A REMARKABLE INEQUALITY DANIEL CAMPOS, ROBERTO BOSCH Introduction. The following inequality (1) 1 − cos A 1 − cos B 1 − cos C (1 − cos A)(1 − cos B)(1 − cos C) ≥ + + cos A cos B cos C 1 + cos A 1 + cos B 1 + cos C for acute-angled triangles was proposed as problem S99 in this journal by the first author. This problem remained unsolved for a while, until [3] was published. In [3] two solutions are presented: the first one rewrites (1) into symmetric functions of x = tan A2 , y = tan B2 , z = tan C2 , and the second one employs the theory of Schur-concave functions [4]. In this paper we show a new and more simple solution only using trigonometric identities and Arithmetic Mean - Geometric Mean inequality. Main result. Let ABC be an acute-angled triangle. The following inequality holds (1 − cos A)(1 − cos B)(1 − cos C) 1 − cos A 1 − cos B 1 − cos C ≥ + + cos A cos B cos C 1 + cos A 1 + cos B 1 + cos C Proof : Rewrite both sides of the inequality as follows (1 − cos A)(1 − cos B)(1 − cos C) cos A cos B cos C = = = 8 sin2 A2 sin2 B2 sin2 C2 cos A cos B cos C tan A tan B tan C cot A2 cot B2 cot C2 tan A + tan B + tan C , cot A2 + cot B2 + cot C2 and 1 − cos A 1 − cos B 1 − cos C A B C + + = tan2 + tan2 + tan2 . 1 + cos A 1 + cos B 1 + cos C 2 2 2 Multiply by 2 and substract 2 on both sides, and then rewrite as P tan A + tan B − 2 cot C2 2(tan A + tan B + tan C) cyc −2= , A B C cot 2 + cot 2 + cot 2 cot A2 cot B2 cot C2 and A B C 2 tan + tan2 + tan2 2 2 2 2 −2 2 DANIEL CAMPOS, ROBERTO BOSCH as A A B A B A B 2 B 2 C 2 tan + tan + tan − 2 tan tan + tan tan + tan tan 2 2 2 2 2 2 2 2 2 2 X A B tan − tan = . 2 2 cyc 2 Finally, note that tan A + tan B − 2 cot C 2 2 cos C2 sin2 = cyc cot A2 cot B2 cot C2 − cos A cos B cos A cos B sin C2 = cos C2 (1 − cos(A − B)) = 2 cos C2 sin2 = so that P tan A + tan B − 2 cot C2 C 2 cos A cos B sin C2 A−B 2 cos A cos B sin C2 2 cos2 A2 cos2 B2 cos C2 cos A cos B sin C2 A B tan − tan 2 2 X 2 cos2 A cos2 B cos C 1 2 2 2 = cot A2 cot B2 cot C2 cyc cos A cos B sin C2 X tan A tan B A B 2 = tan − tan . 2 2 2 cyc 2 , B A tan − tan 2 2 2 Thus, we have to prove that X B 2 A ≥ 0. (tan A tan B − 2) tan − tan 2 2 cyc This follows from the more general result for arbitrary real numbers x, y, z, X (2) (tan A tan B − 2)(x − y)2 ≥ 0. cyc Indeed, rewrite this as X tan A tan B tan C − 2 tan C tan C cyc (x − y)2 = X tan A + tan B − tan C tan C cyc = X tan A cyc ≥ X tan C (x − y)2 + (x − y)2 tan C (y − z)2 − (x − y)2 tan A 2|(x − y)(y − z)| − (x − y)2 cyc This expression is symmetric in x, y, z, so we can assume x ≥ y ≥ z, i.e x − y = p, y − z = q, with p, q ≥ 0 and x − z = p + q. Hence we obtain X 2|(x − y)(y − z)| − (x − y)2 = 2(p2 + 3pq + q 2 ) − 2(p2 + pq + q 2 ) = 4pq ≥ 0. cyc and the conclusion follows. A REMARKABLE INEQUALITY 3 Refinements of original inequality. Let s, R, r and K be the semiperimeter, circumradius , inradius and area of triangle ABC respectively. Lemma 1 : X tan2 cyc A (4R + r)2 − 2s2 , = 2 s2 Proof : We have that sin A2 = that q (s−b)(s−c) bc and cos A2 = P X cyc A tan 2 2 = = = = q s(s−a) bc , hence tan2 A 2 = (s−b)(s−c) s(s−a) , and it follows (s − b)2 (s − c)2 cyc s(s − a)(s − b)(s − c) !2 P (s − b)(s − c) − cyc (−s2 + ab + bc + s2 r2 2 (4R + r) − 2s2 s2 ca)2 2K 2 s (s − a + s − b + s − c) s2 r2 − 2s2 r2 because ab + bc + ca = s2 + r2 + 4Rr [5]. Lemma 2 : cos A cos B cos C = s2 − (2R + r)2 , 4R2 Proof : We have that cos A cos B cos C = = = = 1 (sin2 A + sin2 B + sin2 C − 2) 2 1 X 2 2 a − 8R 8R2 cyc 1 ((a + b + c)2 − 2(ab + bc + ca) − 8R2 ) 8R2 1 s2 − (2R + r)2 2 2 2 2 (4s − 2(s + r + 4Rr) − 8R ) = , 8R2 4R2 as claimed. Lemma 3 : (1 − cos A)(1 − cos B)(1 − cos C) = r2 , 2R2 4 DANIEL CAMPOS, ROBERTO BOSCH Proof : We have that A B C sin2 sin2 2 2 2 8(s − a)2 (s − b)2 (s − c)2 a2 b2 c2 2 4 8s r r2 = . 16s2 r2 R2 2R2 (1 − cos A)(1 − cos B)(1 − cos C) = 8 sin2 = = Hence the original inequality (1) can be rewritten as 2r2 (4R + r)2 − 2s2 ≥ , s2 − (2R + r)2 s2 and after some algebraic manipulations this is 2s4 − (24R2 + 16Rr + r2 )s2 + (64R4 + 96R3 r + 52R2 r2 + 12Rr3 + r4 ) ≥ 0. This is equivalent to 1 1p s2 ≤ 6R2 + 4Rr + r2 − 64R4 − 112R2 r2 − 64Rr3 − 7r4 = H(R, r) 4 4 because the other case is 1 1p s2 ≥ 6R2 + 4Rr + r2 + 64R4 − 112R2 r2 − 64Rr3 − 7r4 . 4 4 If this inequality is true, then, by Blundon’s inequality [1][2], we have that 1 1p 4R2 + 4Rr + 3r2 ≥ s2 ≥ 6R2 + 4Rr + r2 + 64R4 − 112R2 r2 − 64Rr3 − 7r4 4 4 ≥ 6R2 + 4Rr. From Euler’s inequality R ≥ 2r, it is clear that this can’t hold. In addition, it is simple to verify that H(R, r) ≤ 4R2 + 4Rr + 3r2 = Q(R, r), where Q(R, r) is the best upper bound in quadratic forms [1][2]. Then a natural question arises, is it possible to use p (3) s2 ≤ 2R2 + 10Rr − r2 + 2(R − 2r) R2 − 2Rr (the best inequality for homogeneous functions), to find a refinement to (1)? We don’t know, but certainly (3) can be rewritten in terms of trigonometric identities. Therefore, it should be possible to find an equivalent inequality; the idea is to relate this result with (1). Another possible refinement of the inequality follows directly from the previous proof, namely ! Y 1 − cos A B C A B 2 C 2 A 2 ≥ 1 + max tan − tan , tan − tan , tan − tan cos A 2 2 2 2 2 2 cyc Assuming that tan A2 ≥ tan B2 ≥ tan C2 , we obtain from the proof of (1) that Y 1 − cos A X 1 − cos A A B B C − ≥ pq = tan − tan tan − tan cos A 1 + cos A 2 2 2 2 cyc cyc A REMARKABLE INEQUALITY Hence Y 1 − cos A cyc 5 B A B C tan − tan ≥ + tan − tan 1 + cos A 2 2 2 2 cyc 2 A C = 1 + tan − tan 2 2 ! A B 2 B C 2 C A 2 = 1 + max tan − tan , tan − tan , tan − tan 2 2 2 2 2 2 X 1 − cos A cos A A sharper inequality than (1) was found by Constantin Mateescu in [6]: Q Q (1 − cos A) − cos A Y 1 − cos A X 1 − cos A cyc cyc Q ≥ + . cos A 1 + cos A (1 + cos A) cyc cyc cyc We present an elementary proof, distinct from those in [6]: Denoting by x = as P cos A, y = P cyc cyc cos A cos B and z = Q cos A we can rewrite Mateescu’s inequality cyc 1−x+y−z 3 + x − y − 3z 1 − x + y − 2z 4 − 5z ≥ + = z 1+x+y+z 1+x+y+z 1+x+y+z or equivalently y 2 ≥ 2z(1 + x − 2z) = 2z(x2 + x − 2y), where we have used the identity 1 = cos2 A + cos2 B + cos2 C + 2 cos A cos B cos C = x2 − 2y + 2z. This again can be rewritten as y 2 − 2xz ≥ 2z(x2 − 2y), or X cos2 B cos2 C ≥ 2 cos A cos B cos C cyc X cos2 A. cyc This can be slightly simplified (in the case of the acute-angled triangle, which is the only interesting case) as X cos A cos B X ≥2 cos2 A. cos C cyc cyc 0 ) Assuming that the triangle is acute, we can write A = (π−A ,B= 2 inequality becomes 0 X sin A0 sin B 0 X 2 A 2 2 ≥ 2 sin . 0 2 sin C2 cyc cyc (π−B 0 ) , 2 C= (π−C 0 ) . 2 Then our Let a, b, c be the lengths of the triangle A0 B 0 C 0 and s its semiperimeter. Write x = s − a, y = s − b, z = s − c. Then r r A0 (s − b)(s − c) yz sin = = , 2 bc (x + y)(x + z) so that 0 0 sin A2 sin B2 z = , C0 x + y sin 2 6 DANIEL CAMPOS, ROBERTO BOSCH and finally it’s not difficult to verify that the inequality X z X yz ≥2 , x+y (x + y)(x + z) cyc cyc is exactly third degree Schur’s inequality. References [1] [2] [3] [4] [5] [6] W.J. Blundon, Inequalities associated with the triangle, Canad. Math. Bull. 8, 1965, 615-626. Bottemi et al, Geometric Inequalities. Wolters-Noordhoff, 1969, p. 51. T. Andreescu, Mathematical Reflections: the next two years (2008 - 2009). XYZ Press, 2012, pp. 145-151. A.W.Marshall, I.Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, 1979. T. Andreescu, D. Andrica, Complex numbers from A to ... Z, Birkha̋user, 2006. http://www.artofproblemsolving.com/Forum/viewtopic.php?f=52&t=404742&hilit=campos. Daniel Campos University of Chicago, USA. [email protected] Roberto Bosch Archimedean Academy, FL, USA. [email protected]
© Copyright 2026 Paperzz