Department of the Navy Bureau of Ships Contract ~ o n r

D e p a r t m e n t of the Navy
B u r e a u of Ships
C o n t r a c t ~ o n-220(
r
12)
W a t e r T u n n e l T e s t s of
T H E NACA 661-012 HYDROFOIL IN
N O N C A V I T A T I N G AND C A V I T A T I N G F L O W S
by
R o b e r t W. K e r m e e n
T h i s r e s e a r c h w a s c a r r i e d out under the B u r e a u of Ships
F u n d a m e n t a l Hydromechanics R e s e a r c h P r o g r a m
P r o j e c t NS 7 15- 102, David T a y l o r Model B a s i n
Reproduction in whole o r i n p a r t i s p e r m i t t e d f o r any
purpose of the United S t a t e s Government
Hydrodynamics L a b o r a t o r y
California Institute of Technology
P a s a d e n a , California
R e p o r t No. 4 7 - 7
F e b r u a r y , 1956
Approved:
M.S. P l e s s e t
ABSTRACT
The r e s u l t s of f o r c e t e s t s on the NACA bbl -0 12 hydrofoil in noncavitating and cavitating two-dimensional flow a r e presented.
The
r e s u l t s of wind tunnel t e s t s on this profile a r e included for comparison
with the r e s u l t s of the noncavitating water tunnel experiments.
The non-
cavitating experiments w e r e made a t Reynolds n u m b e r s f r o m 0.89 to
6
1.65 x 10 and the cavitation experiments a t Reynolds numbers of 0.89
6
and 1.18 x 10
.
INTRODUCTION
Two-dimensional hydrodynamic data a r e now available f o r a
number of hydrofoil shapes.
The f o r c e coefficients in noncavitating a n d
cavitating flow have been obtained on simple geometrical shapes such a s
wedges, flat plates and c i r c u l a r a r c hydrofoils, a s well a s conventional
c a m b e r e d a i r f o i l shapes.
S y m m e t r i c a l hydrofoil shapes, such a s those
d e s c r i b e d in this r e p o r t , a r e important both f o r lifting s u r f a c e s and f o r
nonlifting support s t r u t s and fairings.
The r e q u i r e m e n t s f o r support
s t r u t s , such a s low d r a g , low c r i t i c a l cavitation number, and high
strength a r e much the s a m e as f o r lifting hydrofoils.
The NACA 661-012 hydrofoil w a s selected a s a representative example of a c l a s s of a i r f o i l shapes which would be suitable for s y m m e t r i c a l hydrofoil design applications where sl.-ength is important.
The
NACA 6bl -012 hydrofoil h a s a thickness to chord r a t i o of 0. 12 with a
c r i t i c a l cavitation .index of approximately 0. 35 a t a n angle of attack of
z e r o degree,
F o r applications where cavitation r e s i s t a n c e is a m o r e
important consideration, a thinner hydrofoil section would be selected.
In addition, this hydrofoil shape w a s selected to be tested in the
High Speed Water Tunnel a t the Hydrodynamics Laboratory and i n the
w a t e r tunnel a t the Iowa Institute of H y d r a u l i c R e s e a r c h in o r d e r that
the r e s u l t s obtained in the two f a c i l i t i e s could be c o m p a r e d .
APPARATUS AND TESTS
Hydrofoil
T h e hydrofoil m o d e l h a s a 3,30-in. c h o r d and a 2.90-in.
T h e m o d e l w a s m a d e of s t a i n l e s s steel.
span.
The NACA 661 - 0 12 hydrofoil
i s a s y m m e t r i c a l profile with a m a x i m u m thickness of 12 p e r c e n t of the
chord.
O r d i n a t e s of the hydrofoil a r e given in T a b l e I a n d a photograph
of the m o d e l i n Fig. 1.
W a t e r Tunnel a n d T e s t P r o c e d u r e
T h e hydrofoil m o d e l w a s t e s t e d i n the two-dimensional working
s e c t i o n of the High S p e e d W a t e r Tunnel.
T h e m o d e l w a s mounted on a
5. 0 -in, d i a m e t e r c i r c u l a r d i s k a t t a c h e d to the f o r c e balance spindle a n d
s e t flush i n the working s e c t i o n wall.
T h e r e w a s a n a r r o w gap of a p -
p r o x i m a t e l y 0 . 0 0 2 in. between the f r e e end of the m o d e l and the w o r k i n g
s e c t i o n wall.
D e t a i l s of the t e s t setup, f o r c e balance, t e s t p r o c e d u r e ,
a n d data r e d u c t i o n m e t h o d s a r e given in R e f s . 1 and 2.
Tests
T h e s e c t i o n lift, d r a g , and q u a r t e r - c h o r d pitching m o m e n t w e r e
m e a s u r e d f o r noncavitating flow a t w a t e r v e l o c i t i e s of 3 0 , 40, 50 and 60
6
f p s , which gave Reynolds n u m b e r s f r o m 0.89 x l o 6 to 1.65 x 10
Lift,
.
d r a g , and q u a r t e r - c h o r d pitching m o m e n t w e r e m e a s u r e d f o r cavitating
flow a t a velocity of 40 f p s for hydrofoil a t t a c k a n g l e s f r o m z e r o to 7
d e g r e e s and a t 30 f p s f o r a n g l e s of a t t a c k g r e a t e r than 7 d e g r e e s .
Be-
c a u s e the hydrofoil i s s y m m e t r i c a l , the cavitating f o r c e r u n s w e r e m a d e
o r ~ l ya t positive a t t a c k angles.
In e a c h cavitation f o r c e r u n the angle of
a t t a c k of the m o d e l a n d the velocity w e r e held c o n s t a n t a n d the cavitation
n u m b e r v a r i e d f r o m noncavitating flow to f u l l cavity flow.
w e r e taken of the c a v i t a t i n g hydrofoil a t e a c h t e s t point.
Photographs
Fig. 1
- The NACA
661 -0 1 2 hydrofoil.
TABLE I
ORDINATES O F THE NACA 66 -0 1 2 HYDROFOIL
Station
70 C h o r d
Ordinate
(Upper and
Lower Surface)
% Chord
Station
310 Chord
Leading Edge Radius: 0 . 9 5 2 % Chord
Ordinate
( u p p e r and
Lower Surface)
70Chord
Data Reduction
The t e s t data w e r e reduced to dimensionless coefficients a s
follows:
Lift coefficient,
Lift
CL = I
p/2 V'A
Drag coefficient, C,,
Drag
7
p/2 V'A
Q u a r t e r - c h o r d pitching moment,
Cavitation number, K =
Reynolds number, Re =
Pitching Moment
P0 - Pv
1
v-c
v
where:
V = velocity of undisturbed flow, ft/sec
p
= density of water a t the temperature of the r u n , slugs/ft
A = plan a r e a of the hydrofoil (chord X span), ft
c
3
2
= chord of hydrofoil, ft
P0 = p r e s s u r e of undisturbed flow, lb/ft 2
PV = vapor p r e s s u r e of f r e s h water a t the t e m p e r a t u r e of the
run, 1b/ft
v
2
= kinematic viscosity of f r e s h water at the t e m p e r a t u r e of
the run, ftL/sec.
A number of c o r r e c t i o n s w e r e applied to the m e a s u r e d data.
The
t a r e f o r c e s on the spindle disk w e r e m e a s u r e d by mounting the hydrofoil f r o m the opposite wall with a s m a l l gap between the end of the
hydrofoil and the spindle disk.
The force r u n s w e r e repeated with this
setup and the f o r c e s m e a s u r e d on the mounting d i s k alone.
The lift and
pitching moment disk t a r e c o r r e c t i o n s w e r e negligible, hence only the
d r a g c o r r e c t i o n w a s applied to the data.
T h e data f o r fully wetted flow
w e r e c o r r e c t e d f o r tunnel i n t e r f e r e n c e e f f e c t s .
The m e t h o d s of d a t a
c o r r e c t i o n a r e d e s c r i b e d i n d e t a i l i n Ref. 1.
RESULTS
C u r v e s of lift and q u a r t . e r - c h o r d pitching m o m e n t coefficients a s
functions of angle of a t t a c k f o r noncavitating flow a r e shown in F i g . 2.
F i g u r e 3 i s a polar d i a g r a m giving lift and d r a g coefficients for noncavitating flow.
The r e s u l t s of wind tunnel t e s t s of thi s profile m a d e
with the Langley two - d i m e n s i o n a l , low- turbulence wind tunnel a r e shown
i n F i g s . 2 and 3 f o r c o m p a r i s o n . 3 The wind tunnel data shown a r e f o r a
6
F i g u r e 4 shows lift coefficient a s a func Reynolds n u m b e r of 3 . 0 x 10
.
tion of angle of a t t a c k f o r s e v e r a l cavitation n u m b e r s f r o m fully wetted
to full cavity flow.
The cavitation d i a g r a m , F i g . 5 , shows the extent
of the cavitation o n the hydrofoil a s a function of angle of a t t a c k and
cavitation n u m b e r .
F i g u r e 7 shows lift coefficient d a t a a s a function
of cavitation n u m b e r a t constant a n g l e s of a t t a c k .
D r a g coefficient i s
shown a s a function of cavitation n u m b e r a t c o n s t a n t a n g l e s of a t t a c k in
F i g . 8.
F i g u r e 9 i s a cavitation polar d i a g r a m showing lift and d r a g
coefficients f o r a r a n g e of cavitation n u m b e r s .
F i g u r e 10 shows the
pitching m o m e n t coefficient about the q u a r t e r - c h o r d point a s a function
of angle of a t t a c k and cavitation n u m b e r .
~ i f t / d r ar a~t i o i s shown in
F i g . 1 1 a s a function of cavitation n u m b e r and angle of a t t a c k .
DISCUSSION OF RESULTS
Noncavitating Flow
Lift coefficient a s a fu.nction of angle of a t t a c k f o r noncavitating
flow i s shown i n F i g . 2.
T h e r e s u l t s of wind tunnel t e s t s of the s a m e
The p r e s e n t t e s t s w e r e m a d e a t
p r o f i l e 3 a r e shown f o r c o m p a r i s o n .
Reynolds n u m b e r s f r o m 0 . 8 9 to 1. 65 x 10
6
f o r a Reynolds n u m b e r of 3.0 x 10
.
6 . T h e wind tunnel d a t a a r e
There a r e considerable
d i f f e r e n c e s in F i g . 2 between the w a t e r tunnel and the wind tunnel r e s u l t s both in the slope of the lift coefficient c u r v e and in the m a x i m u m
lift coefficient.
The lift coefficient, however, c a n e a s i l y change by
t h i s a m o u n t o v e r a r a n g e of Reynolds n u m b e r s f r o m one to t h r e e million.
D a t a w e r e not available f o r the NACA 661 -0 12 profile for Reynolds n u m 6
b e r s l e s s than 3 . 0 x 10 ; however, t e s t s of a s i m i l a r s y m m e t r i c a l
NACA 641 -0 12 a i r f o i l4 m a d e a t Reynolds n u m b e r s f r o m 0 . 7 to
9 . 0 x l o 6 show c h a n g e s in lift coefficient with Reynolds number of the
s a m e magnitude a s the d i f f e r e n c e s between the w a t e r tunnel and wind
tunnel r e s u l t s of F i g . 2.
T h e NACA 6 4 1 - 0 1 2 a i r f o i l h a s a t h i c k n e s s of
12 p e r c e n t of the c h o r d a n d a profile v e r y s i m i l a r to that of the NACA
661 -01 2 profile e x c e p t that the m a x i m u m t h i c k n e s s o c c u r s a t a p p r o x i m a t e l y the 40 p e r c e n t c h o r d point o n the f o r m e r and a t the 45 p e r c e n t
c h o r d point o n the l a t t e r .
T h e m i n i m u m p r e s s u r e coefficient o c c u r s at
the 40 p e r c e n t c h o r d point on the NACA 64 - 0 12 and a t the 60 p e r c e n t
c h o r d point on the NACA 66 - 0 12 profile.
T h e slope of the lift coeffi-
c i e n t c u r v e f o r the NACA 64 -0 12 profile i n c r e a s e d f r o m 0.099 per
6
d e g r e e a t a Reynolds n u m b e r of I . 0 x 10 to 0. 110 p e r d e g r e e a t a
b
Reynolds n u m b e r of 3.0 x 10
In F i g . 2 the slope s f the lift coefficient
.
f o r the w a t e r tunnel d a t a i s 0.084 p e r d e g r e e a t a Reynolds number of
1. 18 x 10
4 a n d 0. 105 p e r d e g r e e f o r the wind tunnel d a t a a t a Reynolds
n u m b e r of 3 . 0 x k O
6
.
The m a x i m u m lift coefficient f o r the NACA
641 -012 a i r f o i l i n c r e a s e d f r o m 0 . 8 8 7 a t a Reynolds n u m b e r of 1.0 x 10
6
to 1.430 a t a Reynolds number of 3.0 x 10 o r a change of 0.543.
6
The
m a x i m u m lift coefficient f o r the NACA 661 -0 12 profile w a s 0. 747 a t a
Reynolds n u m b e r of I . 18 x 10
6
f o r the w a t e r tunnel t e s t s and. 1.222 a t
6
a Reynolds n u m b e r of 3.0 x 10
for the wind tunnel t e s t s , o r a n i n c r e a s e
of 0.475.
T h e q u a r t e r - c h o r d pitching m o m e n t coefficients a r e a l s o shown i n
F i g . 2.
T h e pitching m o m e n t coefficient d o e s not change a p p r e c i a b l y
with Reynolds n u m b e r . T h e c u r v e of pitching m o m e n t coefficient f r o m
3
the wind tunnel t e s t s i s quite d i f f e r e n t f r o m t h a t o b t a i n e d i n the w a t e r
tunnel e x p e r i m e n t s .
Since the hydrofoil i s s y m m e t r i c a l , i t s e e m s
r e a s o n a b l e that the f o r c e and m o m e n t coefficient c u r v e s should be s y m m e t r i c a l about z e r o d e g r e e a t t a c k angle.
The pitching m o m e n t
coefficients about the q u a r t e r - chord point obtained in the water tunnel
t e s t s a r e s y m m e t r i c a l about z e r o d e g r e e and very nearly z e r o for
angles of a t t a c k up to stall.
F i g u r e 3 i s a polar d i a g r a m showing lift and d r a g coefficients for
noncavitating flow.
At large attack angles the d r a g coefficient f r o m the
w a t e r tunnel t e s t s i n c r e a s e s rapidly due to the s t a l l o c c u r r i n g a t
s m a l l e r attack a n g l e s than for the higher Reynolds number wind tunnel
tests.
In the low d r a g range, for lift coefficients l e s s than
t 0. 3
corresponding to angle of attack of l e s s than f 3 d e g r e e s , the water
tunnel r e s u l t s , though somewhat higher due to s m a l l e r Reynolds numb e r s , a r e in good a g r e e m e n t with the wind tunnel r e s u l t s .
The w a t e r tunnel r e s u l t s show a slight i n c r e a s e in d r a g coefficient with i n c r e a s i n g Reynolds n u m b e r , indicating that a laminar boundary
layer m a y have e x i s t e d o v e r a considerable portion of the hydrofoil.
The
NACA 66 -012 profile h a s i t s minimum p r e s s u r e coefficient o c c u r r i n g
1
a t the 60 percent chord point a t z e r o d e g r e e
attack angle.
At s m a l l
attack angles the l a r g e region of d e c r e a s i n g p r e s s u r e o v e r the f o r w a r d
p a r t of the profile would tend to delay l a m i n a r turbulent boundary l a y e r
transition and would c a u s e a n i n c r e a s e in d r a g coefficient with Reynolds
number due to the l a m i n a r turbulent boundary l a y e r transition point
moving f o r w a r d on the profile a s the velocity i s i n c r e a s e d .
Cavitating Flow
Lift, d r a g , and q u a r t e r - chord pitching moment w e r e m e a s u r e d f o r
the NACA 661 - 0 12 hydrofoil f o r a range of cavitation n u m b e r s f r o m
fully wetted to full cavity flow a t a n g l e s of a t t a c k of
0 to 10 d e g r e e s .
The t e s t s w e r e made a t a tunnel velocity of 40 f p s for angles of a t t a c k
up to 7 d e g r e e s and a t 30 fps for attack angles g r e a t e r than 7 d e g r e e s .
B e c a u s e the hydrofoil i s s y m m e t r i c a l , the data a r e p r e s e n t e d only f o r
positive attack angles.
No tunnel i n t e r f e r e n c e c o r r e c t i o n s have been
applied to the data f r o m the cavitation f o r c e r u n s .
The cavitation num-
b e r in all f i g u r e s i s b a s e d on the vapor p r e s s u r e of w a t e r .
F i g u r e 4 shows c u r v e s of lift coefficient a s a function of angle of
a t t a c k a t constant cavitation n u m b e r s .
The curve marked K >3. 0 i s
ANGLE OF A T T A C K
I N DEGREES,
a
F i g . 4 - Lift coefficient as a function of angle of
a t t a c k and c a v i t a t i o n n u m b e r f o r the NACA 661-0 12
hydrofoil, T h e s e c u r v e s a r e c r o s s plots of the d a t a
c u r v e s , F i g . 7.
CAVITATION NUMBER,
K
F i g . 5 - Cavitation d i a g r a m f o r the
NACA 66 1-0 12 hydrofoil.
f o r noncavitating flow.
F o r angles of attack g r e a t e r than 3 d e g r e e s
t h e r e i s a n i n c r e a s e in lift s m a l l amounts of cavitation on the hydrofoil.
The cavitation d i a g r a m , Fig. 5, shows the extent of cavitation on the
hydrofoil a s a function of angle of attack and cavitation number.
At
angles of attack up to 3 d e g r e e s , the cavitation first a p p e a r s a t approximately the 65 percent chord point, a s shown by the lower, broken line.
At angles of attack g r e a t e r than 3 d e g r e e s , cavitation began n e a r the
leading edge of the hydrofoil.
In the region between t h r e e and four
d e g r e e s attack angle, the position of the cavitation on the hydrofoil
became unstable and incipient cavitation might occur either at the
leading edge o r a t the 60 percent chord point,
After cavitation had been
established on the hydrofoil a t these attack angles, i t would often
fluctuate between the leading edge and the 60 percent chord point o r
the cavitation would s e p a r a t e into long thin individual cavities attached
a t the leading edge. F i g u r e 6 shows examples of the t h r e e patterns of
cavitation on the NACA 6 b l -0 12 hydrofoil a t a n a n g l e of attack of 3
degrees.
In Fig. 6a there is a continuous cavity attached a t the lead-
ing edge of the hydrofoil.
A s the cavitation number is reduced, F i g s .
6b and 6c, the cavity s p l i t s into a number of long individual cavities
s e p a r a t e d by portions of fully wetted flow.
At s t i l l lower cavitation
n u m b e r s the cavitation d i s a p p e a r s f r o m the leading edge and begins
on the after portion of the hydrofoil, Fig. 6d, e , and f .
At the attack
angles where the position of the cavitation on the hydrofoil is not
stable, the presence of the tunnel walls c a u s e s the cavitation to r e m a i n
attached n e a r the leading edge of the hydrofoil a t the walls.
The dashed lines in Fig. 5, noted a s X1 = 0.25 c to 1.00 c show
the extent of the cavitation on the upper surface of the hydrofoil.
At
X I = 1.00 c the downstream end, o r closure, of the cavity just extends
to the trailing edge of the model.
The region to the left of the
X I = 1.00 c line gives the cavitation number for which the hydrofoil i s
in full cavity flow with the cavity extending downstream f r o m the hydrofoil.
Cavitation o c c u r r e d on the lower, p r e s s u r e s u r f a c e of the hydrofoils f o r angles of attack u p to 8 degrees.
T h e cavitation number a t
which the cavitation begins on the lower surface i s indicated in Fig. 5.
At angles of attack g r e a t e r than 3 d e g r e e s , cavitation did not being on
the lower surface until a long, full cavity covered the entire upper s u r face.
Figure 7 shows lift coefficient a s a function of cavitation number
a t constant angle of attack.
Each curve in Fig. 7 r e p r e s e n t s the r e s u l t s
of one test run, and the data points a r e the m e a s u r e d values of the lift
coefficient.
F i g u r e 4 is a c r o s s plot of Fig. 7.
The dashed line in Fig.
7 shows the cavitation number for incipient cavitation on the upper s u r face.
As noted in Fig. 4, there i s an increase in lift coefficient a t
constant angle of attack when cavitation f i r s t begins near the leading edge
of the hydrofoil.
F o r s m a l l angles of attack where the cavitation begins
nearly a t the mid-chord point, the lift coefficient d e c r e a s e s a s soon a s
the hydrofoil begins to cavitate.
F i g u r e 8 shows drag coefficient a s a function of cavitation number
a t constant angle of attack.
Each curve in Fig. 8 i s f o r the s a m e t e s t
r u n a s the data for the corresponding angle of attack in Fig. 7.
The d r a g
coefficient i n c r e a s e s a s soon a s cavitation begins on the hydrofoil,
r e a c h e s a maximum when the cavitation extends approximately to the
trailing edge and then d e c r e a s e s a s the cavitation number is reduced
fur the r
.
Lift and d r a g coefficients a t constant cavitation numbers a r e s h o w
in the cavitation polar diagram, Fig. 9.
lines of constant angle of attack.
The dashed lines in Fig. 9 a r e
F i g u r e 9, like Fig. 4, was compiled
f r o m many test runs in which the velocity and angle of attack were held
constant and the cavitation number varied f r o m noncavitating to fully
cavitating flow.
The d r a g coefficient has been plotted to a scale ten
times that of the lift coefficient in Fig. 9.
Figure 10 shows curves of quarter-chord pitching moment as a
function of angle of attack a t constant cavitation number.
It should be
noted that the moment coefficient in Fig. 10 has been plotted to a much
expanded scale compared with that for noncavitating flow, Fig. 2, i n
o r d e r to show the changes more clearly.
F o r noncavitating flow with
K* 3.0 the pitching moment i s slightly positive, o r nose up. When
Fig. 8
-
Drag coefficient as a function of cavitation number at constant
angle of a t t a c k for the NACA 661 -0 12 hydrofoil. Each angle of
a t t a c k r e p r e s e n t s one t e s t run.
DRAG COEFFICIENT,
Fig. 9
-
Polar diagram for cavitating and noncavitating flow for the
NACA 661-012 hydrofoil. These curves are c r o s s plots of
the data curves, Fig. 8.
NACA 66[
-
0 12
ANGLE
Fig. 10
CD
OF ATTACK
- Quarter-chord moment coefficient
IN
DEGREES,
a
as a function of angle of attack
and cavitation number for the NACA 661- 0 1 2 hydrofoil.
cavitation begins a t higher attack angles the pitching moment becomes
negative, then i n c r e a s e s toward the noncavitating value a s the cavitation number i s d e c r e a s e d , and finally becomes m o r e positive a t
cavitation numSer s l e s s than 0. 3 ,
The pitching moment i s z e r o for
attack angles l e s s than two d e g r e e s for a l l cavitation numbers.
F i g u r e 11 shows the lift/drag ratio a s a function of cavitation
Each curve in this figure i s for a constant angle of attack.
number.
The
horizontal portions of the c u r v e s in Fig. 1 1 a r e regions of z e r o cavitaWhen cavitation begins there i s a rapid d e c r e a s e in lift/drag r a t i o
tion.
even though F i g s . 4 and 7 show a n i n c r e a s e in lift with s m a l l amounts of
cavitation a t angles of attack g r e a t e r than 3 degrees.
As cavitation b e -
gins, the i n c r e a s e in d r a g i s proportionately g r e a t e r than the i n c r e a s e
i n lift.
A s the cavitation number i s reduced to give a large cavity on
the hydrofoil, the d r a g coefficient r e a c h e s a maximum and then d e creases.
T h e lift coefficient, however, d e c r e a s e s rapidly with cavita-
tion number and the reduction in d r a g coefficient m e r e l y c a u s e s a reduction in the slope of the lift/drag ratio c u r v e s .
REFERENCES
1.
Kermeen, Robert W . , "Water Tunnel T e s t s of NACA 4412 and
Walchne r Profile 7 Hydrofoils in Noncavitating and Cavi tating Flows", California Institute of Technology, Hydrodynamics Laboratory Report No. 47-5, January 1956.
2.
Hotz, G. M. and McGraw, J. T. , "The High Speed Water Tunnel
T h r e e -Component F o r c e Balance If, California Institute
of Technology, Hydrodyriamics Laboratory Report No.
47- 1, January 1955.
3.
Abbot, I . H . , von Doerihoff, A . E . , and Stivers, L.S. J r . ,
''Summary of Airfoil Data", NACA Report No. 824, 1945.
4.
Lof tin, L. K. and Smith, H. A. , '*Aerodynamic C h a r a c t e r i s t i c s
of 15 NACA Airfoil Section a t Seven Reynolds Numbers
f r o m 0.7 x l o 6 to 9 . 0 x log", NACA Technical Note 1945,
October 1949.
APPEND] X
DATA TABLES
I.
1
V=II.Ofps
Section Characteristics of the NACA 601 -012 tfvdrofoil In Noncavitating Flow (lift and drag c o r r e c t e d for tunnel interference
effects).
Re = 0.893 x lo6
Y = 41.2 Ips
R e = 1. 185 x l o 6
I
V = 49.5 fps
Re = 1 . 4 2 5 ~106
V = 57.4 fps
650 x lo6
0
a
0
1
2
3
4
5
11.
V = 40 fps
a = -lo
CL
-0,007
.090
.I85
.247
.338
,434
F o r c e C h a r a c t e r i s t i c s of the NACA 6bl-012 Hydrofoil i n Cavitating
Flow (datn not c o r r e c t e d for tunnel interference effects; cavitation
number baeed on vapor pressure).
V
= 40 fps
V = 40 fps
K
2.984
2.081
1.615
1.106
0.844
.580
.336
.220
174
.I39
.
,115
.LO2
.089
,092
,089
,387
1. 119
2.984
CF.4
.
oou
-0,001
-0.002
,004
'004
.004
11.
2.984
.
104
.098
.
193
.047
.048
.DO98
.0179
.a174
.0171
( c o n t . ) F o r c e Ctlaracteristics of the N.4CA 6 6 1 - O l Z HydrofoiI in
Cavitating Flow (data not corrected for tunnel interference effects;
cavitation number based on vapor pressure).
-0.002
.030
.030
.032
2.955
.437
. Dl48
.005
i.202
1.122
1.008
.416
.448
.451
,0160
,0176
01 80
,005
.005
,005
. 534
. 252
.
5.198
2.973
,044
.046
183
189
.
.
.0186
.Dl97
,0103
.a103
.(I36
.03!
.OZO
.007
.267
.Dl02
.003
,263
.266
.295
.384
.340
38
.. 2191
.I47
. 123
1 1 0
104
.617
1.092
2.925
.
.Zlb
176
135
103
.084
.077
.067
.072
.246
.257
.258
.
.
.
V = 4 0 Ips
2.080
1.662
1 . 131
0 . 846
.816
-819
.859
758
70 3
.656
.539
.435
1314
.219
133
132
I22
.I07
.011
I. i 0 5
2. 996
.
.
.
.
.
.
.0267
.0232
.0200
.0202
.0194
.0185
.0186
.0185
,0104
.0097
.010l
. 353
.347
.3i?.
349
358
.358
36'1
.
.
.
74
.. 3389
.. 4397
10
.279
231
15i
.067
.047
.046
.06 1
.080
.393
.341
344
.
.
.
<3
1)
.0111
.0105
.0099
.OI 1 3
.0111
.0117
.0121
0124
.0129
,0190
.0402
.0371
.0329
.0282
.0216
.0215
.0204
.0171
.0360
.0l6L
.0101
.
2.955
2,048
1 . 739
1.617
.038I
,016
.039
.O284
,0431
.Ol73
. 0 1 37
.016
-0.003
.005
.004
. 522
. 520
.0149
.016b
.0112
.OZO2
.006
.006
.OO6
.560
.0261
0281
040.1
0714
0662
.0597
.0455
.O-10.1
.0371
.0336
.07!8
.0314
.0311
.0305
.0427
.0275
11144
.007
.005
--0.007
-0.056
-0. 012
-0.018
.011
,016
.0IB
.OIL
.Ol6
.OI/J
.@If>
.Ol7
.GI6
.C05
.005
.
531
.520
.OOi
.010
0503
0'597
,011
-012
.0457
. 05,tL
..
.432
.0738
-0.047
.086
.0500
. 024
.
5 . 323
3.680
3.614
3 . 195
756
.750
.768
.355
2.465
.764
.759
758
770
770
783
.785
,790
.785
.747
.57Y
.517
,370
OM
.050
587
.I48
.740
.004
.003
-0.001
-0.015
-0.009
.004
.016
.016
.015
.015
.(I16
.007
.005
.(I05
0.950
,675
.575
:138
6
2fr 1
.232
1113
I70
If14
162
152
.6
1. 129
2.968
.
.
.
.
.
.
.
.562
.600
,513
,335
.269
104
.0?6
.066
.052
.050
.050
0 .I 'I
0.19
. OH4
,558
522
.
.
.
.
V = 1 0 fps
a 14O
K
3. 049
.0108
.0109
.0111
. 142
.040
.02I8
.
.612
.083
.llZ
1. 160
.674
(;
M
.005
.005
.004
.004
,005
.DO5
.005
.004
.003
.001
-0.009
-0.035
-0.019
-0.003
.GI3
.015
.014
.015
.Oli
-0.021
.004
.004
K
2.930
2.353
2. I 8 0
1.991
1.61 I
I . 684
1.453
I . 336
1 . 227
1 . 100
0. 762
.563
,410
332
.28 2
.235
185
. 184
. 180
. I80
, 340
.
.
I I
I . 675
2.955
.
.
.
.
a - 7O
(;
1.
.609
.6ui3
.611
.615
.616
.6lS
b28
. 6 35
. 6 37
.678
564
391
.232
120
.076
0 69
,060
'057
.058
.I156
:44
.687
.617
.60L
.
..
.
.
.
c; 1)
.0171
OZL?
.OZ48
.02711
.029'1
030'1
.0348
.0370
.0393
0509
0874
.078I
.0646
05i7
0469
, 0.i32
.0385
0386
,05611
.0363
.0537
.0539
0301
017i
.
.
.
.
.
.
.
.
Z.Oi3
1.808
1.699
I . 605
1.499
1.427
1 . 285
1. 105
0.870
.710
56'7
27 3
,202
.8lO
2. 72.7
5 . 287
.
.
-
\:
C: M
.007
.006
,007
.008
.009
. O!l9
.f?09
.@OH
.OOb
-0. 009
-0.067
-0.042
-0,012
.015
022
.020
.017
017
.017
.017
.011
0.00'1
.DO?
.007
.
.
.
.
.
.
.
7 l fps
r(
5. 3 i 7
3.670
1.226
3.212
2. 950
2. 8 4 8
2.637
2.451
2.260
1.989
1.912
1. 7 2 6
I . 518
1.277
1.084
0.977
.703
553
.
.3
.230
LLO
.832
2. 748
5.330
.
.
0 12.
008
. 1055
-0.073
.(1522
. 010
.051R
.0431
0448
.
.009
.Of16
009
.
. 010
0567
.0543
.0574
,0634
.0651
.0700
,0754
.0516
0991
12.12
1286
I I75
.0992
, 0 5 1 7.
.0423
1241
04'78
0509
.
..
.
.
.
.
a
:
.
.010
.010
.008
.OOh
.002
-0.003
-0.010
-0.025
-0.1173
-0.080
-0.060
-0.0'50
.OZ5
, 1127
-0.Oih
010
01 1
.
.
lo0
0I
c;
1.)
c: M
.802
,791
:794
.8O2
786
79 1
,793
.800
.803
.797
.KO7
Oii'll
.0757
,0782
.OL92
(1685
0 7 0
.O11
.Ci 3
.
.
.
0114
.773
704
.697
h5l
4 '?I
300
175
.077
.073
.564
7117
,769
.
..
.
.
.
.
D 7 i \
.0733
.0766
079 .1
OH54
.0900
1OO.i
1377
1454
1196
1.183
. I067
.
.
.
.
.
.
.
.0 7 7 6
. 0')09
.(I507
1441
.0692
.0739
.
.OIL
.015
.C 1 1
.014
,011
.(#I5
.Oli
1: 10
. 1107
.a01
- 0 . 015
-0.C 4 G
- 0 . 076
-0.083
-0. 0"tb
-0.CLl
014
027
.02'1
-0.CX0
.013
.008
.
..
DISTRIBUTION LIST FOR TECHNICAL R E P O R T S ISSUED UNDER
CONTRACT NONR -220( 12)
Item
Address
1
No. C o p i e s
C o m m a n d i n g O f f i c e r a n d D i r e c t o r , David T a y l o r M o d e l
B a s i n , Washington 7, D. C. , Attn: Code 580
54
2
Chief of N a v a l R e s e a r c h , Office of N a v a l R e s e a r c h ,
D e p a r t m e n t of the Navy, Washington 25, D. C ,,
Attn: M e c h a n i c s B r a n c h (Code 438)
3
C o m m a n d i n g O f f i c e r , B r a n c h Office, Office of N a v a l
R e s e a r c h , 495 S u m m e r St., B o s t o n 10, M a s s ,
4
C o m m a n d i n g O f f i c e r , B r a n c h Office, Office of N a v a l
R e s e a r c h , 346 B r o a d w a y , New Y o r k 13, N, Y.
5
C o m m a n d i n g O f f i c e r , B r a n c h Office, Office of N a v a l
R e s e a r c h , T h e J o h n C r e r a r L i b r a r y B l d g . , 10th F l o o r ,
8 6 E. Randolph S t . , C h i c a g o 1, Ill,
6
C o m m a n d i n g O f f i c e r , B r a n c h Office, Office of N a v a l
R e s e a r c h , 1000 G e a r y St. , S a n F r a n c i s c o 9, Calif.
7
C o m m a n d i n g O f f i c e r , B r a n c h Office, Office of N a v a l
R e s e a r c h , 1030 E. G r e e n S t r e e t , P a s a d e n a 1, Calif.
8
A s s t . N a v a l A t t a c h e f o r R e s e a r c h , Office of N a v a l
R e s e a r c h , A m e r i c a n E m b a s s y , London, England,
Navy 100, F,P . O . New Y o r k , N. Y.
9
D i r e c t o r , N a v a l R e s e a r c h L a b o r a t o r y , Office of Naval
R e s e a r c h , Washington 25, D. C , Attn: L i b r a r i a n
10
B u r e a u of A e r o n a u t i c s , Dept. of the Navy, Washington
25, D. C . , Attn: A e r o a n d H y d r o B r a n c h (Code AD3)
11
B u r e a u of O r d n a n c e , Dept, of the Navy, Washington 25,
D. C . , Attn: Code R e 9
Code R e 6
Code R e 3
12
C o m m a n d e r , U. S . N a v a l O r d n a n c e L a b o r a t o r y ,
U . S. Navy B u r e a u of O r d n a n c e , White O a k , S i l v e r S p r i n g
19, M a r y l a n d
2
U n d e r w a t e r O r d n a n c e D e p t . , N a v a l O r d n a n c e T e s t Station,
3202 E. F o o t h i l l Blvd. , P a s a d e n a , Calif. Attn: P a s a d e n a
A n n e x L i b r a r y (Code P 5507)
3
C h i e f , B u r e a u of S h i p s , Dept. of t h e Navy, Washington 25,
D. C . Attn: T e c h n i c a l L i b r a r y (Code 312) f o r a d d i t i o n a l
d i s t r i b u t i o n to:
10
13
14
D i s t r i b u t i o n I.,ist (continued)
Item Address
( B u r e a u of Ships d i s t r i b u t i o n )
R e s e a r c h a n d D e v e l o p ~ n ~(Code
t~t
300)
Ship D e s i g n (Code 410)
P r e l i m i n a r y D e s i g n (Code 420)
Hull. D e s i g n (Code 440)
Hull Scientific (Cocle 442)
P r o p e l l e r D e s i g n (Code 554)
M r . R. II, Kent, Ballistic R e s e a r c h L a b o r a t o r i e s , Dept.
of the A r m y , A b e r d e e n P r o v i ~ ~Ground,
g
Maryland
1
D i r e c t o r of R e s e a r c h , National A d v i s o r y C o m t n i t t e e f o r
A e r o n a u t i c s , 1512 H S t r e e t , N. W . , Washington 25, D. C.
1
D i r e c t o r , L a n g l e y A e r o n a u t i c a l Lab., National Advisory
Committee for Aeronautics, Langley Field, Virginia
1
C o m m a n d e r , N a v a l O r d n a n c e T e s t Station, Inyokern,
China Lake, Calif., Attn: L i b r a r y (Code 5507)
1
D r . K. S , M. Davidson, E x p e r i m e n t a l Towing Tank,
S t e v e n s I n s t i t u t e of Technology, Hoboken, N. J.
1
D r . J. H. McMillen, National S c i e n c e Foundation,
1520 H S t r e e t , N. W., Washington 25, D. C.
1
Dr. A. M i l l e r , B u r e a u of O r d n a n c e (Code Re3d) Navy Dept.
Washington 25, D.C.
I
D r . H. R o u s e , Iowa I n s t i t u t e of H y d r a u l i c R e s e a r c h ,
S t a t e U n i v e r s i t y of Iowa, Iowa City, Iowa
1
D r . R.G. F o l s o m , D i r e c t o r , E n g i n e e r i n g R e s e a r c h
Institute, U n i v e r s i t y of Michigan, E a s t E n g i n e e r i n g Bldg.
Ann A r b o r , Michigan
1
D r . V . L . S t r e e t e r , E n g i n e e r i n g Dept.,
Michigan, Ann A r b o r , Michigan
1
U n i v e r s i t y of
Dr. G.F. Wislicenus, Pennsylvania State University,
O r d n a n c e R e s e a r c h L a b o r a t o r y , U n i v e r s i t y Park, Pa.
I
D r . A. T, Ippen, Dept. of C i v i l a n d S a n i t a r y E n g i n e e r i n g ,
M a s s a c h u s e t t s I n s t i t u t e of Technology, C a m b r i d g e 39, M a s s .
1
D r . L. G. S t r a u b , St. Anthony F a l l s H y d r a u l i c L a b o r a t o r y ,
U n i v e r s i t y of M i n n e s o t a , M i n n e a p o l i s 14, Minn.
1
P r o f . K. E. S c h o e n h e r r , U n i v e r s i t y of N o t r e D a m e ,
College of E n g i n e e r i n g , N o t r e D a m e , Indiana
1
Director, Ordnance R e s e a r c h Laboratory, Pennsylvania
S t a t e U n i v e r s i t y , U n i v e r s i t y P a r k , Pa.
1
D i s t r i b u t i o n L i s t (continued)
Item
-
Addrcss
Societ,y of Naval A r c h i t e c t s a n d M a r i n e E n g i n e e r s
74 T r i n i t y P l a c e , New York 6, N. Y.
P r o f . J. K. Vennard, St,anford U n i v e r s i t y , Dept. of
C i v i l E n g i n e e r i n g , Stanford, C a l i f o r n i a
1
P r o f , 3. L. Hooper, W o r c e s t e r P o l y t e c h n i c I n s t i t u t e ,
Alden f i y d r a u l i c L a b o r a t o r y , W o r c e s t e r 6, M a s s .
1
P r o f . J. M. R o b e r t s o n , Dept. of T h e o r e t i c a l a n d Applied
M e c h a n i c s , U n i v e r s i t y of Illinois, Urbana, Ill.
1
Dr. A.B. Kinzel, P r e s i d e n t , Union C a r b i d e a n d C a r b o n
R e s e a r c h L a b . , Inc., 30 E. 42nd St., New York, N. Y,
1
G o o d y e a r A i r c r a f t Gorp., A k r o n 15, Ohio, Attn:
Security Officer
P r o f . H.R. H e n r y , H y d r a u l i c s L a b o r a t o r y , Michigan
S t a t e College, E a s t L a n s i n g , Michigan
1
B r i t i s h J o i n t S e r v i c e s M i s s i o n , Navy Staff, Via:
David T a y l o r Model B a s i n , Code 580, Navy D e p a r t m e n t ,
Washington 7, D. C.
9
C o m m a n d e r , S u b m a r i n e Development G r o u p TWO,
Box 70, U. S. Naval S u b m a r i n e B a s e , New London, Conn.
1
C o m m a n d i n g O f f i c e r a n d D i r e c t o r , U. S. Navy E n g i n e e r i n g
E x p e r i m e n t Station, Annapolis, M a r y l a n d
1
L i b r a r y of C o n g r e s s , Washington 25, D. C,
ASTSA
, Attn:
D r . P. R. G a r a b e d i a n , S t a n f o r d U n i v e r s i t y ,
Applied M a t h e m a t i c s a n d S t a t i s t i c s L a b o r a t o r y , Stanford,
California
1
1
A r m e d S e r v i c e s Techrlical Information Agency,
Knott Building, Dayton, Ohio
M r . J . G. B a k e r , B a k e r Manufacturing Company,
Evansville, Wisconsin
M r . T . M . B u e r m a n , G i b b s a n d Cox, Inc., 21 W e s t S t . ,
New Y o r k 6, New Y o r k
1
D y n a m i c D e v e l o p m e n t s , Inc. , St. M a r k ' s L a n e , I s l i p ,
Long I s l a n d , New York, Attn: M r . W. P. C a r l , Jr.
1
H y d r o d y n a m i c s R e s e a r c h L a b o r a t o r y , ConsolidatedVultee A i r c r a f t C o r p o r a t i o n , San Diego 12, C a l i f o r n i a
1
Distribution L i s t (continued)
Item Address
47
48
49
50
51
No. Copies
M r . R. K. Johnston, Miami Shipbuilding Corporation,
615 S. W. Second Avenue, Miami 36, F l o r i d a
1
M r . J. D. P i e r son, The Glenn L. M a r t i n Company,
B a l t i m o r e 3 , Maryland
1
M r . W . R . Ryan, Edo Corporation, College Point 56,
Long Island, New York
1
D r . Robert C. Seamans, Radio Corporation of A m e r i c a ,
Waltham, M a s s a c h u s e t t s
1
D r . A. G. Strandhagen, Department of Engineering
Mechanics, University of Notre Dame, Notre Dame, fnd.
1
52
Dr. H. W,E. L e r b s , Hamburgische Schiffbau-Versuchsanstalt
Hamburg 33, B r a m f e l d e r s t r a s s e 164
1
53
C o m m a n d e r , Air R e s e a r c h and Development Command,
P. 0,Box 1395, B a l t i m o r e , Maryland. Attn: RDTDED
54
55
Avco Manufacturing Gorp. , ~ d v a h c e dDevelopment Div.
2385 R e v e r e Beach Parkway, E v e r e t t 49, M a s s .
Atten: Technical L i b r a r i a n
D r . L. Landweber, Iowa Inst, of Hydraulic R e s e a r c h ,
State University of Iowa, Iowa City, Ia.
1
,
1
1