solve([T1a=2*P1*sin(aB)/(sin(aB)^2 + 4*(k1/k2)*sin(aC)^2)],[P1]) 4 k1 sin aC T1a sin aB 2 + k2 2 sin aB 2 =z if T1a = A1 s1 Æ if T1a ¹ A1 s1 The expression for P1 is (s1=σ1 in the equation below) P1:=s1*A1*(sin(aB)^2+4*(k1/k2)*sin(aC)^2)/(2*sin(aB)) 4 k1 sin aC 2 k2 A1 s1 sin aB 2 + 2 sin aB If P2 is the allowable load for wire CD with tensile force, T2a (a dummy variable for T2), and the allowable stress is σ2=T2/A2, then solving for P2 solve([T2a=(4*P2*(k1/k2)*sin(aC)/(sin(aB)^2+4*(k1/k2)*sin(aC)^2))],[P2]) P2 = T2a k2 sin aB 2 + 4 T2a k1 sin aC 2 4 k1 sin aC if k1 ¹ 0 Ù aC ÏZ p P2 = z if k1 = 0 Ú aC p Î Z Ù T2a = 0 Æ if k1 = 0 Ú aC Î Z Ù T2a ¹ 0 p P2:=s2*A2*((k2/k1)*sin(aB)^2+4*sin(aC)^2)/(4*sin(aC)) A2 s2 sin aB 2 + 4 k1 sin aC 2 k2 4 sin aC Ex 2-5 Calculations Using the above expressions, the values for P1 and P2 can now be found. Let P1a and P2a be dummy variables for P1 and P2. Calculating the wire areas for BD and CD A1:=(3.1416/4)*(4.2*unit::mm)^2 13.854456 mm2 A1=13.86 mm^2 A2:=(3.1416/4)*(3.2*unit::mm)^2 8.042496 mm2 A2= 8.04 mm^2 Calculating the lengths of wires BD and CD L1:=sqrt((1.8*unit::m)^2+(1.2*unit::m)^2)*1000*unit::mm/unit::m 2163.330765 mm L1=2.16 m L2:=sqrt((1.8*unit::m)^2+(2.4*unit::m)^2)*1000*unit::mm/unit::m 3000.0 mm L2=3.00 m Calculating the terms, k1=L1/(E1*A1) and k2=L2/(E2*A2) k1:=L1/(72*unit::GPa/(unit::GPa/(10^3*unit::N/unit::mm^2))*A1) 0.002168707355 mm N k1=2,17*10^-3 mm k2:=L2/(45*unit::GPa/(unit::GPa/(10^3*unit::N/unit::mm^2))*A2) 0.008289300569 mm N k2=8.29*10^-3 mm Calculating aB aB:=arctan(1.8/1.2) 0.9827937232 aB=0.983 rad Calculating aC aC:=arctan(1.8/(2*1.2)) 0.6435011088 aC= .644 rad Let P1a and P2a be the dummy variables for P1 and P2 s1:=200*unit::MPa/(unit::MPa/(unit::N/unit::mm^2)) 200 N 2 mm P1a:=s1*A1*(sin(aB)^2+4*(k1/k2)*sin(aC)^2)/(2*sin(aB)) 1780.075107 N P1a=1780 N P1a=1780 N s2:=172*unit::MPa/(unit::MPa/(unit::N/unit::mm^2)) 172 N 2 mm P2a:=s2*A2*((k2/k1)*sin(aB)^2+4*sin(aC)^2)/(4*sin(aC)) 2355.176296 N P2a=2355 N The final answer is P = min(P1a,P2a)=1780 N
© Copyright 2025 Paperzz