Tutorial 4: Integration ECO4112F 2011 (x + 1)20 dx R √ 2. x x2 + 5dx 2 R 3. 4x2 x4 + 1 dx R 2 4. 2xex dx 3 R 2 5. x + 1 ex +3x dx 1. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. R 19. R3 3x2 − x + 6 dx −1 20. R1 e3t dt 0 21. R1 2x2 x3 − 1 3 dx 0 R 7 dx x Z 2x3 + 3x dx x4 + 3x2 + 7 R√ 2x − 1dx R −x/4 e dx 2 R 2 x + 1 dx Z √x e √ dx x Z 1 1 + dx x − 1 (x − 1)2 R sin (5x − 3) dx Z 7 dx 3 − 2x R 3−x 2 dx Z 9x2 + 5 dx 3x Z ln x 3 dx x Z x+3 dx x+6 22. R1 √ 3 x5 dx −1 23. R√ Z 24. 25. R2 103x dx ln x √ dx x x ln xdx 1 2 26. R xex dx 27. R x2 e2x+1 dx 28. R xe−x dx y 3 ln ydy R √ 30. x x + 1dx 29. R 31. R2 32. R (2x − 1) ln (x − 1) dx 33. R ex sin xdx 34. Re √ xe2x dx 1 1 1 x ln x2 dx Tutorial 4: Integration SELECTED SOLUTIONS ECO4112F 2011 1. R (x + 1)20 dx Easy R p 2. x x2 + 5dx 3=2 x2 + 5 = +C 3 R 2 3. 4x2 x4 + 1 dx x3 11 3 x11 =4 4. 5. 6. 7. 8. 9. 10. R + 2x7 7 + +C 14. 2 = x5 5 + 2x3 3 p x 1 x ... R +C 1 + sin (5x Z 1 (x 1)2 dx 3) dx cos (5x 5 3) 7 dx 3 2x Simple, but be careful of signs R 15. 23 x dx 1 3 x = 2 +C ln 2 Z 9x2 + 5 16. dx 3x Hint: divide through Z ln x 3 17. dx x 2 2 p e x p dx x = 2xex dx x2 + 1 12. = 2e Z 13. = ex + C R 2 3 x + 1 ex +3x dx 1 3 = ex +3x + C 3 R 7 dx x Easy Z 2x3 + 3x dx x4 + 3x2 + 7 Easy Rp 2x 1dx 1 = (2x 1)3=2 + C 3 R x=4 e dx ... R 11. Z = 18. dx 19. Z 3ln x +C ln 3 x+3 dx x+6 Hint: rewrite the top and break up into two fractions ... R3 3x2 1 +x+C = 48 1 x + 6 dx 20. R1 27. e3t dt 0 1 3 = e 3 21. R1 = 1 28. 2x2 x3 1 3 22. 1 6 R1 p 3 x5 dx 103x dx p 2 103x +C = 3 ln 10 Z ln x p dx 24. x p = 2 x (ln x 2) + C 25. 31. R +C x dx R2 xe2x dx 1 = e2 3e2 1 4 R 32. (2x 1) ln (x = x (x x ln xdx = 2 ln 2 1 2 1 1 26. xe x+ 1 y4 ln y +C 4 4 R p 30. x x + 1dx 2 (x + 1)3=2 (3x 2) + C = 15 =0 Rp R2 e2x+1 2 x 2 = 1 23. R x2 e2x+1 dx Easy, use by parts R 29. y 3 ln ydy dx 0 = R 33. 3 4 R 1) ln (x 1) dx 1) x2 +C 2 ex sin xdx Don’t use by parts more than twice 2 xex dx 1 2 = ex + C 2 34. Re p x ln x2 dx 1 Use by parts. 2 ECO4112F, Tutorial 4 12 ˆ " # 1 1 + dx x − 1 (1 − x)2 ˆ = ˆ ln x √ dx x ˆ 1 −1 ˆ = = = = = 1 (ln x) x− 2 dx ˆ 1 1 1 2 2x ln x + A − 2x 2 dx x ˆ 1 1 2x 2 ln x + A − 2x− 2 dx 1 1 2x 2 ln x + A − 4x 2 − B √ 2 x (ln x − 2) + C 25 ˆ 2 x ln xdx 1 34 ˆ e √ 2 ˆ 2 1 21 1 2 x ln x − x dx = 2 x 1 2 1 2 1 2 1 = 2 ln 2 − ln 1 − x 2 4 1 3 = 2 ln 2 − 4 ˆ 2 x ln x dx = e 1 2x 2 ln xdx 1 e ˆ e 4 3 4 31 2 x ln x − x 2 dx 3 3 x 1 1 e 4 3 8 3 e 2 − x 2 3 9 1 4 3 8 3 8 e2 − e2 + 3 9 9 4 3 8 e2 + 9 9 1 = = = = 1 2 dx (x − 1) ln (x − 1) + − (x − 1) = 24 1 dx + x−1 +C
© Copyright 2026 Paperzz