9.1 Vector valued functions or vector functions Parametric Curve Space Curve For interesting animations of space curves go to: http://math.bu.edu/people/paul/225/fall05/class6.html 9.1 Graph the curve traced by the given vector function. r ( t ) = 4, 2 cos ( t ) , 2 sin ( t ) > spacecurve([4, 2*cos(t), 3*sin(t)], t=0..10, thickness=3, color=black); z x y Graph the curve traced by the given vector function. r ( t ) = t cos ( t ) , t sin ( t ) , t 2 > spacecurve([t*cos(t), t*sin(t), t^2], t=0..10, thickness=3, color=black); 9.1 Find parametric equations of the tangent line to the given curve at the indicated value of t . r (t ) = t 3 − t, 6t 2 , ( 2t + 1) t +1 r ′ ( t ) = 3t 2 − 1, r ′ ( t ) = 3t 2 − 1, r ′ (1) = 3 − 1, 6 ( t + 1) − 6t ( t + 1) 6 ( t + 1) 2 2 t =1 , 2 ( 2t + 1) ⋅ 2 , 4 ( 2t + 1) 6 3 , 4 ( 3) = 2, ,12 2 ( 2) 2 This is a direction vector for the tangent line, we need a pt. on the line. r (1) will give the point of tangency. r (1) = 0,3, 9 so the point is ( 0,3,9 ) pt. dir x = 0 + y = 3 + z = 9 + 2t 3 t 2 12t 9.1 Evaluate the given integral. Find the length of the curve traced 4 by the given vector function on the indicated interval. ∫( ) 2t + 1 i − t j + sin (π t ) k dt 0 4 ∫ 4 2t + 1 dt i − ∫ t dt j + 0 0 4 4 4 ∫ sin (π t ) dt k r ( t ) = 2t , ln t , t 2 0 Arc Length → s = ∫ r ′ ( t ) dt = 1 32 2 3 1 9 − 1 , − 4 2 − 0 , − ( cos ( 4π ) − cos 0 ) π 3 3 ( ) 26 16 ,− ,0 3 3 ( b a 4 3 1 2 32 1 2 = ( 2t + 1) , − t , − cos (π t ) 3 3 0 π 0 0 = 1≤ t ≤ 4 ) 1 r ′ ( t ) = 2, , 2t t 1 + 4t 2 2 t r′ (t ) = 4 + r′ (t ) = r′ (t ) = 4t 2 + 1 + 4t 4 4t 4 + 4t 2 + 1 = t2 t2 ( 2t 2 + 1) 2 t2 2t 2 + 1 1 r′ (t ) = ⇒ r ′ ( t ) = 2t + t t 4 4 1 Arc Length → s = ∫ r ′ ( t ) dt = ∫ 2t + dt t 1 1 4 s = ( t 2 + ln t ) = 16 + ln 4 − 1 1 s = 15 + ln 4 9.1
© Copyright 2026 Paperzz