D e p a r t m e n t of the Navy B u r e a u of Ships C o n t r a c t ~ o n-220( r 12) W a t e r T u n n e l T e s t s of T H E NACA 661-012 HYDROFOIL IN N O N C A V I T A T I N G AND C A V I T A T I N G F L O W S by R o b e r t W. K e r m e e n T h i s r e s e a r c h w a s c a r r i e d out under the B u r e a u of Ships F u n d a m e n t a l Hydromechanics R e s e a r c h P r o g r a m P r o j e c t NS 7 15- 102, David T a y l o r Model B a s i n Reproduction in whole o r i n p a r t i s p e r m i t t e d f o r any purpose of the United S t a t e s Government Hydrodynamics L a b o r a t o r y California Institute of Technology P a s a d e n a , California R e p o r t No. 4 7 - 7 F e b r u a r y , 1956 Approved: M.S. P l e s s e t ABSTRACT The r e s u l t s of f o r c e t e s t s on the NACA bbl -0 12 hydrofoil in noncavitating and cavitating two-dimensional flow a r e presented. The r e s u l t s of wind tunnel t e s t s on this profile a r e included for comparison with the r e s u l t s of the noncavitating water tunnel experiments. The non- cavitating experiments w e r e made a t Reynolds n u m b e r s f r o m 0.89 to 6 1.65 x 10 and the cavitation experiments a t Reynolds numbers of 0.89 6 and 1.18 x 10 . INTRODUCTION Two-dimensional hydrodynamic data a r e now available f o r a number of hydrofoil shapes. The f o r c e coefficients in noncavitating a n d cavitating flow have been obtained on simple geometrical shapes such a s wedges, flat plates and c i r c u l a r a r c hydrofoils, a s well a s conventional c a m b e r e d a i r f o i l shapes. S y m m e t r i c a l hydrofoil shapes, such a s those d e s c r i b e d in this r e p o r t , a r e important both f o r lifting s u r f a c e s and f o r nonlifting support s t r u t s and fairings. The r e q u i r e m e n t s f o r support s t r u t s , such a s low d r a g , low c r i t i c a l cavitation number, and high strength a r e much the s a m e as f o r lifting hydrofoils. The NACA 661-012 hydrofoil w a s selected a s a representative example of a c l a s s of a i r f o i l shapes which would be suitable for s y m m e t r i c a l hydrofoil design applications where sl.-ength is important. The NACA 6bl -012 hydrofoil h a s a thickness to chord r a t i o of 0. 12 with a c r i t i c a l cavitation .index of approximately 0. 35 a t a n angle of attack of z e r o degree, F o r applications where cavitation r e s i s t a n c e is a m o r e important consideration, a thinner hydrofoil section would be selected. In addition, this hydrofoil shape w a s selected to be tested in the High Speed Water Tunnel a t the Hydrodynamics Laboratory and i n the w a t e r tunnel a t the Iowa Institute of H y d r a u l i c R e s e a r c h in o r d e r that the r e s u l t s obtained in the two f a c i l i t i e s could be c o m p a r e d . APPARATUS AND TESTS Hydrofoil T h e hydrofoil m o d e l h a s a 3,30-in. c h o r d and a 2.90-in. T h e m o d e l w a s m a d e of s t a i n l e s s steel. span. The NACA 661 - 0 12 hydrofoil i s a s y m m e t r i c a l profile with a m a x i m u m thickness of 12 p e r c e n t of the chord. O r d i n a t e s of the hydrofoil a r e given in T a b l e I a n d a photograph of the m o d e l i n Fig. 1. W a t e r Tunnel a n d T e s t P r o c e d u r e T h e hydrofoil m o d e l w a s t e s t e d i n the two-dimensional working s e c t i o n of the High S p e e d W a t e r Tunnel. T h e m o d e l w a s mounted on a 5. 0 -in, d i a m e t e r c i r c u l a r d i s k a t t a c h e d to the f o r c e balance spindle a n d s e t flush i n the working s e c t i o n wall. T h e r e w a s a n a r r o w gap of a p - p r o x i m a t e l y 0 . 0 0 2 in. between the f r e e end of the m o d e l and the w o r k i n g s e c t i o n wall. D e t a i l s of the t e s t setup, f o r c e balance, t e s t p r o c e d u r e , a n d data r e d u c t i o n m e t h o d s a r e given in R e f s . 1 and 2. Tests T h e s e c t i o n lift, d r a g , and q u a r t e r - c h o r d pitching m o m e n t w e r e m e a s u r e d f o r noncavitating flow a t w a t e r v e l o c i t i e s of 3 0 , 40, 50 and 60 6 f p s , which gave Reynolds n u m b e r s f r o m 0.89 x l o 6 to 1.65 x 10 Lift, . d r a g , and q u a r t e r - c h o r d pitching m o m e n t w e r e m e a s u r e d f o r cavitating flow a t a velocity of 40 f p s for hydrofoil a t t a c k a n g l e s f r o m z e r o to 7 d e g r e e s and a t 30 f p s f o r a n g l e s of a t t a c k g r e a t e r than 7 d e g r e e s . Be- c a u s e the hydrofoil i s s y m m e t r i c a l , the cavitating f o r c e r u n s w e r e m a d e o r ~ l ya t positive a t t a c k angles. In e a c h cavitation f o r c e r u n the angle of a t t a c k of the m o d e l a n d the velocity w e r e held c o n s t a n t a n d the cavitation n u m b e r v a r i e d f r o m noncavitating flow to f u l l cavity flow. w e r e taken of the c a v i t a t i n g hydrofoil a t e a c h t e s t point. Photographs Fig. 1 - The NACA 661 -0 1 2 hydrofoil. TABLE I ORDINATES O F THE NACA 66 -0 1 2 HYDROFOIL Station 70 C h o r d Ordinate (Upper and Lower Surface) % Chord Station 310 Chord Leading Edge Radius: 0 . 9 5 2 % Chord Ordinate ( u p p e r and Lower Surface) 70Chord Data Reduction The t e s t data w e r e reduced to dimensionless coefficients a s follows: Lift coefficient, Lift CL = I p/2 V'A Drag coefficient, C,, Drag 7 p/2 V'A Q u a r t e r - c h o r d pitching moment, Cavitation number, K = Reynolds number, Re = Pitching Moment P0 - Pv 1 v-c v where: V = velocity of undisturbed flow, ft/sec p = density of water a t the temperature of the r u n , slugs/ft A = plan a r e a of the hydrofoil (chord X span), ft c 3 2 = chord of hydrofoil, ft P0 = p r e s s u r e of undisturbed flow, lb/ft 2 PV = vapor p r e s s u r e of f r e s h water a t the t e m p e r a t u r e of the run, 1b/ft v 2 = kinematic viscosity of f r e s h water at the t e m p e r a t u r e of the run, ftL/sec. A number of c o r r e c t i o n s w e r e applied to the m e a s u r e d data. The t a r e f o r c e s on the spindle disk w e r e m e a s u r e d by mounting the hydrofoil f r o m the opposite wall with a s m a l l gap between the end of the hydrofoil and the spindle disk. The force r u n s w e r e repeated with this setup and the f o r c e s m e a s u r e d on the mounting d i s k alone. The lift and pitching moment disk t a r e c o r r e c t i o n s w e r e negligible, hence only the d r a g c o r r e c t i o n w a s applied to the data. T h e data f o r fully wetted flow w e r e c o r r e c t e d f o r tunnel i n t e r f e r e n c e e f f e c t s . The m e t h o d s of d a t a c o r r e c t i o n a r e d e s c r i b e d i n d e t a i l i n Ref. 1. RESULTS C u r v e s of lift and q u a r t . e r - c h o r d pitching m o m e n t coefficients a s functions of angle of a t t a c k f o r noncavitating flow a r e shown in F i g . 2. F i g u r e 3 i s a polar d i a g r a m giving lift and d r a g coefficients for noncavitating flow. The r e s u l t s of wind tunnel t e s t s of thi s profile m a d e with the Langley two - d i m e n s i o n a l , low- turbulence wind tunnel a r e shown i n F i g s . 2 and 3 f o r c o m p a r i s o n . 3 The wind tunnel data shown a r e f o r a 6 F i g u r e 4 shows lift coefficient a s a func Reynolds n u m b e r of 3 . 0 x 10 . tion of angle of a t t a c k f o r s e v e r a l cavitation n u m b e r s f r o m fully wetted to full cavity flow. The cavitation d i a g r a m , F i g . 5 , shows the extent of the cavitation o n the hydrofoil a s a function of angle of a t t a c k and cavitation n u m b e r . F i g u r e 7 shows lift coefficient d a t a a s a function of cavitation n u m b e r a t constant a n g l e s of a t t a c k . D r a g coefficient i s shown a s a function of cavitation n u m b e r a t c o n s t a n t a n g l e s of a t t a c k in F i g . 8. F i g u r e 9 i s a cavitation polar d i a g r a m showing lift and d r a g coefficients f o r a r a n g e of cavitation n u m b e r s . F i g u r e 10 shows the pitching m o m e n t coefficient about the q u a r t e r - c h o r d point a s a function of angle of a t t a c k and cavitation n u m b e r . ~ i f t / d r ar a~t i o i s shown in F i g . 1 1 a s a function of cavitation n u m b e r and angle of a t t a c k . DISCUSSION OF RESULTS Noncavitating Flow Lift coefficient a s a fu.nction of angle of a t t a c k f o r noncavitating flow i s shown i n F i g . 2. T h e r e s u l t s of wind tunnel t e s t s of the s a m e The p r e s e n t t e s t s w e r e m a d e a t p r o f i l e 3 a r e shown f o r c o m p a r i s o n . Reynolds n u m b e r s f r o m 0 . 8 9 to 1. 65 x 10 6 f o r a Reynolds n u m b e r of 3.0 x 10 . 6 . T h e wind tunnel d a t a a r e There a r e considerable d i f f e r e n c e s in F i g . 2 between the w a t e r tunnel and the wind tunnel r e s u l t s both in the slope of the lift coefficient c u r v e and in the m a x i m u m lift coefficient. The lift coefficient, however, c a n e a s i l y change by t h i s a m o u n t o v e r a r a n g e of Reynolds n u m b e r s f r o m one to t h r e e million. D a t a w e r e not available f o r the NACA 661 -0 12 profile for Reynolds n u m 6 b e r s l e s s than 3 . 0 x 10 ; however, t e s t s of a s i m i l a r s y m m e t r i c a l NACA 641 -0 12 a i r f o i l4 m a d e a t Reynolds n u m b e r s f r o m 0 . 7 to 9 . 0 x l o 6 show c h a n g e s in lift coefficient with Reynolds number of the s a m e magnitude a s the d i f f e r e n c e s between the w a t e r tunnel and wind tunnel r e s u l t s of F i g . 2. T h e NACA 6 4 1 - 0 1 2 a i r f o i l h a s a t h i c k n e s s of 12 p e r c e n t of the c h o r d a n d a profile v e r y s i m i l a r to that of the NACA 661 -01 2 profile e x c e p t that the m a x i m u m t h i c k n e s s o c c u r s a t a p p r o x i m a t e l y the 40 p e r c e n t c h o r d point o n the f o r m e r and a t the 45 p e r c e n t c h o r d point o n the l a t t e r . T h e m i n i m u m p r e s s u r e coefficient o c c u r s at the 40 p e r c e n t c h o r d point on the NACA 64 - 0 12 and a t the 60 p e r c e n t c h o r d point on the NACA 66 - 0 12 profile. T h e slope of the lift coeffi- c i e n t c u r v e f o r the NACA 64 -0 12 profile i n c r e a s e d f r o m 0.099 per 6 d e g r e e a t a Reynolds n u m b e r of I . 0 x 10 to 0. 110 p e r d e g r e e a t a b Reynolds n u m b e r of 3.0 x 10 In F i g . 2 the slope s f the lift coefficient . f o r the w a t e r tunnel d a t a i s 0.084 p e r d e g r e e a t a Reynolds number of 1. 18 x 10 4 a n d 0. 105 p e r d e g r e e f o r the wind tunnel d a t a a t a Reynolds n u m b e r of 3 . 0 x k O 6 . The m a x i m u m lift coefficient f o r the NACA 641 -012 a i r f o i l i n c r e a s e d f r o m 0 . 8 8 7 a t a Reynolds n u m b e r of 1.0 x 10 6 to 1.430 a t a Reynolds number of 3.0 x 10 o r a change of 0.543. 6 The m a x i m u m lift coefficient f o r the NACA 661 -0 12 profile w a s 0. 747 a t a Reynolds n u m b e r of I . 18 x 10 6 f o r the w a t e r tunnel t e s t s and. 1.222 a t 6 a Reynolds n u m b e r of 3.0 x 10 for the wind tunnel t e s t s , o r a n i n c r e a s e of 0.475. T h e q u a r t e r - c h o r d pitching m o m e n t coefficients a r e a l s o shown i n F i g . 2. T h e pitching m o m e n t coefficient d o e s not change a p p r e c i a b l y with Reynolds n u m b e r . T h e c u r v e of pitching m o m e n t coefficient f r o m 3 the wind tunnel t e s t s i s quite d i f f e r e n t f r o m t h a t o b t a i n e d i n the w a t e r tunnel e x p e r i m e n t s . Since the hydrofoil i s s y m m e t r i c a l , i t s e e m s r e a s o n a b l e that the f o r c e and m o m e n t coefficient c u r v e s should be s y m m e t r i c a l about z e r o d e g r e e a t t a c k angle. The pitching m o m e n t coefficients about the q u a r t e r - chord point obtained in the water tunnel t e s t s a r e s y m m e t r i c a l about z e r o d e g r e e and very nearly z e r o for angles of a t t a c k up to stall. F i g u r e 3 i s a polar d i a g r a m showing lift and d r a g coefficients for noncavitating flow. At large attack angles the d r a g coefficient f r o m the w a t e r tunnel t e s t s i n c r e a s e s rapidly due to the s t a l l o c c u r r i n g a t s m a l l e r attack a n g l e s than for the higher Reynolds number wind tunnel tests. In the low d r a g range, for lift coefficients l e s s than t 0. 3 corresponding to angle of attack of l e s s than f 3 d e g r e e s , the water tunnel r e s u l t s , though somewhat higher due to s m a l l e r Reynolds numb e r s , a r e in good a g r e e m e n t with the wind tunnel r e s u l t s . The w a t e r tunnel r e s u l t s show a slight i n c r e a s e in d r a g coefficient with i n c r e a s i n g Reynolds n u m b e r , indicating that a laminar boundary layer m a y have e x i s t e d o v e r a considerable portion of the hydrofoil. The NACA 66 -012 profile h a s i t s minimum p r e s s u r e coefficient o c c u r r i n g 1 a t the 60 percent chord point a t z e r o d e g r e e attack angle. At s m a l l attack angles the l a r g e region of d e c r e a s i n g p r e s s u r e o v e r the f o r w a r d p a r t of the profile would tend to delay l a m i n a r turbulent boundary l a y e r transition and would c a u s e a n i n c r e a s e in d r a g coefficient with Reynolds number due to the l a m i n a r turbulent boundary l a y e r transition point moving f o r w a r d on the profile a s the velocity i s i n c r e a s e d . Cavitating Flow Lift, d r a g , and q u a r t e r - chord pitching moment w e r e m e a s u r e d f o r the NACA 661 - 0 12 hydrofoil f o r a range of cavitation n u m b e r s f r o m fully wetted to full cavity flow a t a n g l e s of a t t a c k of 0 to 10 d e g r e e s . The t e s t s w e r e made a t a tunnel velocity of 40 f p s for angles of a t t a c k up to 7 d e g r e e s and a t 30 fps for attack angles g r e a t e r than 7 d e g r e e s . B e c a u s e the hydrofoil i s s y m m e t r i c a l , the data a r e p r e s e n t e d only f o r positive attack angles. No tunnel i n t e r f e r e n c e c o r r e c t i o n s have been applied to the data f r o m the cavitation f o r c e r u n s . The cavitation num- b e r in all f i g u r e s i s b a s e d on the vapor p r e s s u r e of w a t e r . F i g u r e 4 shows c u r v e s of lift coefficient a s a function of angle of a t t a c k a t constant cavitation n u m b e r s . The curve marked K >3. 0 i s ANGLE OF A T T A C K I N DEGREES, a F i g . 4 - Lift coefficient as a function of angle of a t t a c k and c a v i t a t i o n n u m b e r f o r the NACA 661-0 12 hydrofoil, T h e s e c u r v e s a r e c r o s s plots of the d a t a c u r v e s , F i g . 7. CAVITATION NUMBER, K F i g . 5 - Cavitation d i a g r a m f o r the NACA 66 1-0 12 hydrofoil. f o r noncavitating flow. F o r angles of attack g r e a t e r than 3 d e g r e e s t h e r e i s a n i n c r e a s e in lift s m a l l amounts of cavitation on the hydrofoil. The cavitation d i a g r a m , Fig. 5, shows the extent of cavitation on the hydrofoil a s a function of angle of attack and cavitation number. At angles of attack up to 3 d e g r e e s , the cavitation first a p p e a r s a t approximately the 65 percent chord point, a s shown by the lower, broken line. At angles of attack g r e a t e r than 3 d e g r e e s , cavitation began n e a r the leading edge of the hydrofoil. In the region between t h r e e and four d e g r e e s attack angle, the position of the cavitation on the hydrofoil became unstable and incipient cavitation might occur either at the leading edge o r a t the 60 percent chord point, After cavitation had been established on the hydrofoil a t these attack angles, i t would often fluctuate between the leading edge and the 60 percent chord point o r the cavitation would s e p a r a t e into long thin individual cavities attached a t the leading edge. F i g u r e 6 shows examples of the t h r e e patterns of cavitation on the NACA 6 b l -0 12 hydrofoil a t a n a n g l e of attack of 3 degrees. In Fig. 6a there is a continuous cavity attached a t the lead- ing edge of the hydrofoil. A s the cavitation number is reduced, F i g s . 6b and 6c, the cavity s p l i t s into a number of long individual cavities s e p a r a t e d by portions of fully wetted flow. At s t i l l lower cavitation n u m b e r s the cavitation d i s a p p e a r s f r o m the leading edge and begins on the after portion of the hydrofoil, Fig. 6d, e , and f . At the attack angles where the position of the cavitation on the hydrofoil is not stable, the presence of the tunnel walls c a u s e s the cavitation to r e m a i n attached n e a r the leading edge of the hydrofoil a t the walls. The dashed lines in Fig. 5, noted a s X1 = 0.25 c to 1.00 c show the extent of the cavitation on the upper surface of the hydrofoil. At X I = 1.00 c the downstream end, o r closure, of the cavity just extends to the trailing edge of the model. The region to the left of the X I = 1.00 c line gives the cavitation number for which the hydrofoil i s in full cavity flow with the cavity extending downstream f r o m the hydrofoil. Cavitation o c c u r r e d on the lower, p r e s s u r e s u r f a c e of the hydrofoils f o r angles of attack u p to 8 degrees. T h e cavitation number a t which the cavitation begins on the lower surface i s indicated in Fig. 5. At angles of attack g r e a t e r than 3 d e g r e e s , cavitation did not being on the lower surface until a long, full cavity covered the entire upper s u r face. Figure 7 shows lift coefficient a s a function of cavitation number a t constant angle of attack. Each curve in Fig. 7 r e p r e s e n t s the r e s u l t s of one test run, and the data points a r e the m e a s u r e d values of the lift coefficient. F i g u r e 4 is a c r o s s plot of Fig. 7. The dashed line in Fig. 7 shows the cavitation number for incipient cavitation on the upper s u r face. As noted in Fig. 4, there i s an increase in lift coefficient a t constant angle of attack when cavitation f i r s t begins near the leading edge of the hydrofoil. F o r s m a l l angles of attack where the cavitation begins nearly a t the mid-chord point, the lift coefficient d e c r e a s e s a s soon a s the hydrofoil begins to cavitate. F i g u r e 8 shows drag coefficient a s a function of cavitation number a t constant angle of attack. Each curve in Fig. 8 i s f o r the s a m e t e s t r u n a s the data for the corresponding angle of attack in Fig. 7. The d r a g coefficient i n c r e a s e s a s soon a s cavitation begins on the hydrofoil, r e a c h e s a maximum when the cavitation extends approximately to the trailing edge and then d e c r e a s e s a s the cavitation number is reduced fur the r . Lift and d r a g coefficients a t constant cavitation numbers a r e s h o w in the cavitation polar diagram, Fig. 9. lines of constant angle of attack. The dashed lines in Fig. 9 a r e F i g u r e 9, like Fig. 4, was compiled f r o m many test runs in which the velocity and angle of attack were held constant and the cavitation number varied f r o m noncavitating to fully cavitating flow. The d r a g coefficient has been plotted to a scale ten times that of the lift coefficient in Fig. 9. Figure 10 shows curves of quarter-chord pitching moment as a function of angle of attack a t constant cavitation number. It should be noted that the moment coefficient in Fig. 10 has been plotted to a much expanded scale compared with that for noncavitating flow, Fig. 2, i n o r d e r to show the changes more clearly. F o r noncavitating flow with K* 3.0 the pitching moment i s slightly positive, o r nose up. When Fig. 8 - Drag coefficient as a function of cavitation number at constant angle of a t t a c k for the NACA 661 -0 12 hydrofoil. Each angle of a t t a c k r e p r e s e n t s one t e s t run. DRAG COEFFICIENT, Fig. 9 - Polar diagram for cavitating and noncavitating flow for the NACA 661-012 hydrofoil. These curves are c r o s s plots of the data curves, Fig. 8. NACA 66[ - 0 12 ANGLE Fig. 10 CD OF ATTACK - Quarter-chord moment coefficient IN DEGREES, a as a function of angle of attack and cavitation number for the NACA 661- 0 1 2 hydrofoil. cavitation begins a t higher attack angles the pitching moment becomes negative, then i n c r e a s e s toward the noncavitating value a s the cavitation number i s d e c r e a s e d , and finally becomes m o r e positive a t cavitation numSer s l e s s than 0. 3 , The pitching moment i s z e r o for attack angles l e s s than two d e g r e e s for a l l cavitation numbers. F i g u r e 11 shows the lift/drag ratio a s a function of cavitation Each curve in this figure i s for a constant angle of attack. number. The horizontal portions of the c u r v e s in Fig. 1 1 a r e regions of z e r o cavitaWhen cavitation begins there i s a rapid d e c r e a s e in lift/drag r a t i o tion. even though F i g s . 4 and 7 show a n i n c r e a s e in lift with s m a l l amounts of cavitation a t angles of attack g r e a t e r than 3 degrees. As cavitation b e - gins, the i n c r e a s e in d r a g i s proportionately g r e a t e r than the i n c r e a s e i n lift. A s the cavitation number i s reduced to give a large cavity on the hydrofoil, the d r a g coefficient r e a c h e s a maximum and then d e creases. T h e lift coefficient, however, d e c r e a s e s rapidly with cavita- tion number and the reduction in d r a g coefficient m e r e l y c a u s e s a reduction in the slope of the lift/drag ratio c u r v e s . REFERENCES 1. Kermeen, Robert W . , "Water Tunnel T e s t s of NACA 4412 and Walchne r Profile 7 Hydrofoils in Noncavitating and Cavi tating Flows", California Institute of Technology, Hydrodynamics Laboratory Report No. 47-5, January 1956. 2. Hotz, G. M. and McGraw, J. T. , "The High Speed Water Tunnel T h r e e -Component F o r c e Balance If, California Institute of Technology, Hydrodyriamics Laboratory Report No. 47- 1, January 1955. 3. Abbot, I . H . , von Doerihoff, A . E . , and Stivers, L.S. J r . , ''Summary of Airfoil Data", NACA Report No. 824, 1945. 4. Lof tin, L. K. and Smith, H. A. , '*Aerodynamic C h a r a c t e r i s t i c s of 15 NACA Airfoil Section a t Seven Reynolds Numbers f r o m 0.7 x l o 6 to 9 . 0 x log", NACA Technical Note 1945, October 1949. APPEND] X DATA TABLES I. 1 V=II.Ofps Section Characteristics of the NACA 601 -012 tfvdrofoil In Noncavitating Flow (lift and drag c o r r e c t e d for tunnel interference effects). Re = 0.893 x lo6 Y = 41.2 Ips R e = 1. 185 x l o 6 I V = 49.5 fps Re = 1 . 4 2 5 ~106 V = 57.4 fps 650 x lo6 0 a 0 1 2 3 4 5 11. V = 40 fps a = -lo CL -0,007 .090 .I85 .247 .338 ,434 F o r c e C h a r a c t e r i s t i c s of the NACA 6bl-012 Hydrofoil i n Cavitating Flow (datn not c o r r e c t e d for tunnel interference effects; cavitation number baeed on vapor pressure). V = 40 fps V = 40 fps K 2.984 2.081 1.615 1.106 0.844 .580 .336 .220 174 .I39 . ,115 .LO2 .089 ,092 ,089 ,387 1. 119 2.984 CF.4 . oou -0,001 -0.002 ,004 '004 .004 11. 2.984 . 104 .098 . 193 .047 .048 .DO98 .0179 .a174 .0171 ( c o n t . ) F o r c e Ctlaracteristics of the N.4CA 6 6 1 - O l Z HydrofoiI in Cavitating Flow (data not corrected for tunnel interference effects; cavitation number based on vapor pressure). -0.002 .030 .030 .032 2.955 .437 . Dl48 .005 i.202 1.122 1.008 .416 .448 .451 ,0160 ,0176 01 80 ,005 .005 ,005 . 534 . 252 . 5.198 2.973 ,044 .046 183 189 . . .0186 .Dl97 ,0103 .a103 .(I36 .03! .OZO .007 .267 .Dl02 .003 ,263 .266 .295 .384 .340 38 .. 2191 .I47 . 123 1 1 0 104 .617 1.092 2.925 . .Zlb 176 135 103 .084 .077 .067 .072 .246 .257 .258 . . . V = 4 0 Ips 2.080 1.662 1 . 131 0 . 846 .816 -819 .859 758 70 3 .656 .539 .435 1314 .219 133 132 I22 .I07 .011 I. i 0 5 2. 996 . . . . . . .0267 .0232 .0200 .0202 .0194 .0185 .0186 .0185 ,0104 .0097 .010l . 353 .347 .3i?. 349 358 .358 36'1 . . . 74 .. 3389 .. 4397 10 .279 231 15i .067 .047 .046 .06 1 .080 .393 .341 344 . . . <3 1) .0111 .0105 .0099 .OI 1 3 .0111 .0117 .0121 0124 .0129 ,0190 .0402 .0371 .0329 .0282 .0216 .0215 .0204 .0171 .0360 .0l6L .0101 . 2.955 2,048 1 . 739 1.617 .038I ,016 .039 .O284 ,0431 .Ol73 . 0 1 37 .016 -0.003 .005 .004 . 522 . 520 .0149 .016b .0112 .OZO2 .006 .006 .OO6 .560 .0261 0281 040.1 0714 0662 .0597 .0455 .O-10.1 .0371 .0336 .07!8 .0314 .0311 .0305 .0427 .0275 11144 .007 .005 --0.007 -0.056 -0. 012 -0.018 .011 ,016 .0IB .OIL .Ol6 .OI/J .@If> .Ol7 .GI6 .C05 .005 . 531 .520 .OOi .010 0503 0'597 ,011 -012 .0457 . 05,tL .. .432 .0738 -0.047 .086 .0500 . 024 . 5 . 323 3.680 3.614 3 . 195 756 .750 .768 .355 2.465 .764 .759 758 770 770 783 .785 ,790 .785 .747 .57Y .517 ,370 OM .050 587 .I48 .740 .004 .003 -0.001 -0.015 -0.009 .004 .016 .016 .015 .015 .(I16 .007 .005 .(I05 0.950 ,675 .575 :138 6 2fr 1 .232 1113 I70 If14 162 152 .6 1. 129 2.968 . . . . . . . .562 .600 ,513 ,335 .269 104 .0?6 .066 .052 .050 .050 0 .I 'I 0.19 . OH4 ,558 522 . . . . V = 1 0 fps a 14O K 3. 049 .0108 .0109 .0111 . 142 .040 .02I8 . .612 .083 .llZ 1. 160 .674 (; M .005 .005 .004 .004 ,005 .DO5 .005 .004 .003 .001 -0.009 -0.035 -0.019 -0.003 .GI3 .015 .014 .015 .Oli -0.021 .004 .004 K 2.930 2.353 2. I 8 0 1.991 1.61 I I . 684 1.453 I . 336 1 . 227 1 . 100 0. 762 .563 ,410 332 .28 2 .235 185 . 184 . 180 . I80 , 340 . . I I I . 675 2.955 . . . . a - 7O (; 1. .609 .6ui3 .611 .615 .616 .6lS b28 . 6 35 . 6 37 .678 564 391 .232 120 .076 0 69 ,060 '057 .058 .I156 :44 .687 .617 .60L . .. . . . c; 1) .0171 OZL? .OZ48 .02711 .029'1 030'1 .0348 .0370 .0393 0509 0874 .078I .0646 05i7 0469 , 0.i32 .0385 0386 ,05611 .0363 .0537 .0539 0301 017i . . . . . . . . Z.Oi3 1.808 1.699 I . 605 1.499 1.427 1 . 285 1. 105 0.870 .710 56'7 27 3 ,202 .8lO 2. 72.7 5 . 287 . . - \: C: M .007 .006 ,007 .008 .009 . O!l9 .f?09 .@OH .OOb -0. 009 -0.067 -0.042 -0,012 .015 022 .020 .017 017 .017 .017 .011 0.00'1 .DO? .007 . . . . . . . 7 l fps r( 5. 3 i 7 3.670 1.226 3.212 2. 950 2. 8 4 8 2.637 2.451 2.260 1.989 1.912 1. 7 2 6 I . 518 1.277 1.084 0.977 .703 553 . .3 .230 LLO .832 2. 748 5.330 . . 0 12. 008 . 1055 -0.073 .(1522 . 010 .051R .0431 0448 . .009 .Of16 009 . . 010 0567 .0543 .0574 ,0634 .0651 .0700 ,0754 .0516 0991 12.12 1286 I I75 .0992 , 0 5 1 7. .0423 1241 04'78 0509 . .. . . . . a : . .010 .010 .008 .OOh .002 -0.003 -0.010 -0.025 -0.1173 -0.080 -0.060 -0.0'50 .OZ5 , 1127 -0.Oih 010 01 1 . . lo0 0I c; 1.) c: M .802 ,791 :794 .8O2 786 79 1 ,793 .800 .803 .797 .KO7 Oii'll .0757 ,0782 .OL92 (1685 0 7 0 .O11 .Ci 3 . . . 0114 .773 704 .697 h5l 4 '?I 300 175 .077 .073 .564 7117 ,769 . .. . . . . D 7 i \ .0733 .0766 079 .1 OH54 .0900 1OO.i 1377 1454 1196 1.183 . I067 . . . . . . . .0 7 7 6 . 0')09 .(I507 1441 .0692 .0739 . .OIL .015 .C 1 1 .014 ,011 .(#I5 .Oli 1: 10 . 1107 .a01 - 0 . 015 -0.C 4 G - 0 . 076 -0.083 -0. 0"tb -0.CLl 014 027 .02'1 -0.CX0 .013 .008 . .. DISTRIBUTION LIST FOR TECHNICAL R E P O R T S ISSUED UNDER CONTRACT NONR -220( 12) Item Address 1 No. C o p i e s C o m m a n d i n g O f f i c e r a n d D i r e c t o r , David T a y l o r M o d e l B a s i n , Washington 7, D. C. , Attn: Code 580 54 2 Chief of N a v a l R e s e a r c h , Office of N a v a l R e s e a r c h , D e p a r t m e n t of the Navy, Washington 25, D. C ,, Attn: M e c h a n i c s B r a n c h (Code 438) 3 C o m m a n d i n g O f f i c e r , B r a n c h Office, Office of N a v a l R e s e a r c h , 495 S u m m e r St., B o s t o n 10, M a s s , 4 C o m m a n d i n g O f f i c e r , B r a n c h Office, Office of N a v a l R e s e a r c h , 346 B r o a d w a y , New Y o r k 13, N, Y. 5 C o m m a n d i n g O f f i c e r , B r a n c h Office, Office of N a v a l R e s e a r c h , T h e J o h n C r e r a r L i b r a r y B l d g . , 10th F l o o r , 8 6 E. Randolph S t . , C h i c a g o 1, Ill, 6 C o m m a n d i n g O f f i c e r , B r a n c h Office, Office of N a v a l R e s e a r c h , 1000 G e a r y St. , S a n F r a n c i s c o 9, Calif. 7 C o m m a n d i n g O f f i c e r , B r a n c h Office, Office of N a v a l R e s e a r c h , 1030 E. G r e e n S t r e e t , P a s a d e n a 1, Calif. 8 A s s t . N a v a l A t t a c h e f o r R e s e a r c h , Office of N a v a l R e s e a r c h , A m e r i c a n E m b a s s y , London, England, Navy 100, F,P . O . New Y o r k , N. Y. 9 D i r e c t o r , N a v a l R e s e a r c h L a b o r a t o r y , Office of Naval R e s e a r c h , Washington 25, D. C , Attn: L i b r a r i a n 10 B u r e a u of A e r o n a u t i c s , Dept. of the Navy, Washington 25, D. C . , Attn: A e r o a n d H y d r o B r a n c h (Code AD3) 11 B u r e a u of O r d n a n c e , Dept, of the Navy, Washington 25, D. C . , Attn: Code R e 9 Code R e 6 Code R e 3 12 C o m m a n d e r , U. S . N a v a l O r d n a n c e L a b o r a t o r y , U . S. Navy B u r e a u of O r d n a n c e , White O a k , S i l v e r S p r i n g 19, M a r y l a n d 2 U n d e r w a t e r O r d n a n c e D e p t . , N a v a l O r d n a n c e T e s t Station, 3202 E. F o o t h i l l Blvd. , P a s a d e n a , Calif. Attn: P a s a d e n a A n n e x L i b r a r y (Code P 5507) 3 C h i e f , B u r e a u of S h i p s , Dept. of t h e Navy, Washington 25, D. C . Attn: T e c h n i c a l L i b r a r y (Code 312) f o r a d d i t i o n a l d i s t r i b u t i o n to: 10 13 14 D i s t r i b u t i o n I.,ist (continued) Item Address ( B u r e a u of Ships d i s t r i b u t i o n ) R e s e a r c h a n d D e v e l o p ~ n ~(Code t~t 300) Ship D e s i g n (Code 410) P r e l i m i n a r y D e s i g n (Code 420) Hull. D e s i g n (Code 440) Hull Scientific (Cocle 442) P r o p e l l e r D e s i g n (Code 554) M r . R. II, Kent, Ballistic R e s e a r c h L a b o r a t o r i e s , Dept. of the A r m y , A b e r d e e n P r o v i ~ ~Ground, g Maryland 1 D i r e c t o r of R e s e a r c h , National A d v i s o r y C o m t n i t t e e f o r A e r o n a u t i c s , 1512 H S t r e e t , N. W . , Washington 25, D. C. 1 D i r e c t o r , L a n g l e y A e r o n a u t i c a l Lab., National Advisory Committee for Aeronautics, Langley Field, Virginia 1 C o m m a n d e r , N a v a l O r d n a n c e T e s t Station, Inyokern, China Lake, Calif., Attn: L i b r a r y (Code 5507) 1 D r . K. S , M. Davidson, E x p e r i m e n t a l Towing Tank, S t e v e n s I n s t i t u t e of Technology, Hoboken, N. J. 1 D r . J. H. McMillen, National S c i e n c e Foundation, 1520 H S t r e e t , N. W., Washington 25, D. C. 1 Dr. A. M i l l e r , B u r e a u of O r d n a n c e (Code Re3d) Navy Dept. Washington 25, D.C. I D r . H. R o u s e , Iowa I n s t i t u t e of H y d r a u l i c R e s e a r c h , S t a t e U n i v e r s i t y of Iowa, Iowa City, Iowa 1 D r . R.G. F o l s o m , D i r e c t o r , E n g i n e e r i n g R e s e a r c h Institute, U n i v e r s i t y of Michigan, E a s t E n g i n e e r i n g Bldg. Ann A r b o r , Michigan 1 D r . V . L . S t r e e t e r , E n g i n e e r i n g Dept., Michigan, Ann A r b o r , Michigan 1 U n i v e r s i t y of Dr. G.F. Wislicenus, Pennsylvania State University, O r d n a n c e R e s e a r c h L a b o r a t o r y , U n i v e r s i t y Park, Pa. I D r . A. T, Ippen, Dept. of C i v i l a n d S a n i t a r y E n g i n e e r i n g , M a s s a c h u s e t t s I n s t i t u t e of Technology, C a m b r i d g e 39, M a s s . 1 D r . L. G. S t r a u b , St. Anthony F a l l s H y d r a u l i c L a b o r a t o r y , U n i v e r s i t y of M i n n e s o t a , M i n n e a p o l i s 14, Minn. 1 P r o f . K. E. S c h o e n h e r r , U n i v e r s i t y of N o t r e D a m e , College of E n g i n e e r i n g , N o t r e D a m e , Indiana 1 Director, Ordnance R e s e a r c h Laboratory, Pennsylvania S t a t e U n i v e r s i t y , U n i v e r s i t y P a r k , Pa. 1 D i s t r i b u t i o n L i s t (continued) Item - Addrcss Societ,y of Naval A r c h i t e c t s a n d M a r i n e E n g i n e e r s 74 T r i n i t y P l a c e , New York 6, N. Y. P r o f . J. K. Vennard, St,anford U n i v e r s i t y , Dept. of C i v i l E n g i n e e r i n g , Stanford, C a l i f o r n i a 1 P r o f , 3. L. Hooper, W o r c e s t e r P o l y t e c h n i c I n s t i t u t e , Alden f i y d r a u l i c L a b o r a t o r y , W o r c e s t e r 6, M a s s . 1 P r o f . J. M. R o b e r t s o n , Dept. of T h e o r e t i c a l a n d Applied M e c h a n i c s , U n i v e r s i t y of Illinois, Urbana, Ill. 1 Dr. A.B. Kinzel, P r e s i d e n t , Union C a r b i d e a n d C a r b o n R e s e a r c h L a b . , Inc., 30 E. 42nd St., New York, N. Y, 1 G o o d y e a r A i r c r a f t Gorp., A k r o n 15, Ohio, Attn: Security Officer P r o f . H.R. H e n r y , H y d r a u l i c s L a b o r a t o r y , Michigan S t a t e College, E a s t L a n s i n g , Michigan 1 B r i t i s h J o i n t S e r v i c e s M i s s i o n , Navy Staff, Via: David T a y l o r Model B a s i n , Code 580, Navy D e p a r t m e n t , Washington 7, D. C. 9 C o m m a n d e r , S u b m a r i n e Development G r o u p TWO, Box 70, U. S. Naval S u b m a r i n e B a s e , New London, Conn. 1 C o m m a n d i n g O f f i c e r a n d D i r e c t o r , U. S. Navy E n g i n e e r i n g E x p e r i m e n t Station, Annapolis, M a r y l a n d 1 L i b r a r y of C o n g r e s s , Washington 25, D. C, ASTSA , Attn: D r . P. R. G a r a b e d i a n , S t a n f o r d U n i v e r s i t y , Applied M a t h e m a t i c s a n d S t a t i s t i c s L a b o r a t o r y , Stanford, California 1 1 A r m e d S e r v i c e s Techrlical Information Agency, Knott Building, Dayton, Ohio M r . J . G. B a k e r , B a k e r Manufacturing Company, Evansville, Wisconsin M r . T . M . B u e r m a n , G i b b s a n d Cox, Inc., 21 W e s t S t . , New Y o r k 6, New Y o r k 1 D y n a m i c D e v e l o p m e n t s , Inc. , St. M a r k ' s L a n e , I s l i p , Long I s l a n d , New York, Attn: M r . W. P. C a r l , Jr. 1 H y d r o d y n a m i c s R e s e a r c h L a b o r a t o r y , ConsolidatedVultee A i r c r a f t C o r p o r a t i o n , San Diego 12, C a l i f o r n i a 1 Distribution L i s t (continued) Item Address 47 48 49 50 51 No. Copies M r . R. K. Johnston, Miami Shipbuilding Corporation, 615 S. W. Second Avenue, Miami 36, F l o r i d a 1 M r . J. D. P i e r son, The Glenn L. M a r t i n Company, B a l t i m o r e 3 , Maryland 1 M r . W . R . Ryan, Edo Corporation, College Point 56, Long Island, New York 1 D r . Robert C. Seamans, Radio Corporation of A m e r i c a , Waltham, M a s s a c h u s e t t s 1 D r . A. G. Strandhagen, Department of Engineering Mechanics, University of Notre Dame, Notre Dame, fnd. 1 52 Dr. H. W,E. L e r b s , Hamburgische Schiffbau-Versuchsanstalt Hamburg 33, B r a m f e l d e r s t r a s s e 164 1 53 C o m m a n d e r , Air R e s e a r c h and Development Command, P. 0,Box 1395, B a l t i m o r e , Maryland. Attn: RDTDED 54 55 Avco Manufacturing Gorp. , ~ d v a h c e dDevelopment Div. 2385 R e v e r e Beach Parkway, E v e r e t t 49, M a s s . Atten: Technical L i b r a r i a n D r . L. Landweber, Iowa Inst, of Hydraulic R e s e a r c h , State University of Iowa, Iowa City, Ia. 1 , 1 1
© Copyright 2026 Paperzz