Northern Finland Office 74/2012 Rovaniemi 1.9.2012 REE-mineralogy of arkosic gneisses from Mäkärä-Vaulo area, Tana Belt, Northern Finland Thair Al Ani and Olli Sarapää GEOLOGICAL SURVEY OF FINLAND DOCUMENTATION PAGE Date / Rec. no. 1.9.2012 Authors Type of report Thair Al Ani alIi Sampaa Commissioned by GTK Title of report REE-mineralogy of arkosic gneisses from Makara-Vaulo area, Tana Belt, Northern Finland Abstract The selection of Makarii and Vaulo areas as REE-Au-targets in the Tana Belt was based on LREE- and HREE-anomalies in regional till and bedrock geochemistry and Au intersections in previous drill holes. In this study, the mineral chemistry and alteration ofREE-minerals were investigated by EMPA, and SEM techniques from selected recent outcrop and drill core samples. The anomalous REE contents in the Tana belt can be explained by the occurrence ofbastnasite, cerite, allanite and fine xenotime grains in arkosic gneisses. The late stage REE mineralisation is dominated by Ca-REE fluorocarbonates (bastnasite) and REE-silicate (cerite and allanite). These also occur as fill vug space or fractures and replace chlorite and apatite. The EMPA analysis has shown the REE minerals and their essentially cerium and lanthanum composition with content of Nd, Pr Sm, and Gd were detected with spectrochemical analysis. In general, the REE contents according to ICP-MS-analyses are intermediate to high with range from 596.9 to 938.2 ppm. The LREE and HREE contents are relatively high. LREE is higher than HREE with distinct negative Eu anomalies and REE normalized patterns indicating decreasing abundances with increasing atomic number. Mineralogical and mineral chemical evidence demonstrates that hydrothermal processes were responsible for the most REE mineralization in studied rocks. During hydrothermal processes carbonate, phosphate and silicate minerals have been replaced by various assemblages ofREE-minerals. Keywords Tana Belt, yttrium, Au, REE-minerals, bastniisite (Ce), allanite, cerite and xenotime (Y) Geographical area Lapland province, Sodankyla, Vuotso, Makara,Vaulo Map sheet V434,3724 Other infonnation Report serial Archive code 7412012 Total pages Language 36 English Price Public Unit and section Project code Northern Finland office Bedrock and resources 2141007 Signature/name Signature/name Ph.D Thair Al Ani ~ 1l GTK 'PAI-I~' Confidentiality Ph.D 011i Sarapa;; t :J;,' ··V C?=~ GEOLOGIAN TUTKIMUSKESKUS • GEOLOGISKA FORSKNINGSCENTRAlEN • GEOLOGICAL SURVEY OF FINLAND Contents Documentation page 1 INTRODUCTION 1 2 SAMPLING AND ANALYTICAL METHODS 1 3 RESULTS 3.1 Petrography 3.2 Mineralogy 3 3 7 3.3 REE Geochemistry 31 4 CONCLUSIONS 35 5 REFERENCES 35 LITERATURE - 1 1 INTRODUCTION Geological Survey of Finland (GTK) has started in 2009 a project for mapping potentiality for 'hi-tech' metals in Finland. The Tana belt, immediately to the south of the Lapland Granulite Belt, northern Finland, was selected as one of the main targets as the area includes prominent REE anomalies in regional till geochemical and lithogeochemical data (Salminen 1995, Rasilainen et al. 2008). These data indicate high La and Y concentrations in both till and bedrock of arkosic gneiss belt 200 km in length. Especially interesting is that high Y values in till and rock samples indicate enrichment of the heavy REE in the bedrock. Simultaneously with the REE exploration, also indications of gold have been redone: The region includes a number of known, small Au occurrences in hematite-quartz-veins and extensive areas nugget gold in the regolith (Sarapää and Sarala 2011). The strongly deformed Tana belt comprises amphibolite, garnet-biotite and arkose gneisses, and was trusted together with the Lapland Granulite Belt onto the Central Lapland Greenstone Belt during 1.9-1.8 Ga (Tuisku and Huhma 2006). The present main Au- and REE targets locate in Mäkärä and Vaulo, 15 and 25 km northwest from the Vuotso village. The area is located in the latest ice divide zone of the last (late Weichselian) glaciations. Subglacial erosion has been weak and the till transport distance short. Bedrock is covered by 5-30 m thick kaolinitic saprolite and the overlying till, usually clay-rich, has a thickness of 0.5-15 m. The aim of this work to find out in which minerals are rare earth elements hiding. 2 SAMPLING AND ANALYTICAL METHODS Five outcrop sample and 15 core samples from 9 drill holes (V434-2011-R20, R21, R24, R28, R29, R6, R9, R11) were selected from the Tana Belt for detailed mineralogical studies (Figure. 1) The outcrop samples were collected by geologists Antero Karvinen(EAK) and Antti Mikkola(AMM$$) during field season 2011 (Table 1), and the drill cores represent Mäkärä and Vaulo Au-REE-targets. Backscattered electron (BSE) imaging and electron probe microanalysis (EPMA) were used to describe various REE-mineral phases from ten polished thin sections (Table. 1), investigated by CAMECASX100/LKP electron microprobe at GTK-Espoo. Another ten drill core were studied by scanning electron microscope (SEM), performed on JEOL JSM 5900 LV. Our SEM analyses concentrated on REE and Y- accessory minerals. The thin sections were also studied under petrographic microscope. All photographs are taken from thin sections, polished to 0.03 mm thickness, in transmitted white light, both under plane polarized light and under crossed polarizer. More detailed descriptions are presented in the SEM report of Al Ani 2012. Rare earth elements from studied outcrop and drill core samples were determined either by ICP-MS after hydrofluoric acid-perchloric acid dissolution (method 307PM, order 502924) or after sodium peroxide fusion (method 720PM, order 503991, 502933). - 2 Figure 1. Location map of the studied drill core and outcrop samples in the Tana Belt. Table 1. The selected outcrop and drill core samples from the Tana Belt rocks. Sample No. EAK1-2011-118.1 Kariselkä AMM$-2011-32.1 Kostiajänkä AMM$-2011-36.1 Peuranippa AMM$-2011-45.1 Palo-Peuravaara AMM$-2011-52.1 Haipanrova V4342011R28/36.0 Vaulo V4342011R28/43.4 Vaulo V4342011R28/62.3 Vaulo V4342011R28/100.9 Vaulo V4342011R29/113.3 Vaulo - X-Coordinate Y-coordinate 7582880 3457210 7578605 3466448 7578659 3468944 7579592 3468151 7579896 3466670 7572179 3481878 7572179 3481878 7572179 3481878 7572179 3481878 7572400 3483000 Rock type Felsic volcanic rock Arkosic gneiss Arkosic gneiss Arkosic gneiss Arkosic gneiss Granite gneiss Amphibolite Arkosic gneiss Amphibolite Granite gneiss 3 3 3.1 RESULTS Petrography The following petrographic descriptions are based on a set of 10 thin-sections of arkosic and hornblende gneisses or amphibolites and granitic gneisses from the Tana Belt (Table 1 and Figs. 1-3). The granitic gneisses are fine to medium grained. The mineralogy of these samples is predominantly quartz and plagioclase feldspar and/or K-feldspar with biotite, garnet, ilmenite, titanite, zircon, and other accessory minerals. Alteration of the rocks produces secondary minerals such as such as chlorite and sercite (Fig. 2). Amphibolites rock samples are composed mainly from hornblende and plagioclase with some containing amounts of quartz, biotite, garnet, clinoorthopyroxen, zircon and titanite. As with arkosic gneisses, alteration minerals such as sericite and chlorite are also present (Fig. 4). Figure 2. Arkosic gneisses outcrop samples from the Tana belt. - 4 Figure 3. Drill core samples from the Vaulo area. - 5 Figure 4. Microphotographs of representative granitic gneiss samples (crossed polarized and Normal lights): (A) coarse amphibolites grain within quartz and plagioclase; (B) titanite grains surrounded by quartz and ilmenite with some occurrences of biotite; (C) alteration of amphibole to chlorite and occurrences of zircon. - 6 Figure 5. Microphotographs of representative amphibolites gneiss samples (crossed polarized and Normal lights): (A) high occurrences of ilmenite and chlorite with plagioclase and K-feldspar; (B, C) predominant of coarse amphibole grains with some alteration of chlorite and common titanite occurrences. - 7 3.2 3.2.1 Mineralogy Electronic microscopic analysis (EPMA) Ten samples from Vaulo at Tana Belt were studied by EPMA in detail to investigate petrography and concentration of the REE in the different mineral phases. Most of selected samples are arkosic and granite gneisses and composed mainly of quartz-plagioclase-K-feldspar -garnethornblende-biotite with some accessory minerals such as titanite, zircon, pyroxene and REEbearing minerals. Outcrop samples from the Tana Belt Kostiajänkä, arkosic gneiss, AMM$-2011-32.1 Arkosic gneiss rock composed mainly from quartz-plagioclase-K-feldspar and the accessory minerals are amphibole, biotite, titanite, ilmenite and zircon (Table 2). Few xenotime grains (diameter = 15 x 40 µm and 20 x 25 µm) have been found, as irregular grains and disseminated within ilmenite and surrounded by K-feldspar (Fig. 6). Electron-microprobe analyses reveal that most of the xenotime crystals contain significant amounts of Y2O3 (42.36-47.0 wt.%). Xenotime grains also contain additional WO3 (1.9-3.2 wt.%), Dy2O3 (3.9-4.0 wt.%) and Gd2O3 (4.2-4.3 wt.%) see Table (3). - 8 Table 2. Representative EMPA results of main minerals in selected AMM$ drill core samples at Tana Belt. Sample Mineral Kfls Biotite Hornblende Plag Kfls Hedenbergite Albite SiO2 64.64 33.71 38.71 66.05 64.50 49.32 67.43 TiO2 0.04 1.54 1.07 0.00 0.02 0.12 0.00 Al2O3 18.41 16.77 10.93 21.07 18.10 1.21 20.34 Cr2O3 0.00 0.00 0.00 0.00 0.00 0.01 0.01 V2O3 0.00 0.03 0.03 0.01 0.00 0.01 0.02 FeO 0.00 31.35 29.89 0.05 0.15 0.00 0.26 0.99 0.00 0.00 24.36 0.89 0.10 MnO MgO 0.02 2.53 1.78 0.00 0.00 2.42 0.00 CaO 0.00 0.11 Na2O 0.25 0.00 10.12 1.83 K2O SrO 16.23 0.00 8.49 0.00 BaO 0.34 Total 100.00 AMM$-2011-36.1 0.00 2.17 0.01 0.33 18.36 1.90 1.87 10.64 0.11 16.05 0.01 11.51 0.16 0.00 0.00 0.00 0.05 0.02 0.00 0.00 0.00 0.21 0.00 0.01 95.19 97.47 100.14 99.38 98.86 100.63 1.03 Sample Mineral FeOx Hornblende Plag Kfls Kfls Plag Titanite FeOx Hedenbergite SiO2 40.71 64.31 65.59 0.00 64.44 64.23 30.18 0.00 49.55 TiO2 0.00 0.00 0.11 0.03 0.05 0.06 17.72 20.84 0.01 18.40 22.00 34.53 2.51 0.02 Al2O3 1.20 9.95 0.06 1.86 Cr2O3 0.01 0.00 0.03 0.01 0.00 0.01 0.00 0.00 0.00 V2O3 0.02 0.01 0.03 0.04 0.01 0.01 0.22 0.05 0.01 FeO 24.27 0.05 0.04 0.10 1.41 91.85 18.94 0.69 0.00 0.00 91.25 0.04 0.04 MnO 0.04 0.00 0.12 1.61 MgO 5.43 0.02 0.00 0.00 0.00 0.02 0.00 0.38 0.00 CaO 10.53 0.02 2.50 0.00 0.02 3.33 0.01 Na2O 1.64 0.42 0.00 0.28 0.00 15.45 0.00 0.00 0.00 0.00 0.04 0.00 16.02 0.00 0.00 SrO 1.61 0.00 9.79 0.35 19.72 1.49 K2O 9.88 0.17 26.98 0.00 0.06 0.03 0.00 BaO 0.00 0.31 0.00 0.00 0.37 0.00 0.00 0.00 0.00 96.5 98.4 99.1 91.5 99.77 99.95 96.54 92.50 99.11 Total - AMM$-2011-32.1 AMM$-2011-52.1 AMM$-2011-45.1 0.00 5.53 9 Figure 6. Back-scattered electron (BSE) images of selected xenotime crystals in sample AMM$-201132.1. - 10 Table 3. Representative EMPA results of xenotime of sample AMM$-2011-32.1and cerite (ce) of sample AMM$-2011-52.1 Sample Mineral Grain SiO2 TiO2 Al2O3 FeO CaO P2O5 SO2 UO2 ThO2 WO3 Y2O3 Ce2O3 Nd2O3 La2O3 Pr2O3 SmO Gd2O3 Dy2O3 F Cl Total AMM$-2011-32.1 Xenotime gr1 gr2 1.14 0.87 0.17 0.81 0 0 0.08 0.66 0 0 35.54 32.68 0 0 0.07 0.15 0.08 0 1.91 3.24 47.03 42.36 0 0.11 0.16 0 0 0 0.3 1.1 0.43 0.1 3.95 4.02 4.31 4.23 0.07 0.11 0.01 0.01 95.3 90.5 AMM$-2011-52.1 gr1 Cerite (Ce) gr2 gr3 gr4 6.31 0.00 1.71 1.12 0.14 1.10 0.04 0.09 0.06 0.10 0.00 75.61 1.41 0.00 0.46 0.19 0.16 0.00 1.36 0.05 6.57 0.00 1.69 1.27 0.13 1.15 0.02 0.06 0.00 0.00 0.00 78.89 1.52 0.00 0.21 0.19 0.00 0.00 1.36 0.06 6.21 0.02 1.80 1.05 0.09 1.06 0.06 0.18 0.09 0.34 0.00 74.35 1.33 0.00 0.44 0.27 0.12 0.00 1.21 0.05 6.56 0.00 1.74 1.06 0.09 1.17 0.00 0.00 0.07 0.15 0.00 77.05 1.43 0.00 0.25 0.00 0.16 0.00 1.44 0.05 89.9 93.1 88.7 91.2 Peuranippa, arkosic gneiss AMM$-2011-36.1 The main minerals are quartz, plagioclase, K-feldspar, and clinopyroxene (hedenbergite). The colour of hedenbergite is bluish green. Other accessories include titanite, zircon and FeO-oxide (Table. 2). Small amounts of REE are present in the studied samples such as bastnäsite and xenotime. Palopeuravaara, arkosic gneiss, AMM$-2011-45.1 Quartz-plagioclase-K-feldspar and hornblende are the main minerals. Accessories minerals include chlorite, ilmenite, titanite, zircon and cubic FeO-oxide. REE-minerals are not shown in this sample (Fig. 5). Haipanrova, arkosic gneiss, AMM$-2011-52.1 The main minerals are quartz-plagioclase-K-feldspar-amphibole, whereas the accessories include biotite, titanite, zircon Fe-oxide (Fig.5, Table. 2). BSE photo shows a large cluster of REEbearing mineral grains included within studied sample (Fig. 7A). The main REE-bearing mineral is cerite (Ce), which occurs as inclusions within albite (Fig. 7B). Electron-microprobe analyses reveal that most of the Cerite (Ce) crystals contain significant amounts of Ce (75-79 wt. %), and also contain additional Nd (1.3-1.5 wt. %), F (1.2-1.4 wt. %), SiO2 (6.3-6.6 wt. %), Al2O3 (1.71.8 wt. %) and FeO (1.0-1.32 wt. %), see Table (3). - 11 Figure 7. Back-scattered electron (BSE) images of selected cerite (Ce) in sample AMM$-2011-52.1. (a) Original sample (low magnification) shows clustering of cerite (Ce) within the sample, (b) cerite (Ce) within albite mineral. Kariselkä, felsic volcanic rock, EAK1-2011-118.1 The main minerals are mylonitized quartz, plagioclase, K-feldspar and amphibole. Amphibole is partly chloritized and the accessories include titanite, zircon (Table. 4). This sample was characterized by high content of different type of REE-minerals. REE-silicate mostly cerite (Ce) was developed in vugs and fractures within main silicate minerals as quartz to form bright vertical lines (Fig. 8 A-F). Cerite (Ce) is mostly associated with chlorite as dark colour. Backscattered electron (BSE) imaging of the studied sample also shows some content of bastnäsite. It´s found as inclusions in quartz. Bastnäsite grains are enveloped with a chlorite rim against neigh boring quartz, albite and amphibole (Fig. 9A-C). Electron-microprobe analyses reveal that most of the Cerite (Ce) crystals contain significant amounts of Ce (57-77.5 wt. %). These grains also contains minor amounts of Nd (1.4-2 wt. %) and F (1.2-1.7 wt. %) see Table (5). The chemical data by EMPA of few bastnäsite grains shows - 12 that bastnäsite have elevated REE and Y with La2O3, Ce2O3, Nd2O3 and Y2O3 contents ranging from 20.5-26.3 wt.%, 16.1-20.6 wt.%, 17-22.5 wt.% and 5.1-6.1 wt.% respectively (Table. 5). F content is high with ranging from 5.7 to 6.4 wt. %. Table 4. Representative EMPA results of main minerals in sample EAK1-2011-118.1. Sample - EAK1-2011-118.1 Mineral Kfls Plag Chlorite hornblende SiO2 64.23 67.02 23.84 38.79 TiO2 0.03 0.04 0.00 0.84 Al2O3 18.05 20.22 19.44 13.14 Cr2O3 0.00 0.00 0.00 0.00 V2O3 0.02 0.00 0.00 0.02 FeO 0.02 0.16 36.39 25.55 MnO 0.01 0.00 0.67 0.55 MgO 0.00 0.00 7.13 3.68 CaO 0.04 1.36 0.01 10.96 Na2O 0.17 10.62 0.00 1.28 K2O 16.35 0.14 0.02 2.07 SrO 0.33 0.13 0.12 0.61 BaO 0.38 0.00 0.00 0.00 Total 99.76 99.72 87.74 97.82 13 Figure 8. Backscattered electron micrographs REE-silicate mostly cerite (Ce) was developed in vugs and fractures within main silicate minerals as quartz to form bright vertical lines. - 14 Figure 9. Backscattered electron micrographs of Bastnäsite (a, b) fine grains of Bastnäsite filling the vug space within albite and quartz and associated with chlorite, (c) bright grain of Bastnäsite replacing the chlorite in center and enclosed by primary silicate minerals. - 15 Table 5. Representative EMPA results of REE-minerals (cerite and bastnäsite) of sample EAK1-2011118.1. Cerite-(Ce) Mineral - Bastnäsite Grain gr1 gr2 gr3 gr4 gr5 gr6 gr7 gr1 gr2 gr3 SiO2 13.04 12.64 14.50 13.39 22.30 13.91 17.27 1.44 1.20 0.93 TiO2 0.03 0.00 0.11 0.12 0.02 0.00 0.09 0.09 0.11 0.16 Al2O3 1.39 1.18 1.80 1.50 6.37 1.41 2.47 0.73 0.55 0.26 FeO 0.68 0.00 1.07 0.64 2.18 0.17 2.41 0.49 0.18 1.09 CaO 0.35 0.29 0.20 0.08 0.18 0.19 0.13 2.20 2.15 1.88 Cs2O 0.89 0.97 0.89 0.91 0.71 0.84 0.90 0.01 0.09 0.30 P2O5 0.14 0.17 0.13 0.29 0.00 0.03 0.21 0.31 0.27 0.13 SO2 0.09 0.09 0.08 0.18 0.11 0.16 0.10 0.36 0.33 0.27 UO2 0.28 0.43 0.15 0.39 0.10 0.53 0.19 0.10 0.11 0.08 ThO2 0.06 0.07 0.16 0.01 0.03 0.02 0.04 0.86 1.38 1.04 WO3 0.20 0.12 0.00 0.31 0.18 0.07 0.00 0.04 0.01 0.15 Y2O3 0.79 1.09 0.83 0.92 0.76 0.92 1.00 6.05 6.12 5.13 Ce2O3 72.45 77.49 72.12 73.24 57 74.36 69.44 16.11 17.17 20.61 Nd2O3 1.97 1.57 1.39 1.97 1.35 2 1.69 21.20 22.52 17.19 La2O3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 26.33 25.96 20.53 Pr2O3 0.25 0.08 0.09 0.22 0.00 0.35 0.07 4.85 5.05 4 SmO 0.28 0.26 0.44 0.29 0.26 0.29 0.35 2.82 2.96 2.25 Gd2O3 0.53 0.56 0.38 0.34 0.20 0.39 0.33 2.92 2.99 2.11 Dy2O3 0.11 0.55 0.00 0.08 0.00 0.33 0.00 0.49 0.98 0.00 F 1.72 1.31 1.23 1.70 1.09 1.45 1.26 6.34 5.72 5.94 Cl 0.03 0.01 0.03 0.00 0.03 0.06 0.03 0.09 0.15 0.07 Total 95.76 99.34 96.16 97.23 94.84 98.11 98.32 91.37 93.90 82.07 16 Table 6. Representative EMPA results of main minerals in selected V434-2011-R28 samples at Tana Belt. Sample Mineral amph plag kfls FeOx amph plag bio garnet apt SiO2 38.28 65.21 65.03 0.00 42.14 61.88 35.93 38.04 0.06 TiO2 1.56 0.01 0.00 0.14 1.74 0.00 5.25 0.03 0.00 Al2O3 11.61 22.09 18.10 0.00 12.30 23.97 14.24 20.91 0.00 Cr2O3 0.02 0.01 0.01 0.01 0.05 0.00 0.05 0.04 0.02 V2O3 0.00 0.00 0.00 0.02 0.09 0.03 0.12 0.01 0.00 FeO 28.84 0.04 0.00 93.07 18.96 0.06 21.95 28.06 0.08 MnO 0.55 0.00 0.00 0.00 0.11 0.02 0.08 1.27 0.00 MgO 2.30 0.00 0.00 0.00 8.25 0.00 8.84 3.08 0.02 CaO 10.62 3.69 0.00 0.02 11.46 5.92 0.01 8.82 54.76 Na2O 1.51 8.86 0.28 0.00 1.26 7.69 0.00 0.00 0.00 K2O 1.98 0.28 16.17 0.01 1.58 0.43 9.50 0.01 0.00 SrO 0.01 0.02 0.00 0.00 0.01 0.12 0.00 0.11 0.10 BaO 0.00 0.00 0.37 0.00 0.00 0.00 0.06 0.00 0.00 NiO 0.00 0.00 0.00 0.01 0.02 0.00 0.01 0.00 0.00 ZnO 0.06 0.16 0.04 0.00 0.00 0.18 0.00 0.00 0.00 SO2 0.10 0.01 0.04 0.00 0.00 0.00 0.04 0.01 0.00 P2O5 0.09 0.00 0.03 0.00 0.16 0.11 0.02 0.15 43.71 F 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.37 F=O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.42 Cl 0.24 0.00 0.00 0.00 0.03 0.02 0.03 0.00 0.06 V434-2011-R28(36.0) Cl = O -0.05 0.00 0.00 0.00 -0.01 0.00 -0.01 0.00 -0.01 Total 97.71 100.39 100.08 93.30 98.17 100.41 96.12 100.52 100.75 Sample - V434-2011-R28(43.4) V434-2011-R28(62.3) V434-2011-R28(100.9) V434-2011-R28(113.3) Mineral amph plag kfls FeOx titan amph plag bio garnet apt kfls kfls SiO2 38.65 66.51 65.48 0.03 30.99 40.82 63.74 35.23 37.82 0.15 64.43 64.72 TiO2 1.12 0.00 0.01 0.09 32.67 1.90 0.04 4.97 0.00 0.00 0.00 0.02 Al2O3 11.14 21.21 18.29 0.02 3.58 12.22 23.04 13.66 20.65 0.00 17.92 18.14 Cr2O3 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.03 0.00 0.00 0.00 0.00 V2O3 0.00 0.02 0.01 0.00 0.19 0.07 0.03 0.08 0.00 0.00 0.00 0.00 FeO 29.50 0.09 0.02 93.02 1.97 22.13 0.08 25.42 27.80 0.20 0.08 0.08 MnO 0.76 0.01 0.00 0.01 0.13 0.19 0.00 0.08 1.93 0.07 0.00 0.00 MgO 2.22 0.01 0.01 0.00 0.01 6.16 0.01 6.75 1.72 0.02 0.00 0.00 CaO 10.62 2.43 0.02 0.00 27.61 11.38 4.75 0.05 10.12 54.36 0.05 0.05 Na2O 1.74 9.69 0.30 0.00 0.00 1.26 8.11 0.00 0.00 0.00 0.16 0.17 K2O 1.88 0.32 15.34 0.00 0.00 1.78 0.54 9.43 0.00 0.00 16.10 16.31 SrO 0.10 0.02 0.00 0.09 0.00 0.00 0.07 0.00 0.05 0.02 0.01 0.00 BaO 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.22 0.23 NiO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.01 0.00 ZnO 0.11 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.04 0.13 SO2 0.06 0.00 0.01 0.00 0.00 0.05 0.00 0.07 0.01 0.00 0.01 0.01 P2O5 0.13 0.01 0.00 0.01 n.d. 0.08 0.08 0.00 0.11 43.27 0.01 0.01 F 0.00 0.00 0.00 0.00 1.33 0.00 0.00 0.00 0.00 3.00 0.00 0.00 F=O 0.00 0.00 0.00 0.00 -0.56 0.00 0.00 0.00 0.00 -1.26 0.00 0.00 Cl 0.23 0.00 0.00 0.00 0.00 0.12 0.00 0.13 0.01 0.06 0.01 0.00 Cl = O -0.05 0.00 0.00 0.00 0.00 -0.03 0.00 -0.03 0.00 -0.01 0.00 0.00 Total 98.21 100.32 99.82 93.28 97.92 98.15 100.51 95.95 100.23 99.89 99.03 99.87 17 Drilling core samples Vaulo, granitic gneiss, V434-2011-R28/36.0 The sample is composed mainly of K-feldspar, plagioclase, amphibole, chlorite, biotite, Feoxide, ilmenite, zircon, apatite and some REE-minerals (allanite, altered allanite, bastnäsite). Electron microprobe analyses (EMPA) clearly shows that dominance of minerals (about 95%) that belong to the mineral group of the silicates (Table. 6). Two types of REE minerals have been discovered in the studied sample (bastnäsite and allanite). The first REE minerals are bastnäsite which has the empirical formula (REE) CO3F and belongs to the fluoro-carbonates group. The average contents of the compound compositions in the bastnäsite includes CaO (6.8-9%) with average 7.8 %, Nd2O3 (9.7-13.3 %) with average11.4 %, Ce2O3 (22.8-30.7 %) with average 26 %, La2O3 (8.9-13.7 %) with average 10 %, Pr2O3 (2.7-3.6 %) with average 3.2 %, SmO (1.1-2.2 %) with average 1.7 % and Gd2O3 (0.8-1.8) with average 1.2 (Table 7). The average sum of REE2O3 in the studied Bastnäsite is 55 % and the average REE2O3/CaO ratio is 7.2. The Bastnäsite is characterized by the occurrences of Pr, Sm and Gd. The second REE mineral is allanite with homogeneous chemical composition. The mean contents of allanite are SiO2 (32%), Al2O3 (15 %), Ce2O3 (10 %), Nd2O3 (3.1 %), La2O3 (4.6) and Pr2O3 (1 %) see Table (7). The sum of REE2O3 in studied allanite is about 20 %. - 18 Table 7. . Representative EMPA results of REE-minerals (cerite and bastnäsite) of sample V434-2011R28 (36.0). Sample Mineral Grain SiO2 TiO2 Al2O3 V2O3 FeO MnO MgO CaO Na2O SrO SrO BaO Cs2O P2O5 SO2 ZrO2 HfO2 UO2 ThO2 PbO SnO2 Nb2O5 Ta2O5 Sc2O3 WO3 Y2O3 Ce2O3 Nd2O3 La2O3 Pr2O3 SmO Gd2O3 Dy2O3 F F=O Cl Cl = O Total - V434-2011-R28(36.0) allanite bastn bastn bastn allanite bastn bastn allanite bastn bastn bastn gr1_phase1 gr2_phase2 gr2 gr3_phase1 gr3_phase2 gr4 gr5 gr6 gr7 gr8 gr9 30.95 0.81 1.65 0.13 5.77 1.06 4.55 0.31 34.56 0.88 3.29 0.28 5.43 0.48 31.22 0.77 5.20 0.43 1.63 2.46 0.38 14.83 0.00 0.27 0.00 1.34 0.00 1.28 0.00 15.21 0.00 0.73 0.01 1.49 0.00 14.89 0.00 1.33 0.00 0.34 14.74 0.37 0.28 0.55 0.02 0.00 1.52 0.05 0.00 1.52 0.05 0.02 11.39 0.31 0.20 0.82 0.06 0.09 1.45 0.14 0.27 14.83 0.38 0.16 1.57 0.05 0.12 0.22 10.64 0.00 0.00 0.01 0.03 0.18 0.05 0.00 0.00 0.00 0.00 0.80 0.00 0.01 0.00 7.00 0.00 0.00 0.00 0.01 0.40 0.07 0.00 0.00 0.09 0.00 1.27 0.04 0.06 0.00 0.01 0.00 0.05 0.00 7.80 0.00 0.29 0.30 0.06 0.36 0.09 0.00 0.00 0.05 0.01 2.38 0.00 0.01 0.00 0.00 0.00 0.12 0.00 11.96 0.10 0.00 0.00 0.25 0.06 0.31 0.00 0.00 0.00 0.00 0.78 0.34 0.00 0.02 6.83 0.00 0.00 0.00 0.00 0.37 0.12 0.00 0.00 0.00 0.00 1.07 0.18 0.00 0.10 0.00 0.00 0.05 1.29 n.d. 0.00 0.10 0.00 6.59 0.00 0.42 0.42 0.05 0.33 0.14 0.00 0.00 0.00 0.00 0.90 0.06 0.03 0.10 0.00 0.00 0.00 0.00 7.13 n.d. 0.00 0.10 0.00 7.55 0.00 0.37 0.38 0.00 0.43 0.22 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 10.70 0.00 0.00 0.00 0.00 0.19 0.16 0.01 0.00 0.00 0.00 0.46 0.00 0.01 0.01 n.d. 0.00 0.22 0.29 8.54 0.00 0.06 0.06 0.12 0.40 2.33 0.00 0.01 0.00 0.04 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.70 11.82 3.45 4.78 1.27 0.19 0.28 0.00 0.23 -0.09 0.00 0.00 96.13 30.67 10.61 13.01 3.10 1.29 0.94 0.00 1.01 -0.43 0.02 0.00 75.55 26.46 10.38 10.44 3.22 1.58 1.41 0.00 0.77 -0.32 0.05 -0.01 72.71 25.11 11.20 8.88 3.00 2.08 1.34 0.00 0.95 -0.40 0.01 0.00 71.36 6.12 2.46 2.43 0.58 0.61 0.66 0.00 0.33 -0.14 0.05 -0.01 89.57 27.60 11.87 9.85 3.24 1.97 0.85 0.00 0.81 -0.34 0.02 -0.01 71.14 24.97 10.97 11.83 3.23 1.33 1.29 0.00 0.73 -0.31 0.04 -0.01 73.34 11.14 2.84 6.17 1.18 0.40 0.11 0.00 0.25 -0.11 0.00 0.00 95.89 26.62 11.34 10.03 2.94 1.77 0.86 0.00 0.70 -0.30 0.05 -0.01 71.75 25.01 0.30 0.00 0.00 0.02 0.00 0.29 0.29 0.15 0.35 0.06 0.00 0.00 0.00 0.00 1.31 0.00 0.00 0.07 0.00 0.00 0.00 0.83 12.46 11.69 3.31 1.89 1.46 0.13 0.69 -0.29 0.02 -0.01 69.38 0.44 0.00 0.45 0.04 0.00 7.18 0.00 0.39 0.39 0.05 0.29 0.19 0.00 0.03 0.00 0.00 1.59 0.03 0.00 0.01 0.00 0.00 0.26 0.66 23.53 12.14 11.66 3.43 2.16 1.46 0.00 0.85 -0.36 0.04 -0.01 69.75 19 The sample V434-2011-R28/36.0 shows an incipient process of replacement of bastnäsite-(Ce) + allanite (Ce) after chlorite as observed in backscattered electron images. Bastnäsite is dominant toward the inner portion of the crystal, allanite-(Ce) replacements occur along the outer portion of the crystals (Figs. 10 and11. The replacement of bastnäsite and allanite are found both within and occurs in many forms: infilling vugs and fractures; and enveloped with a chlorite rim against neigh boring quartz, K-feldspar and plagioclase. The allanite appears to be slightly older than the bastnäsite; and these minerals (Bastnäsite and allanite), replaced earlier minerals such as amphibole or quartz, and in filled fractures in primary K-feldspar and plagioclase. REE-minerals characterized by large crystal agglomerations with anhedral form, measuring up to 200 μm in diameter. These spheroidal aggregates or fine-grained vug-filling structure filled by chlorite, which altered to allanite (in the rim) and later to bastnäsite in the center (Fig. 8c, d) and (Fig. 9). Figure 10. Backscattered electron micrographs of REE minerals from Tana Belt in sample V434-2011R28/36.0 (a) Sub-anhedral grain of allanite with bright spots of bastnäsite. (b) REE-minerals filling the vuges show allanite in the rim and bastnäsite in the core as bright colour; associated with zircon and enclosed by amphibole. (C, d) REE- minerals occur as spheroidal aggregates or fine-grained vug-filling structure, chlorite altered to allanite (in the rim) and later to bastnäsite in the center. - 20 Figure 11. Backscattered electron micrographs of REE minerals from Tana Belt in sample V434-2011R28/36.0 (a) REE- minerals occur as spheroidal aggregates or fine-grained vug-filling structure, chlorite altered to allanite (in the rim) and later to bastnäsite in the center. (b) Spheroidal aggregates filled by altered allanite and chlorite and enclosed by K-feldspar and mica. (C, d) REE- minerals occur as spheroidal aggregates or fine-grained vug-filling structure, chlorite altered to allanite (in the rim) and later to bastnäsite in the center, spheroidal aggregates also contain black hole related to removal of REEminerals. Vaulo, amphibolite, V434-2011-R28/43.4 (x=7572179, y=3481878) The sample is composed mainly of amphibole, biotite, plagioclase, Fe-oxide, ilmenite, zircon and apatite (Table. 6). Electron microprobe analyses (EMPA) shows that the sample contains some allanite filling the fractures within quartz and feldspar (Fig. 10a, b). The average contents of the compound compositions in the allanite includes SiO2 (15.6 %), Al2O3 (10.7 %), Ce2O3 (21.6 %), Nd2O3 (5.7 %), La2O3 (9.1 %) and Pr2O3 (1.8) with total REE2O3 about 40% (Table. 8). - 21 Table 8. Representative EMPA results of REE-minerals in some selected samples in Tana Belt. sample Mineral Grain SiO2 TiO2 Al2O3 V2O3 FeO MnO MgO CaO Na2O SrO SrO BaO Cs2O P2O5 SO2 ZrO2 HfO2 UO2 ThO2 PbO SnO2 Nb2O5 Ta2O5 Sc2O3 WO3 Y2O3 Ce2O3 Nd2O3 La2O3 Pr2O3 SmO Gd2O3 Dy2O3 F F=O Cl Cl = O Total R28(43.4) allan gr1 15.66 0.00 10.71 0.00 0.09 0.00 0.00 7.26 1.24 0.23 0.25 0.01 0.22 0.11 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 n.d. 0.00 0.15 0.00 21.63 5.72 9.14 1.76 0.26 0.09 0.00 0.32 -0.13 0.05 -0.01 74.77 allan gr1 34.92 0.00 5.08 0.20 4.92 2.59 1.22 0.39 0.00 0.00 0.00 0.02 0.53 0.24 0.02 0.00 0.01 0.00 0.02 0.19 0.00 0.06 n.d. 0.01 0.00 1.73 37.82 1.01 0.00 0.00 0.46 0.77 0.00 0.82 -0.35 0.05 -0.01 92.71 R28(62.3) Cerite gr2 22.26 0.26 2.19 0.15 0.51 0.94 0.10 0.26 0.00 0.00 0.00 0.06 0.65 0.42 0.00 0.03 0.11 0.32 0.21 0.29 0.00 0.01 n.d. 0.01 0.43 3.63 55.61 2.92 0.09 0.38 1.18 1.51 0.51 0.86 -0.36 0.02 -0.01 95.55 Cerite gr3 16.54 0.36 1.68 0.05 0.24 0.93 0.13 0.41 0.00 0.00 0.00 0.00 0.99 0.06 0.00 0.00 0.13 0.09 1.53 0.95 0.00 0.00 n.d. 0.00 0.41 0.35 69.86 2.00 0.22 0.00 0.36 0.37 0.11 1.21 -0.51 0.02 -0.01 98.49 R28(100.9) bastn bastn gr1 1.68 0.01 0.45 0.00 0.62 0.01 0.00 4.60 0.00 0.05 0.06 0.11 0.47 0.21 0.09 0.00 0.12 0.00 1.09 0.15 0.00 0.00 0.00 0.00 0.16 0.35 32.71 9.73 18.71 1.48 0.70 0.32 0.00 5.41 -2.28 0.05 -0.01 77.07 gr2 0.80 0.12 0.01 0.01 2.03 0.07 0.00 4.04 0.00 0.00 0.00 0.09 0.43 0.28 2.76 0.04 0.00 0.12 0.65 0.00 0.00 0.06 0.04 0.00 0.02 0.65 34.09 9.47 16.08 0.00 0.83 0.74 0.00 6.22 -2.62 0.06 -0.01 77.06 Vaulo, arkosic gneiss, V434-2011-R28/62.3 The sample is composed mainly of quartz, K-feldspar, plagioclase, amphibole, biotite, Fe-oxide, titanite, zircon and apatite (Table. 6). The studied sample characterized by occurrences of minor cerite (Ce) and allanite; these minerals occur as isolated grains filling fractures within quartz (Fig. 12b, c). Electron microprobe analyses (EMPA) shows that cerite composed mainly from SiO2 (20 %) and Ce2O3 (65 %) with content of Nd, Pr, Sm, Y and Th (Table. 8). - 22 Figure 12. Backscattered electron micrographs of REE minerals from Tana Belt selected samples (a, b ) Allanite disseminated within quartz, (c) subhedral Cerite grain within plagioclase, (d) Bastnäsite and allanite intergrowth with chlorite and surrounded by plagioclase and quartz. Vaulo, amphibolites, V434-2011-R28/100.9 The mineralogical composition of the studied sample includes plagioclase, hornblende, biotite, garnet, quartz, chlorite, zircon, ilmenite, chalcopyrite and pyrite (Table 6). Few grains of Bastnäsite and allanite are occur as filling the vugs within silicate minerals and associated with chlorite (Fig 12d). The Bastnäsite composed from CaO (4.5 %), Ce2O3 (34 %), Nd2O3 (9.5), La2O3 (18 %) and Pr2O3 (1.5 %) with REE2O3 about 65 % and high REE2O3/CaO ratio (14.5) Table (8). Vaulo, granitic gneiss, V434-2011-R28/113.3 The studied sample composed mainly from mosaic of quartz, K-feldspar and plagioclase with trace occurrences of biotite and hornblende. The accessory minerals include garnet, apatite, zircon and chlorite. The sample is characterized by dominant of Ca-REE fluorocarbonates as bastnäsite-(Ce) due to EPMA data for thin section of sample. The chemical analysis of bastnäsite(Ce) is reported in Table (9); Ca content ranges from 5.6 to 7.3 wt% CaO; Ce from 24 to 28.5 wt% Ce2O3; La from 10.5 to 13 wt% La2O3; Nd from 11.3 to 12 wt% Nd2O3; Pr from 2.7 to 3.4 wt% Pr2O3; Sm from 1.5 to 1.7 wt% Sm2O3; Gd from 1 to 1.6 wt% Gd2O3; Y from 1.2 to 2.7 - 23 wt% Y2O3; Th from 1.9 to 5.9 wt% ThO2; and F content in the range from 4.2 to 6.4 wt%. Regarding the chemical analysis of bastnäsite-(Ce), the high REE2O3/CaO ratios (8.3) indicates that the REE dominance of bastnäsite-(Ce) is always present at Tana Belt samples. Table 9. Representative EMPA results of Bastnäsite (Ce) in sample R28 (113.3). sample Mineral Grain SiO2 TiO2 Al2O3 V2O3 FeO MnO MgO CaO Na2O SrO SrO BaO Cs2O P2O5 SO2 ZrO2 HfO2 UO2 ThO2 PbO SnO2 Nb2O5 Ta2O5 Sc2O3 WO3 Y2O3 Ce2O3 Nd2O3 La2O3 Pr2O3 SmO Gd2O3 Dy2O3 F F=O Cl Cl = O Total bastn bastn R28(113.3) bastn bastn bastn bastn bastn bastn gr1 2.64 0.35 0.87 0.00 1.27 0.08 0.03 6.13 0.00 0.00 0.00 0.03 0.44 0.11 0.00 0.13 0.05 0.21 4.63 0.03 0.00 0.02 0.75 0.00 0.00 2.16 25.59 11.38 12.93 3.24 1.64 1.28 0.00 4.21 -1.77 0.04 -0.01 78.46 gr2 2.78 0.54 0.64 0.00 1.58 0.10 0.00 6.37 0.00 0.00 0.00 0.01 0.39 0.47 0.00 0.21 0.05 0.05 3.51 0.00 0.00 0.09 0.00 0.00 0.28 0.00 27.14 11.33 12.09 3.18 1.59 0.98 0.00 4.74 -2.00 0.02 0.00 76.14 gr3 2.92 0.59 0.72 0.02 1.14 0.05 0.05 6.52 0.00 0.00 0.00 0.10 0.32 0.22 0.00 0.12 0.06 0.13 3.91 0.00 0.02 0.00 0.00 0.00 0.13 1.17 26.98 11.98 12.48 3.25 1.56 0.98 0.00 5.63 -2.37 0.08 -0.02 78.75 gr5 4.44 0.10 0.52 0.04 2.52 0.02 0.06 7.30 0.00 0.00 0.00 0.04 0.36 0.09 0.00 0.00 0.18 0.20 1.89 0.00 0.00 0.00 0.09 0.00 0.19 0.00 26.88 11.49 11.05 3.06 1.47 1.20 0.00 5.00 -2.11 0.06 -0.01 76.12 gr6 2.58 0.35 0.46 0.00 0.56 0.04 0.00 5.62 0.00 0.00 0.00 0.00 0.30 0.18 0.00 0.25 0.00 0.00 3.73 0.11 0.00 0.00 0.00 0.00 0.12 1.31 23.99 11.26 10.53 2.73 1.57 0.99 0.00 4.67 -1.97 0.09 -0.02 69.47 gr7 2.88 0.17 0.43 0.11 1.02 0.08 0.00 7.24 0.00 0.00 0.00 0.09 0.49 0.00 0.00 0.03 0.00 0.11 1.90 0.02 0.00 0.09 0.03 0.00 0.00 2.69 28.49 11.68 11.75 3.23 1.70 1.60 0.00 6.36 -2.68 0.07 -0.01 79.57 gr8 2.49 0.26 0.51 0.00 0.71 0.07 0.01 6.92 0.00 0.00 0.00 0.12 0.30 0.34 0.00 0.22 0.07 0.27 5.91 0.08 0.00 0.00 0.05 0.00 0.06 1.98 24.41 11.63 12.03 3.22 1.49 1.24 0.00 5.55 -2.34 0.07 -0.02 77.67 gr4 2.56 0.35 0.48 0.00 1.24 0.09 0.00 5.72 0.00 0.00 0.00 0.00 0.36 0.13 0.00 0.31 0.16 0.18 4.07 0.05 0.00 0.06 0.00 0.00 0.02 1.39 28.02 11.28 11.69 3.43 1.53 0.97 0.00 5.01 2.11 0.04 0.01 81.25 Backscattered electron micrographs of bastnäsite from the sample V434-2011-R28/113.3 show that coarse-grained (100–500 µm) bastnäsite filling the interstices fractures and vug space and replace apatite in quartz-K-feldspar-dominated rock sample (Fig. 11a, b). Bastnäsite occurs also as isolated subhedral crystal within quartz and associated with apatite and zircon (Fig. 13c, d). In Figure (14) bastnäsite occurs as filling vug space and associated with chlorite (Fig. 142b) and/or clustering as larger bladed and tubular crystals within large vug spaces (Fig. 14 c, d). - 24 Figure 13. Backscattered electron micrographs of REE minerals from sample V434-2011-R28/113.3,(a, b) Bastnäsite filling the interstices fractures and vug space and associated with apatite, (c) Euhedral coarse bastnäsite grain with apatite within quartz, (d) Elongated Bastnäsite surrounded by quartz and Kfeldspar. - 25 Figure 14. Backscattered electron micrographs of REE minerals from sample V434-2011-R28/113.3, (a) Small bastnäsite and removing the bastnäsite from filling spaces show black holes, (b) Rounded bastnäsite grain associated with chlorite, (c, d) Euhedral Bastnäsite grains filling the vugs and fractures. - 26 3.2.2 Scanning electron analysis (SEM) Ten drill core samples were selected from Vaulo and Mäkärä for REE-mineralogical study by SEM (Table 10). These samples are mainly arkosic and granite gneisses. The main difference between these banded rock types is that arkosic gneiss has finer grain size. They are composed of quartz, albite or plagioclase?, K-feldspar, biotite, hornblende, magnetite, titanite and sericite with accessory minerals as zircon, chlorite, allanite and xenotime. Back scattered electron images BSE) and EDS analyzer of the studied sample revealed two types of allanite: allanite-(Ce) and allanite-(Y), Allanite from the studied sample is characterized by compositional zoning, the zoning controlled by the abundance of light rare-earth elements (LREE) and Fe from core to the edge of the crystal (Figs. 15, 16 and 17). The Ce-dominated allanite is locally the dominated REE-bearing minerals in studied samples. It is dominated by Ce (<10%) and incorporates small amounts of La and Nd (Tables 11 and 12), whereas the Y-dominated allanite, allanite (Y) is dominated by Y (~30%) with low content of Nd and Gd (Table 13). The xenotime-(Y) crystals are identifiable under the scanning electronic microscope (SEM) and with BSE images (Fig. 12). They form fine grain size (10-30 µm) overgrowth on prismatic zircon crystals, 30–120 mm in diameter. Three analyses of xenotime-(Y) overgrowths with zircon in sample V4342011R8 (135.85) were analysis by EDS (Table 14). The xenotime grains were composed as an average of Y (38 %), P (34 %), Si (19 %), Al (4 %), Ca (2.5 %) and Na (2 %). Table 10. Drill core samples were selected to study by SEM. Drill core samples Mäkärä V4342011R6 58.85 V4342011R6 179.8 V4342011R8 135.85 V4342011R9 98.5 V4342011R11 6.95 Arkosic gneiss Arkosic gneiss Arkosic gneiss Granite gneiss Granite gneiss Vaulo V4342011R20 70.15 V4342011R20 93.5 V4342011R21 72.7 V4342011R21 125.5 V4342011R24 103.05 Arkosic gneiss Granite gneiss Granite gneiss Granite gneiss Granite gneiss - 27 Figure 15. Backscattered electron micrographs of REE minerals from Mäkärä samples (a, b, c ) Subhedral allanite grains associated with the main silicate minerals, (d)Fine monazite grain disseminated within K-feldspar, (e) Xenotime intergrowth with zircon and surrounded by Ti-Nb mineral, (f) Zoning allanite disseminated within quartz and K-feldspar. - 28 Figure 16. Backscattered electron micrographs of allanite from Vaulo samples (a, b, c ) Allanite occur as spheroidal aggregates or fine-grained vug-filling structure, (d) Allanite associated with biotite, (e, f) spheroidal allanite forms associated with amphibole and K-feldspar. - 29 Figure 17. Backscattered electron micrographs of allanite from Vaulo samples (a, b ) Allanite grains associated with biotite and K-feldspar, (c, d)Allanite occurs as spheroidal aggregates or vug-filling structure, chlorite altered to allanite (in the rim), (f) spheroidal aggregates filled by altered allanite and chlorite and enclosed by K-feldspar and mica. (c, d) Coarse allanite grain with quartz inclusion, (f) Prismatic zircon grain contains apatite and clay minerals as inclusions. - 30 Table 11. Selected EDS- analyses of allanite (Ce) from the Mäkärä samples. R6/179.8 Spectrum Allanite (Ce) R8/ 135.85 Allanite (Ce) 3 Allanite (Ce) 4 Allanite (Ce) 5 1 Allanite (Ce) 2 Allanite (Ce) 6 Al 14.42 16.78 13.16 2.27 16.42 15.19 Si K Ca Ti 54.39 53.49 61.34 79.96 52.82 56.41 1.29 1.75 1.74 13.18 12.23 8.8 8.64 10.13 Fe Ce Nd 11.72 9.71 9.35 10.94 8.78 5 6.04 7.36 9.17 7.34 Total 100 100 100 3.78 8.38 3.86 100 100 100 Table 12. . Selected EDS- analyses of allanite (Ce) from the Vaulo samples. R21/72.7 Spectrum Allanite (Ce) 1 - Allanite (Ce) 2 R28/36.0 Allanite (Ce) 3 Allanite (Ce) 4 Allanite (Ce) 5 Allanite (Ce) 6 Al 14.37 15.34 16.82 17.49 9.86 17.74 Si 61.54 61.05 60.22 47.41 62.96 54.91 K 1.29 Ca 8.99 10.04 9.96 11.95 5.72 10.49 Fe 6.88 7.85 7.5 14.66 10.08 10.71 Ce 6.92 5.72 4.47 8.49 11.38 6.15 Total 100 100 100 100 100 100 1.03 31 Table 13. Selected EDS- analyses of allanite (Y) from the Mäkärä sample V434 2011 R6/58.85. Spectrum Allanite(Y) 1 Allanite(Y) 2 Allanite(Y) 3 Na Al 3.45 3.43 4.38 2.26 2.64 Si Ca 48.38 9.96 48.4 8.36 42.84 12.26 Ti Fe Y Nd Gd Total 3.02 4.26 30.93 2.75 3.27 3.31 33.42 100 23.55 4.14 4.97 100 100 Table 14. Selected EDS- analyses of xenotime (Y) from the Mäkärä sample V434 2011 R8/ 135.85. Spectrum Xenotime (Y) 1 Xenotime (Y) 2 Xenotime (Y) 3 Na Al Si 1.9 4.81 19.4 2.55 4.57 18.35 2.6 3.72 20.66 P Ca Y 33.99 2.32 37.57 34.62 1.27 38.64 32.95 5.41 34.66 100 100 100 Total 3.3 REE Geochemistry Five samples of the arkosic gneiss and nine drill core samples from Tana Belt have been chosen to perform REE analyses and the results are listed in Tables 15, 16, 17. The ΣREE contents of the Tana Belt outcrop samples range from 596.9 to 938.2 ppm (average 781 ppm). The chondrite-normalized REE patterns of the studied samples exhibit trends similar to the normalized REE patterns of international magmatic standard rock samples and display a decrease from LREE towards HREE. The chondrite-normalized REE patterns for the studied samples also show an increase in LREE, distinct negative Eu anomalies moderately steep with depletion of HREE and a sharp negative Eu anomaly (Fig. 13). On the other hand, all the studied samples have positive Ce anomalies that may have resulted from the high concentration of Ce-minerals as bastnäsite-Ce and cerite-Ce. The Ce/Yb ratio is rather high and varies from 3.3 to 5.2, the Ce/Sm ratio from 2.3 to 4.2, La/Yb 2.1 to 7.1, La/Sm 1.7 to 3.8 and Eu/Eu* from 0.4 to 0.5. The whole-rock chemical data of the studied sample in Tana Belt shows high concentrations of Y, ranging from 155-210 ppm, and averaging about 1000 ppm ∑REE + Y oxides. Scanning electron microscopy indicates REE and Y residence in xenotime, bastnäsite, cerite and allanite, sug- - 32 gesting that the heavy rare earth element (HREE) mineralisation in the form of xenotime was accompanied by a second phase of the LREE mineralisation in the studied bedrocks. In general the drill core samples from Vaulo were showing higher REE contents than Mäkärä samples. Table 15. REE contents of the outcrop samples from Tana Belt. REE/Sample AMM$-2011-52.1 AMM$-2011-36.1 AMM$-2011-32.1 AMM$-2011-45.1 EAK1-2011-118.1 Ce 427 328 La 80.4 146 367 321 282 193 56.5 110 Nd 112 156 173 73.2 129 Pr 27.5 39.6 46.5 18.8 33.5 Sm 30 32 31.6 18.5 29.3 Gd 32.2 33.4 34.1 21.9 26.4 Dy 40.1 33.5 31 28.9 34.8 Er 26.8 22.3 21.1 20.1 22.8 Eu 4.55 4.51 4.83 3.27 3.72 Ho 8.73 7.26 6.67 6.3 7.37 Lu 3.29 2.97 2.67 2.52 3.51 Tb 6.18 5.52 5.46 4.43 5.07 Tm 3.67 3.06 2.91 2.94 3.3 Yb 22.4 19.7 18.4 18.5 22.2 Y 824.82 209 833.82 179 938.24 183 596.86 154 712.97 172 Th 27.7 20.7 25.9 27.1 28.2 U 4.97 4.35 4.47 5.63 15.2 Eu/Eu* 0.4 0.4 0.5 0.5 0.4 La/Yb 2.4 5.0 7.1 2.1 3.3 La/Sm 1.7 2.9 3.8 1.9 2.4 Ce/Yb 4.9 4.3 5.2 4.5 3.3 Ce/Sm 3.4 2.5 2.8 4.2 2.3 Eu/Yb 0.6 0.7 0.7 0.5 0.5 REE - 33 Figure 18. Chondrite-normalized (Boynton, 1984) REE patterns of the Tana Belt samples. - 34 Table 16. REE contents of Mäkärä drill core samples. Drill core R6 58.85–58.95 R6 179.70–179.80 R8 135.75–135.85 R9 98.35–98.45 R11 6.85–6.95 Ce 124 247 122 183 128 La 58.5 116 57.3 89.9 82 Nd 62.6 112 58.1 82.6 77.9 Pr 15.3 28.9 14.5 21.5 19.5 Sm 14.4 22.2 12.9 16.6 15.8 Gd 15.9 22.7 14.8 16.6 17 Dy 17.8 21.5 15.9 14.9 16.4 Er 11.3 12.3 10.3 8.73 10.2 Eu 2.7 2.77 2.15 2.93 2.59 Ho 3.77 4.28 3.36 2.98 3.44 Lu 1.6 1.62 1.51 1.26 1.36 Tb 2.77 3.48 2.51 2.55 2.72 Tm 1.66 1.81 1.54 1.3 1.49 Yb 10.9 11.5 10.2 8.46 9.34 REE 343.2 608.06 327.07 453.31 387.74 Y 95.5 103 86.4 73.9 90.3 Th 9.17 18.4 10.7 12.9 11.1 U 1.85 3.47 1.94 3.06 1.62 Table 17. REE contents of Vaulo drill core samples. Drill core R28 36.50-38.80 R28 43.30-46.50 R28 61.20-63.65 R28 107.80-110.30 Ce 371 99.9 341 280 La 128 37.7 131 126 Nd 137 52.1 135 127 Pr 35.9 12.1 35.2 32.2 Sm 27.7 11.4 27.2 24.3 Gd 26.3 11.5 25.4 23.3 Dy 28.2 11.2 25.6 23.4 Eu 4.33 2.79 3.68 3.69 Er 18.2 6.83 16.3 14.8 Ho 5.89 2.29 5.4 4.75 Lu 2.26 0.88 2.11 1.87 Tb 4.67 1.92 4.36 3.91 Tm 2.51 0.9 2.22 2.04 Yb 15.8 6.2 14.2 13.1 807.76 257.71 768.67 680.36 Y 157 65.6 145 125 Th 38.5 9.04 30.8 27 REE - 35 4 CONCLUSIONS 1) The composition of REE minerals from the Tana Belt samples indicating, that the main REE-minerals are bastnäsite, allanite and cerite. Comparisons between the studied samples indicate that the studied EAK1-2011-118.1, V434-2011-R28/36.0 and V434-2011R28/113.3 samples are dominated by REE-minerals. 2) The REE composition of the minerals is characterized by enrichment in Ce, La and to a lesser extent Nd. The total REE content decreases from 75 wt % in cerite (Ce), 60% in bastnaesite to 25 wt % in allanite. 3) SEM –BSE of the studies of s arkosic gneiss core samples from Mäkärä and Vaulo reveals the yttrium phosphate mineral xenotime as scattered grains within Ti-minerals and as overgrowths on zircon. Allanite as the main REE-bearing mineral in studied samples occurs as spheroidal aggregates or vug fillings structure, and the chlorite and bastnäsite replacing the allanite grains. 4) The BSI images have shown that the secondary REE minerals are bastnäsite filling the interstices fractures and vug space and replace apatite and chlorite within quartz and Kfeldspar. 5) REE contents are intermediate to high with range from 596.9 to 938.2 ppm in outcrop samples. The LREE contents are dominantly higher than HREE contents with distinct negative Eu anomalies and REE normalized patterns indicate decreasing abundances with increasing atomic number. 6) Mineralogical and mineral chemical evidence demonstrates that hydrothermal processes were responsible for the most REE mineralization in studied rocks. During hydrothermal processes carbonate, phosphate and silicate minerals have been replaced by various assemblages of REE–minerals. 5 REFERENCES Al Ani Thair 2012. SEM study on REE mineralogy of paragneisses in Mäkärä and Vaulo areas, Northern Finland, Geologian tutkimuskeskus, arkistoraportti, 73/2012. Boynton, W.V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P. (Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63–114. Rasilainen, K., Lahtinen, R., Bornhorst, T.J. 2008. Chemical characteristics of Finnish bedrock - 1:1 000 000 scale bedrock map units. Geologian tutkimuskeskus, Tutkimusraportti Geological Survey of Finland, Report of Investigation 171, 94 p. Salminen R. 1995. Alueellinen geokemiallinen kartoitus Suomessa vuosina 1982–1994. English Summary: Regional geochemical mapping in Finland in 1982–1994. GTK Report 130. 48 s. - 36 Sarala, P. & Sarapää, O. 2011. Mäkäräselkä REE-Au exploration target, Sodankylä, northern Finland. In: Sarala, P. & Ojala, V. J. (eds) Geochemical and indicator mineral exploration methods and ongo-ing projects in the glaciated terrains in northern Finland. Excursion guide in the 25th International Applied Geochemistry Symposium 2011, 22-26 August 2011, Rovaniemi, Finland. Vuorimiesyhdistys - Finnish Association of Mining and Metallurgical Engineers, Serie B 92-11, 46-52. Tuisku, P. and Huhma, H. 2006. Evolution of Migmatitic Granulite Complexes: Implications from Lapland Granulite Belt, Part II: Isotopic dating. Bulletin of the Geological Society of Finland, 78: 143-175. -
© Copyright 2025 Paperzz