1 SECONDARY SCHOOL IMPROVEMENT PROGRAMME (SSIP) 2016 GRADE 12 SUBJECT: MATHEMATICS LEARNER SOLUTIONS (Page 1 of 61) © Gauteng Department of Education 2 SESSION NO: 10 TOPIC: REVISION OF TRIGONOMETRY (GRADE 11 AND 12) SECTION A: 1(a) 1(b) (CONSOLIDATION) SOLUTIONS TO HOMEWORK QUESTIONS cos(140) cos 740 sin140 sin(20) cos140 cos 20 (sin 40)( sin 20) ( cos 40)(cos 20) sin 40 sin 20 cos 40 cos 20 sin 40 sin 20 (cos 40 cos 20 sin 40 sin 20) 1 cos 60 2 2 cos 375 cos 2 (75) sin(50) sin 230 sin 40 cos 310 cos 2 15 cos 2 75 ( sin 50)( sin 50) (sin 40)(cos 50) 2(a)(1) 2(a)(2) cos 2 15 sin 2 15 sin 2 50 (cos 50)(cos 50) cos 2 15 sin 2 15 2 sin 50 cos 2 50 cos 2(15) 1 3 cos 30 2 cos 2 x 1 2 x 180 k 360 x 90 k180 where k 2sin x cos x 0 2sin x cos x sin x 1 cos x 2 tan x 0,5 x 26, 6 k180 where k cos 40 cos 20 sin 40 sin 20 cos60 1 2 (6) cos2 15 cos2 75 sin 2 50 cos2 50 cos30 1 3 2 (7) 2x 180 k 360 x 90 k180 k (3) sin x 1 cos x 2 tan x 0,5 x 26, 6 k180 k (4) © Gauteng Department of Education 3 2(a)(3) 2sin 2 x 2sin x cos x 0 2(a)(4) sin 2 x sin x cos x 0 sin x(sin x cos x) 0 sin x 0 or sin x cos x sin x x 0 k .360 1 cos x or x 180 k .360 tan x 1 where k x 45 k .180 2 4 cos x 2sin x cos x sin 2 x cos 2 x 2(b) 3cos 2 x 2sin x cos x sin 2 x 0 (3cos x sin x)(cos x sin x) 0 3cos x sin x or cos x sin x sin x sin x 3 or 1 cos x cos x tan x 3 or 1 tan x x 71, 6 k .180 or x 45 k .180 where k sin 30 0, 44 sin x(sin x cos x) 0 sin x 0 tan x 1 x 0 k.360 x 180 k.360 x 45 k.360 k 1 sin 2 x cos2 x standard form factorising tan x 3 tan x 1 x 71, 2 k .180 x 45 k.180 k 176,10;303,90;536,10;663,90 3(a) y 2 1 x –90 –45 45 (8) 56,10 k .360 176,10 k .360 answers (6) 30 26,10388114 k .360 56,10 k .360 or 30 206,1038811 k.360 176,10 k .360 where k 3 (7) 90 135 –1 –2 –3 © Gauteng Department of Education 180 4 3(b) 4(a) 4(b) For f asymptotes shape For g shape range 0 x 90 x 180 sin 2 x tan x 0 x 90 or x 180 cos( x 30) sin 3 x cos( x 30) cos(90 3 x) x 30 90 3 x k 360 x 30 360 (90 3 x) 4 x 120 k 360 x 30 270 3 x k 360 x 30 k 90 2 x 300 k 360 x 150 k180 x 30 or x 120 or x 60 see diagram below 2 f (4) (2) cos(90 3 x) 4x 120 k 360 2x 300 k 360 x 30 k 90 x 150 k180 x 30 x 120 (8) x 60 f ( x) cos( x 30) : shift of 30 right amplitude range g ( x) sin 3 x : period of 120 amplitude intercepts (6) y 1 x –60 –30 30 60 90 120 g –1 –2 4(c) cos( x 30) sin 3x 60 x 120 where x 30 60 x 120 x 30 OR x 60 ;30 30 © Gauteng Department of Education (2) 5 5(a) 2 y 1 x g 90 180 –1 –2 h –3 –4 5(b) shape shape x 90 5(c) y sin(2 x 60) For g: For h: domain and range domain and range x 90 (1) 180 period shift of shift of 30 to the right y sin 2( x 30) (4) (2) The graph of f ( x) sin x has changed to a period of 180 and then shifted 30 to the right. 6(a) ˆ 360 208 152 NDB ˆ 28 MBD ˆ 208 67 141 BDA ˆ sin DBA sin141 97 120 ˆ 97 sin141 sin DBA 120 ˆ 0,5087006494 sin DBA ˆ 30,58 DBA MB̂D 28 ˆ 141 BDA sine rule substitution ˆ 30,58 DBA answer ˆ 30,58 28 MBA ˆ 58,58 MBA © Gauteng Department of Education (6) 6 6(b) B̂ 30,58 E A definition substitution answer (3) answer (1) D 120km 28 30,58 B EA sin(28 30,58) 120 EA 120sin(28 30,58) EA 102, 4 km 7(a) DE tan p DE p tan 7(b)(1) Ê1 180 opp angles of cyc quad ˆ 180 sum of angles of Eˆ 1 Fˆ1 H 2 ˆ Fˆ But H 2 1 angles opp equal sides Ê1 180 ˆ Fˆ H ˆ 180 E 1 1 2 ˆ 180 180 2H 2 (3) ˆ 180 180 2H 2 ˆ 2H 2 7(b)(2) 1 Ĥ 2 2 p FH ˆ sin H sin Eˆ 1 2 ˆ FH . sin H 2 sin(180 ) 1 FH . sin 2 p sin 1 FH . sin FH 2 p 1 1 1 2sin cos 2cos 2 2 2 p p FH ˆ sin H sin Eˆ 1 2 1 FH . sin 2 p sin 1 1 2sin cos 2 2 © Gauteng Department of Education (3) 7 FH 2 p 2 p 2 2( p )( p ) cos(180 ) FH2 2 p2 2 p2 ( cos ) FH 2 2 p 2 2 p 2 ( cos ) FH2 2 p2 (1 cos ) answer 7(b)(3) FH 2 2 p 2 2 p 2 cos (3) FH 2 2 p 2 (1 cos ) FH 2 p 2 (1 cos ) FH p 2(1 cos ) SECTION B: 1(a) 1(b) SOLUTIONS TO TYPICAL EXAMINATION QUESTIONS cos(50 x) cos(20 x) sin(50 x) sin(20 x) cos (50 x) (20 x) cos (50 x) (20 x) cos30 3 cos 30 2 3 2 (1 2 sin 75)( 2 sin 75 1) 1 2sin 2 75 cos150 3 2 (1 2 sin 75)(1 2 sin 75) 1 2sin 2 75 cos 2(75) cos150 cos 30 2(a) 2 sin 2,5 sin 2,5 2 sin 0,5 2(b) sin 1 (0,5) k .360 30 k .360 where k cos 2 0,5 1 2(c) (3) (3) 3 2 sin 0, 5 30 k.360 150 k.360 k or 180 sin 1 (0,5) k.360 2 cos (0,5) k.360 2 120 k.360 60 k.180 2 tan 1 2 (4) 150 k .360 (k ) 2 120 k.360 60 k .180 60 k .180 k tan (4) 0,5 2 © Gauteng Department of Education 8 tan 0,5 2 tan 1 (0,5) k .180 2 27 k .180 2 54 k .360 2(d) 2(e) 2(f) 27 k .180 2 54 k .360 k (4) 3sin 2 cos cos cos 2 tan 3 34 k .180 k (4) (k ) 3sin 2cos 0 3sin 2 cos 3sin 2 cos cos cos 3 tan 2 2 tan 3 2 tan 1 k .180 3 34 k .180 (k ) 1 sin 2 2sin 2 5sin 3 0 sin 2 3 3sin 2 5sin (2sin 1)(sin 3) 0 2sin 2 5sin 3 0 1 or sin 3 sin 2sin 2 5sin 3 0 2 (2sin 1)(sin 3) 0 30 k.360 150 k.360 1 sin or sin 3 no solution for sin 3 2 30 k .360 no solution since 1 sin 1 or 150 k .360 k In this example, we will make use of the cos 3 x cos(90 x) reduction rule: sin x cos(90 x) . sin 2 3(1 sin 2 ) 5sin Using this rule, the right side of the equation cos3x sin x can also be expressed in terms of the cosine of an angle as follows: cos 3 x cos(90 x) One general solution of the equation can be 3x (90 x) k .360 obtained by equating the angles and adding x 22,5 k .90 k .360 : cos3x cos 360 (90 x) 3 x 270 x k .360 © Gauteng Department of Education (7) 9 3x (90 x) k .360 k x 135 k .180 k 4 x 90 k .360 x 22,5 k .90 There is another general solution. If we use the reduction rule cos cos(360 ) , the equation can be rewritten as follows: (7) cos 3x cos(90 x) cos 3x cos 360 (90 x) cos 3x cos 360 90 x 3(a) cos 3x cos(270 x) 3x 270 x k .360 2 x 270 k .360 x 135 k .180 cos 2 x tan 23 x 11,5 k .180 x 168,5 k .180 2 x tan 1 (tan 23) k .360 2 x 23 k .360 x 11,5 k .180 OR x 168,5 ;191,5 (3) (5) 2 x 360 tan 1 (tan 23) k .360 2 x 337 k .360 x 168,5 k .180 x 168,5 ;191,5 3(b) cos( x 360) cos(90 x) 0 cos x ( sin x) 0 cos x sin x 0 sin x cos x tan x 1 x 135 k .180 x 315 k .180 where k cos x sin x tan x 1 x 135 k.180 x 315 k.180 Deduct 1 mark if k © Gauteng Department of Education is omitted 10 4(a) 1 sin x cos 2 x 1 sin x 1 2sin 2 x sin x 2sin 2 x 0 sin x(1 2sin x) 0 sin x 0 or sin x 1 2sin 2 x sin x(1 2sin x) 0 two equations general solutions answers (7) 1 2 For sin x 0 : x 0 k 360 or x 180 k 360 or x 180 k 360 1 For sin x : 2 x 30 k 360 or x 210 k 360 x 180 ; 210 ; 330 ; 360 4(b) 2 y 1 x 0 180 225 270 315 360 –1 –2 4(b) see diagram For For f ( x) 1 sin x max and min values shape g ( x) cos2x amplitude intercepts © Gauteng Department of Education (4) 11 4(c) f ( x) g ( x) 180 x 210 or 330 x 360 4(d) 180 x 225 x 270 315 x 360 180 x 225 270 x 315 4(e) 180 x 210 330 x 360 inequality signs correct 180 x 225 x 270 315 x 360 (3) 180 x 225 270 x 315 (2) (3) 5. 1.5 y 1 f g 0,9 0.5 x –120 –90 –60 –30 30 60 90 120 150 180 210 –0.5 –1 –1.5 5(a) For f : shape x-intercepts: 60; 120 y-intercept: endpoints: 5(b) 3 0,9 2 (120 ; 0,9) (210 ; 1) For g : shape x-intercepts: 30; 150 y-intercept: endpoints: 1 0,5 2 (120 ; 1) (210 ; 0,9) cos x 30 sin x 30 cos 90 ( x 30) cos x 30 cos 90 ( x 30) cos x 30 cos 60 x cos x 30 cos 60 x Quad 1 x 30 60 x k 360 2x 90 k 360 x 45 k180 x 45 Quad 2 (8) x 30 60 x k 360 x 45 x 30 360 60 x k 360 no solution (6) © Gauteng Department of Education 12 x 30 360 60 x k 360 x 30 300 x k 360 6(a) 6(b) no solution 3 tan 40 LB 3 LB tan 40 LB 3,58 m AB2 AL2 BL2 2.AL.BL.cos113 AB2 (5, 2)2 (3,58) 2 2(5, 2)(3,58) cos113 AB 54, 40410138 m AB 7,38 m 1 ˆ Area of ABL AL.BL.sin ALB 2 1 (5, 2)(3,58)sin113 2 8.568059176 2 6(c) definition answer (3) cosine rule substitution answer (4) area rule substitution answer (4) cos 2 x sin 2 x (cos x sin x)(cos x sin x) (2) 1 2 1 2 cos x cos x sin x 2 2 2cos x 1 2sin x cos x cos 2 x sin 2 x (4) 2 8,57 m 7(a) 7(b) cos 2 x cos x sin x cos 2 x sin 2 x cos x sin x (cos x sin x)(cos x sin x) (cos x sin x) cos x sin x cos 2 x 1 cos x cos x sin x 2 1 cos x(cos x sin x) 2 1 cos 2 x cos x sin x 2 2 2cos x 2cos x sin x 1 cos x(cos x sin x) 2cos 2 x 1 2sin x cos x cos 2 x sin 2 x © Gauteng Department of Education 13 7(c) 8(a) 8(b) cos 2 x 1 cos x cos x sin x 2 cos 2 x sin 2 x cos 2 x sin 2 x cos 2 x cos 2 x 1 tan 2 x 2 x 45 k .180 x 22,5 k .90 k 1 tan 2x 2 x 45 k.180 x 22,5 k.90 (3) 1 (m)(n)sin 4 x 2 The graph of y sin 4x has a maximum answer (1) sin 4 x 1 x 22,5 (2) answer (1) 2cos 2 x 1 8 cos 2 x 8 max value of cos2x answer (4) Area value of 1. 8(c) 9(a) sin 4 x 1 4 x 90 x 22,5 Since 4x 90 , the triangle is right-angled. 2cos 2 x 7 2cos 2 x 1 8 cos 2 x 8 The maximum value of cos2x is 1 since the range of y cos 2 x is [1;1] Therefore the maximum value of cos 2 x 8 is 1 8 9 3 9(b) cos30 a 2 r 3 a 2 2r 3r a a r 3 a 2r a 2 30 30 a2 r cos30 a 2 r 3 a 2 2r a r 3 © Gauteng Department of Education a 2r 14 2 a 2 a 2 a Area of circle 3 3 3 SESSION: 11 TOPIC: REVISION OF CALCULUS SECTION A: 1(a)(1) a 3 2 (6) (CONSOLIDATION) SOLUTIONS TO HOMEWORK QUESTIONS f ( x h) f ( x ) h 0 h 1 1 2 ( x h) 2 2 x 2 2 2 f ( x) lim h 0 h 1 1 2 ( x 2 2 xh h 2 ) 2 2 x 2 2 2 f ( x) lim h 0 h 1 2 1 2 1 2 x xh h 2 x 2 2 2 2 f ( x) lim h 0 h 1 xh h 2 2 f ( x) lim h 0 h 1 h x h 2 f ( x) lim h 0 h 1 f ( x) lim x h h 0 2 f ( x) x f (2) (2) 2 f ( x) lim 1 2 ( x h) 2 2 1 2 x 2 2 1 xh h 2 2 h 1 x h 2 f ( x) x f (2) (2) 2 © Gauteng Department of Education (6) 15 1(a)(2) f (2) 0 1 f (2) 2 (2) 2 2 f (2) 0 (2 ; 0) lies on the tangent mt 2 y 0 2( x (2)) y 2x 8 (3) y 0 2( x (2)) y 2( x 4) y 2x 8 1(b) 1 6 x 2 x 6 6 3 12x x7 12 1 3 7 x x 6 1 6 x x2 6 1 y 6 x 2 x 6 6 dy 12 x 3 x 7 dx dy 12 1 3 7 dx x x y 2. y . g (0 ; 32) . ( 2 ; 0) (4 ; 0) y-intercept x-intercepts turning points shape x g (0) 32 y-intercept is (0 ; 32) g (4) 0 x-intercept is (4 ; 0) g ( 2) 0 x-intercept is ( 2 ; 0) g (0) 0 Turning point at x 0 g (4) 0 Turning point at x 4 g ( x) 0 if x 0 or x 4 g increases for x 0 or x 4 © Gauteng Department of Education (4) (4) 16 g ( x) 0 if 0 x 4 g decreases for 0 x 4 3(b) 4(a) 4(b) g decreases if g ( x) 0 x 1 x 1 x 1 (1) x 1 (1) 6 y x6 8 3 y x6 4 gradient y-intercept (2) 3 A( x) x x 6 4 3 A( x) x 2 6 x 4 3 x60 2 x4 y3 (5) Area of OCDE xy 5(b) 3 A( x) x x 6 4 3 A( x) x 2 6 x And A / ( x) 0 4 3 x 6 0 2 3 x 12 0 3 x 4 and y (4) 6 3 4 3 x6 x 4 3x 24 4 x 7 x 24 24 x 7 g decreases if g ( x) 0 x 1 x 1 6(a) PQ 2 (30 6 x) 2 (8 x) 2 4(c) 5(a) 3 x6 x 4 3x 24 4x 24 x 7 PQ 2 900 360 x 36 x 2 64 x 2 x hours A 6x Q 8x . P 30km x 1 (1) PQ 2 answer . PQ 100 x 2 360 x 900 (1) 30 6x 8x PQ 2 (30 6 x) 2 (8 x) 2 C PQ 2 100 x 2 360 x 900 (3) x 1 x hours 3(a) 30 6x B © Gauteng Department of Education (5) 17 6(b) We will first minimize the expression 100 x2 360 x 900 Let f ( x) 100 x 2 360 x 900 f ( x) 200 x 360 0 200 x 360 200 x 360 360 x 200 9 x hours 5 Minimum distance: 6(c) 2 9 9 PQ 100 360 900 24 km 5 5 SECTION B: 1(a) f ( x) 200 x 360 0 200x 360 x 9 5 substitution answer (3) (2) SOLUTIONS TO TYPICAL EXAMINATION QUESTIONS f ( x h) f ( x ) h 0 h 4 ( x h)2 (4 x 2 ) f ( x) lim h 0 h 2 4 ( x 2 xh h 2 ) 4 x 2 f ( x) lim h 0 h 2 4 x 2 xh h 2 4 x 2 f ( x) lim h 0 h 2 2 xh h f ( x) lim h 0 h f ( x) lim(2 x h) f ( x) lim 4 x2 2xh h2 4 x2 2xh h2 (2 x h) 2x h 0 f ( x) 2 x © Gauteng Department of Education (5) 18 1(b)(1) 8 x y2 x y 1 2x 2 8x y 1 8 x 1 1 2 x 8x1 1 8 2 x x 1 dy x 2 8 x 2 dx dy 1 8 2 dx x x 1(b)(2) 1 2x 2 (2 p 1)( p 2) 2 p 1 2 2 p2 3 p 2 Dp p2 (2 p 1)( p 2) Dp p2 (4) (3) D p 2 p 1 2 1(b)(3) 3 3 xy 5 x 2 xy y 3 x2 3 x2 x x2 1 5 5 x 1 y x 2 5 x 1 dy 1 1 x 2 5 x 2 dx 2 dy 1 5 1 5 1 2 2 dx 2 x 2 x 2 x x 1(c) 2(a) g ( x) 3x 2 kx 4 g ( x) 6 x k 6(2) k 8 k 4 (2 ; 4) is a turning point f ( x) 3ax 2 2bx f (2) 3a (2) 2 2b(2) 0 12a 4b 0 3a b b 3a (2 ; 4) is a point on the graph y x 2 5x1 1 1 x 2 2 5x 2 1 5 2 2 x x g ( x) 6 x k Substituting x 2 6(2) k 8 k 4 (5) (4) f ( x) 3ax 2 2bx 0 12a 4b 4 a(2)3 b(2)2 1 2a b a 1 b 3 © Gauteng Department of Education (6) 19 2(b) 4 a (2)3 b(2) 2 4 8a 4b 1 2 a b 1 2a (3a ) 1 a a 1 b 3 f ( x) x 3 3 x 2 y-intercept: (0 ; 0) x-intercepts: 0 x 3x 3 (0 ; 0) (3 ; 0) 2 0 x 2 ( x 3) x 0 or x 3 y-intercept x-intercepts 0 3x 2 6 x x 0 or x 2 (0 ; 0) (2 ; 4) shape (7) (2 ; 4) Turning points: f ( x) 3 x 2 6 x 0 3x 2 6 x 2(c) f (0) 0 f (2) 4 0 x2 2 x (0 ; 0) (2 ; 4) 0 x( x 2) x 0 or x 2 f (1) 3(1)2 6(1) 9 f (1) (1)3 3(1)2 2 m (1; 2) lies on the graph y (2) 2( x (1)) y 2 2( x 1) y 2 2 x 2 y 2 x 4 3(a)(1) 3(a)(2) f (1) 9 f (1) 2 y (2) 2( x (1)) y 2 x 4 1 P 2h 2r 2r 2 P 2h 2r r 2h 2r r 1 A 2rh r 2 2 2rh 1 r 2 2 © Gauteng Department of Education (4) (2) (2) 20 3(b) 1 4 2rh r 2 2 8 4rh r 2 8 r 2 4rh 8 r 2 h 4r P 2h 2r r 8 r 2 P 2 2r r 4r 1 4 2rh r 2 2 2 8 r h 4r 8 r 2 P 2 4r 2r r 4 P 2 r (4) r 2 8 r 2 P 2r r 2r 4 r P 2r r r 2 4 r P 2r r 2 4 P 2 r r 2 4 P 2 r r 2 3(c) 40 C 10 2 r r 2 C 5r 20r 40r 1 C(r ) 5 20 40r 2 C(r ) 5 20 0 5 20 40 r2 40 C 10 2 r r 2 C 5r 20r 40r 1 40 0 5 20 2 r r 1, 06m 40 r2 40 5 20 r2 40 r2 5 20 40 r 5 20 r 1, 06m © Gauteng Department of Education (4) 21 graph of f 4. (2) f 1 5(a) h(0) 35 5(0)2 30(0) 35 metres 5(b) h(t ) 35 5t 30t h(t ) 10t 30 h(0) 10(0) 30 h(0) 30 5(c) 2 h(t ) 35 5t 2 30t h(t ) 10t 30 0 10t 30 10t 30 t 3 substitution answer h(t ) 10t 30 h(0) 30 (2) (2) 0 10t 30 t 3 y 3x2 12 x 15 h(3) 35 5(3)2 30(3) answer (5) h(3) 35 5(3) 2 30(3) h(3) 80 metres 5(d) 60 35 5t 2 30t 5t 2 30t 25 0 t 2 6t 5 0 (t 5)(t 1) 0 t 5 or t 1 For t 5 h(5) 10(5) 30 20 20 m / s 60 35 5t 2 30t t 2 6t 5 0 (t 5)(t 1) 0 h(5) 10(5) 30 20 20 m / s (5) © Gauteng Department of Education 22 5(e) h(t ) 35 5t 2 30t 0 35 5t 2 30t 5t 2 30t 35 0 t 2 6t 7 0 (t 7)(t 1) 0 t 7 or t 1 But t 1 t 7 h(t ) 10t 30 h(7) 10(7) 30 h(7) 40 40 metres per second 6(a) 0 35 5t 2 30t t 2 6t 7 0 (t 7)(t 1) 0 t 7 or t 1 h(t ) 10t 30 h(7) 40 y a ( x 1)( x 5) Substitute the point (0 ; 15) 15 a(0 1)(0 5) y a ( x 1)( x 5) a 3 y 3x2 12 x 15 15 5a a 3 y 3( x 1)( x 5) y 3( x 2 4 x 5) y 3 x 12 x 15 2 (6) f ( x) 3ax2 2bx c a 1 b6 c 15 f ( x) x3 6 x 2 15 x (8) f ( x) 3 x 2 12 x 15 Now f ( x) ax3 bx 2 cx f ( x) 3ax 2 2bx c Equating coefficients: 3a 3 2b 12 c 15 6(b)(1) a 1 b 6 3 2 f ( x) x 6 x 15 x The graph will increase for 1 x 5 6(b)(2) The graph will decrease for x 1 or x 5 6(c) 7(a) x 1 or x 5 The y-intercept is at the origin meaning that k 0 1 x 5 x 1 x 5 x 1 x 5 answer © Gauteng Department of Education (1) (2) (2) (1) 23 7(b)(1) 0 x3 4 x 2 4 x 0 x( x 2)( x 2) x 0 or x 2 answer f ( x) x3 4 x 2 4 x 0 x3 4 x 2 4 x 0 x( x 2 4 x 4) 0 x( x 2)( x 2) x 0 or x 2 (4) The graph cuts the x-axis at (2 ; 0) 7(b)(2) a 2 f ( x) 3x 2 8 x 4 7(c) 0 3x 2 8 x 4 0 (3 x 2)( x 2) 2 x or x 2 3 2 b 3 3 x 4 x2 4 x 2 p f ( x) 3x 2 8x 4 0 (3x 2)( x 2) x x3 4 x 2 4 x p 2 2 or 3 x2 answer (4) p2 answer (2) p20 p2 8(a) x x 2 10 0 12 Now x 2 0 for all real values of x x 10 0 12 120 x 0 x 0 12 x2 0 x 0 10 12 x 2 10 answer x 120 x 120 km/h © Gauteng Department of Education (4) 24 x P x 2 10 12 8(b) P( x) 10 x 2 1 2 x 4 0 x(80 x) x 0 or x 80 1 3 x 12 1 P( x) 20 x x 2 4 1 0 20 x x 2 4 0 80 x x 2 0 x(80 x) x 0 or x 80 For x 80 80 P(80) (80) 2 10 12 P(80) R21 333,33 0 20 x P( x) 10 x 2 substitution answer SESSION: 12 TOPIC: REVISION OF ANALYTICAL GEOMETRY SECTION A: 1(a) 1(c) (6) (CONSOLIDATION) SOLUTIONS TO HOMEWORK QUESTIONS r 2 OQ 2 r 2 (5)2 (12)2 r 2 (5)2 (12)2 r 2 169 x 2 y 2 169 r 2 169 1(b) 1 3 x 12 x 2 y 2 169 50 mPQ 12 0) 5 mPQ 12 5 y x 12 P( 12 ; 5) mPQ (3) 5 12 5 x 12 (2) answer (2) y © Gauteng Department of Education 25 1(d) mPQ mQR 1 mPQ mPQ 5 12 5 12 mQR 12 5 y y1 m( x x1 ) mQR 1(e) m 12 ( x 12) 5 5 y 25 12( x 12) 5 y 12 x 144 25 5 y 12 x 169 12 x 5 y 169 0 12 169 y x 5 5 Substitute the point R(t ;1) : y 5 1(f) 12 169 t 5 5 t 14,5 x 12 2 y 52 OQ2 2 2 OQ 2 12 0 5 0 169 2 2 x 12 y 5 169 x 12 y 5 OQ2 Centre M(1; 3) and r 2 (5 1) 2 (4 3) 2 17 Equation of circle: M(1; 3) Substitution to find r r 2 17 ( x 1)2 ( y 3)2 17 grad PR 4 1 grad TR 4 grad PR grad TR 1 2(c)(1) 2 2 4 and 2 (3) 42 1 grad TR 5 (3) 4 grad PR grad TR 1 and PR TR grad PR PR is a tangent y (2) 4( x (2)) y 2 4( x 2) y 4 x 10 (3) 1 ( x 1)2 ( y 3) 2 17 2(b) 12 5 12 ( x 12) 5 12 169 y x 5 5 12 169 t 5 5 12t 174 174 t 12 t 14,5 2(a) (2) y 5 1 1(g) 12 5 2 (2) 2 OQ2 169 x 122 y 52 169 Substitute (2 ; 2) Gradient 4 y intercept of 10 © Gauteng Department of Education (3) (4) (3) (3) 26 2(c)(2) (0 1) 2 ( y 3) 2 17 1 ( y 3) 2 17 2(d) 2(e) ( y 3) 2 16 y 3 4 y 7 (N/A) or y 1 and V(0 ; 1) 4 (1) grad TP 1 50 Equation of TP: y x 1 4 x 10 x 1 5 x 9 9 4 4 4 x 1 and y 1 1 2 5 5 5 5 4 4 P 1 ; 2 5 5 V(0 ; 1) T(5 ; 4) 4 (1) tanθ 1 50 tanθ 1 θ 45 Alternatively: (since equation of TVP is y x 1 ) mTVP 1 tanθ 1 θ 45 3(a) x 2 y 2 8 x 4 y 38 0 x 2 8 x y 2 4 y 38 x 2 8 x 16 y 2 4 y 4 38 16 4 ( x 4) 2 ( y 2) 2 58 Centre (4 ; 2) 3(b) 3(c) Substitute x 0 ( y 3)2 16 y 7 or y 1 V(0 ; 1) grad TP 1 y x 1 4x 10 x 1 9 x 5 y 2 4 5 (3) 1 if coordinates of P was not stated 4 (1) 1 mTVP 50 tanθ 1 θ 45 OR mTVP 1 tanθ 1 θ 45 (3) completing the square factor form centre radius (4) radius 58 Centre of second circle: (4 ; 6) (4 ; 6) Distance (4 4)2 (2 6)2 128 sum of radii 58 26 12, 71 sum of radii conclusion Distance between centres 128 11,31 sum of radii distance between centres circles intersect (6) 128 © Gauteng Department of Education (2) (3) 27 4(a) 4(b) 4(c) 4(d) P(2;3) Coordinates of Q: 2(0) y 1 Q(0; 1) R(4;0) y 1 Q(0; 1) Coordinates of R: 3x 2(0) 12 3x 12 x 4 R(4;0) Q(0; 1) R(4;0) 0 (1) 1 mQR 40 4 1 y x 1 4 0 4 1 0 S ; 2 2 1 S 2 ; 2 Equation of PS: x2 mQR y -intercept: 1 1 y x 1 4 (2) (4) formula correct coordinates (2) answer (1) © Gauteng Department of Education 28 4(e) tan mPQ tan mPQ 3 (1) 20 tan 2 63 tan or Now 2 x y 1 y 2 x 1 y 2x 1 tan 2 63 tan mPR tan mPR 30 24 3 tan 2 180 56 124 Now 3x 2 y 12 2 y 3 x 12 3 y x6 2 3 tan 2 124 tan or Using formula for inclination tan 2 63 3 tan 2 124 61 (6) 124 63 61 4(f) correct substitution for PQ2 PQ 2 (2 0) 2 (3 ( 1)) 2 PQ 2 4 16 PQ 20 correct substitution for PR 2 PR 13 Area rule 7,05 PQ 2 20 PQ 20 PR 2 (2 4)2 (3 0)2 PR 2 4 9 PR 13 2 PR 13 Area PQR 1 2 20 13 sin 61 Area PQR 7, 05 units 2 © Gauteng Department of Education (6) 29 SECTION B: 1(a) SOLUTIONS TO TYPICAL EXAMINATION QUESTIONS x2 2 x y 2 4 y t 0 x2 2 x 1 y 2 4 y 4 t 1 4 completing the square A(1; 2) (4) (1) ( x 1) 2 ( y 2)2 t 5 Centre A(1; 2) 1(b) r t 5 answer 1(c) A(1; 2) and D(2; 1) AD2 (1 (2))2 (2 (1))2 AD2 (1 (2)) 2 (2 (1)) 2 AD2 10 t 5 AD2 9 1 1(d) AD2 10 t 5 10 t 5 x2 2 x y 2 4 y 5 0 For intercepts with the y axis: let x 0 (0)2 2(0) y 2 4 y 5 0 1(e) 1(f) y2 4 y 5 0 ( y 5)( y 1) 0 y 5 or y 1 B(0; 5) C(0;1) BC 6 units A(1; 2) and D( 2; 1) 2 (1) 1 mAD 1 (2) 3 mtangent 3 y (1) 3( x (2)) y 1 3( x 2) y 1 3x 6 y 3x 5 2(a) 2(b) 0 (2) 8 (6) M ; 2 2 M(1;1) y 7 x 58 y 7(8) 58 2 (3) y2 4 y 5 0 ( y 5)( y 1) 0 y 5 or y 1 B(0; 5) C(0;1) answer (5) (1) 1 3 mtangent 3 mAD y (1) 3( x (2)) y 3x 5 (4) x-coordinate y-coordinate (2) substitution answer (2) © Gauteng Department of Education 30 2(c) mline 7 2 1 1 8 (1) 7 1 mline mAM 7 1 7 The line is a tangent to the circle mAM 2(d) AD2 (0 8) 2 (8 2) 2 AD (0 8) 2 (8 2) 2 AD 36 64 AD 10 AB2 (8 2)2 (2 6) 2 relationship mline 7 1 mAM 7 product (5) substitution answer substitution answer (4) gradient of AD gradient of AB product (3) answer (1) AB (8 2) 2 (2 6) 2 2(e) AB 36 64 AB 10 8 (2) 6 3 mAD 0 (8) 8 4 2 (6) 8 4 mAB 8 (2) 6 3 4 3 mAB .mAD 1 3 4 ˆ 90 DAB 2(f) 45 2(g) BM 2 (1 (2)) 2 (1 (6)) 2 BM 2 1 49 BM 2 50 Z 3(a) ax 3 y 5 3 y ax 5 a 5 y x 3 3 22, 5 BM 50 ZM sin 22,5 BM ZM sin 22,5 50 ZM 50 sin 22,5 ZM 2,93 distance formula length of BM tan perpendicular to rad M( 1;1) definition 22,5 answer B( 2 ; 6) 2 x by 3 by 2 x 3 2 3 y x b b a 5 x 3 3 2 3 x y b b y © Gauteng Department of Education (6) 31 a 2 3 b ab 6 ab 6 a 2 3 b ab 6 (4) B(3 ; 7) A(1; 5) E(a ; a 4) C(8 ; 2) D(x ; 0) 3(b)(1) mAB mBC mAB mBC 1 See diagram above. 75 mAB 1 3 1 27 mBC 1 83 mAB mBC (1)(1) 1 (3) AB BC ˆ 90 ABC 3(b)(2) Area ABC 1 (AB)(BC) 2 AB2 (7 5)2 (3 1) 2 AB2 (7 5) 2 (3 1) 2 AB2 8 BC 50 5 2 1 (2 2)(5 2) 2 AB 8 2 2 BC2 (8 3) 2 (2 7) 2 AB 8 2 2 BC (8 3) (2 7) 2 2 2 BC2 50 BC 50 5 2 1 Area ABC (2 2)(5 2) 10 2 © Gauteng Department of Education (5) 32 3(b)(3) 3(b)(4) 75 1 3 1 y 7 1( x 3) y x4 75 1 3 1 y 7 1( x 3) y 7 x3 y x4 Area ABD 10 mAB mAB 1 (AB)(ED) 10 2 1 (2 2)(ED) 10 2 10 ED 2 Let E be the point ( a ; b) Since E lies on AB produced, the point will be E(a ; a 4) ED 2 ( x a) 2 (0 ( a 4)) 2 ED 2 ( x a) 2 ( a 4) 2 2 10 2 2 ( x a ) ( a 4) 2 (3) 1 (AB)(ED) 10 2 10 ED 2 E(a ; a 4) 50 ( x a ) 2 ( a 4) 2 x 2a 4 1 (AB)(ED) 10 2 50 (2a 4 a) 2 (a 4) 2 0 a2 8a 9 a 9 or a 1 x 14 or x 6 50 ( x a ) 2 ( a 4) 2 mBE mED 1 (1) mED 1 mED 1 0 ( a 4) 1 xa a 4 x a x 2a 4 50 (2a 4 a) 2 ( a 4) 2 50 (a 4) 2 ( a 4) 2 50 a 2 8a 16 a 2 8a 16 50 2a 2 16a 32 0 2a 2 16a 18 0 a 2 8a 9 0 (a 9)(a 1) a 9 or a 1 x 2(9) 4 14 or x 2(1) 4 6 © Gauteng Department of Education (10) 33 4. 1 3 y6 2 (4) 4 x y 2x 2 mAD mBC 1 3 y6 2 (4) 4 x 4 y 6 2 4 x 2(4 x) y 6 8 2 x y 6 y 2x 2 (4 x) 2 ( y 6) 2 4 (2 (4))2 (1 3)2 (4 x) 2 ( y 6) 2 80 BC2 4AD 2 (4 x) 2 ( y 6) 2 4 ( 2 ( 4)) 2 ( 1 3) 2 x2 8x 0 x( x 8) 0 x 0 or x 8 y 2 or y 14 (4 x) 2 ( y 6) 2 80 (4 x) 2 (2 x 2 6) 2 80 16 8 x x 2 4 x 2 32 x 64 80 5 x 2 40 x 0 x2 8x 0 x( x 8) 0 x 0 or x 8 y 2(0) 2 2 or y 2(8) 2 14 © Gauteng Department of Education (9) 34 SESSION: 13 TOPIC: REVISION OF ALGEBRA SECTION A: 1(a)(1) (CONSOLIDATION) SOLUTIONS TO HOMEWORK QUESTIONS standard form = 0 factorisation both answers excluding x 2 x2 4 3x x2 x 2 4 3 x( x 2) (4) x 4 3x 6 x 2 2 2 x 2 6 x 4 0 x 2 3x 2 0 ( x 2)( x 1) 0 x 2 or x 1 But x 2 x 1 is the solution OR factorisation simplification correct answer excluding x 2 x2 4 3x x2 ( x 2)( x 2) 3x ( x 2) x 2 3x provided x 2 2 x 2 x 1 1(a)(2) ( x 3)( x 2) 8 simplification standard form substitution into formula correct answers (4) x2 5x 6 8 x2 5x 2 0 x (5) (5) 2 4(1)(2) 2(1) 5 33 2 x 5,37 or x 0,37 x © Gauteng Department of Education 35 1(a)(3) 1(a)(4) 7 x 2 18 x 9 0 (7 x 3)( x 3) 0 3 3 x 7 factorisation endpoints inequality notation 3 5 x 1 x 0 5 x x2 2x 1 1(b) 3 7 5 x x 1 0 x 2 3x 4 0 ( x 4)( x 1) x 4 or x 1 Solution is x 4 2x y 7 y 2 x 7 y 2x 7 x 2 xy 21 y 2 x 2 x(2 x 7) 21 (2 x 7) 2 x 2 2 x 2 7 x 21 (4 x 2 28 x 49) (4) 5 x x 1 0 x 2 3x 4 0 ( x 4)( x 1) x 4 or x 1 selecting x 4 (5) y 2x 7 substitution multiplication standard form factorisation both x-values both y-values (7) 3x 2 7 x 21 4 x 2 28 x 49 7 x 2 35 x 28 0 x2 5x 4 0 ( x 4)( x 1) 0 x 4 or x 1 y 1 or y 5 1(c) 108 18 36 3 9 2 1(d) 6 3 3 2 6b 3a x(4 x 3) p 4 x 2 3x p 0 b 2 4ac (3) 2 4(4)( p) 9 16 p 0 16 p 9 9 p 16 6 3 3 2 6b 3a (3) 4 x 2 3x p 0 (3)2 4(4)( p) 9 16 p 0 9 p 16 © Gauteng Department of Education (4) 36 1(e) (k ) 2 4(k 2 1)(1) (k ) 2 4( k 2 1)(1) k 2 4k 2 4 3k 2 4 (3k 2 4) 3k 2 4 (3k 2 4) 0 (3k 2 4) 0 2(a) LHS 9 x 1 6.32 x 3 4 x 1 (32 ) x 1 6.32 x 4 x 1 2x 18 x 20 2(c)(1) 10 2 x 7 8 x 10 2 x 3 1 2 1 2 3 3 RHS 1 32 3 (5) 3 2x10 24 2x10 8 (5) 1 3x (3 ) 3 x 3 3 x 1 (3) 7 2 2x 10 3 2 x10 10 2 x10 14 2 x10 3 2 x10 24 2 x10 3 2 x10 8 3x 1 3x 1 8 3x.31 3x.31 8 1 3x (3 ) 8 3 8 3x ( ) 8 3 x 3 3 x 1 2(c)(2) 20 18 x 20 10 1 2 3 10 2x10 14 2x10 10 2 x 20 7 8 x 20 20 2 x 1 3 2 32 x (32 6) 3 1 32 2 x 1 3 .3 2(b) 32 x2 12 3 2 x2 3 6.32 x 3 2 32 x (32 6) (4) 2 3 6 x 54 2 3 x 9 1 1 x 3 3 or x 3 3 x 27 or 27 © Gauteng Department of Education (3) 37 2 x3 9 1 ( x 3 )2 9 1 1 x 3 3 or x 3 3 x 27 or x 27 2(d) 4 x. 6 y 4812 2 .2 .3 (22 ) x . (2 . 3) y (2 4. 3)12 2 .3 22 x. 2 y. 3 y 2 48. 312 22 x y. 3 y 248. 312 2 x y 48 and y 12 2 x 12 48 2 x 36 x 18 x y 18 12 30 3(a) 2x y 48 12 y 22 x y 2 x y 48 y 12 x 18 x y 30 (7) 424 816 1612 648 (22 )24 (23 )16 (24 )12 (26 )8 (22 )24 (23 )16 (24 )12 (26 )8 4 . 248 248 248 248 248 22. 248 4.2 48 250 (4) 22. 248 3(b) 250 b 1 2 n 1 b 1 n 2 1 b 1 [a 1 2n ] a 1 (a 1) 1 b a 1 a b a 1 1 2n 1 b 1 a 1 (a 1) 1 b a 1 a b a 1 b 1 © Gauteng Department of Education (4) 38 3(c) x 3 2 2 3 2 2 x2 2 2 (3 2 3 2 2 x2 3 2 2 2 3 2 2 3 2 2 3 2 2 2)(3 2 2) 3 2 2 x2 6 2 1 x2 2 x 2 0 x 3(f) (2) (2) 2 4(1)(2) 2(1) x y 3 x y 3 0 ( x y 1)( x y 3) 0 x y 1 0 [divide both sides by x y 3 ] x y 1 1 k 2 x 1 1 kx 2 k 0 kx 2 k 1 0 kx 2 0 x k 1 (0)2 4(k )(k 1) 3 2 2 2 2 3 2 2 3 2 2 3 2 2 2 (6) 2 12 2 x 1 3 x 2 12 2 2 3 x 1 3 2 2 x2 2x 2 0 for all x 1 3 or x 1 3 3(e) 2 x2 6 2 1 x2 4 x2 x2 4 x 2 3(d) x 1 3 x 1 3 (4) x y 3 0 x y 1 0 x y 1 (4) 1 kx2 k 0 kx2 k 1 4k 2 4k 4k 2 4k 0 k (k 1) 0 k 0 k 1 4k 2 4k For real roots, 0 4k 2 4k 0 k2 k 0 k (k 1) 0 k 0 or k 1 © Gauteng Department of Education (7) 39 SECTION B: 1(a)(1) SOLUTIONS TO TYPICAL EXAMINATION QUESTIONS x2 2 x 3 0 ( x 3)( x 1) 0 x 3 or x 1 selecting x 3 x2 x 2 1 0 x 1 x2 x 2 x 1 0 x 2x 3 0 ( x 3)( x 1) 0 x 3 or x 1 But x 1 x 3 is the only solution Alternatively: x2 x 2 1 0 x 1 ( x 2)( x 1) 1 0 ( x 1) ( x 2) 1 0 (provided x 1) x 3 2 1(a)(2) ( x 2)( x 1) 1 0 ( x 1) ( x 2) 1 0 provided x 1 x 3 5 x( x 3) 2 standard form substitution into formula correct answers 5 x 2 15 x 2 0 x (4) (15) (15) 2 4(5)(2) 2(5) (4) 15 265 10 x 3,13 or x 0,13 x 1(a)(3) 20 ( x 1)( x 2) 20 x 2 3 x 2 20 x 2 3 x 2 0 x 3x 18 0 6 2 3 x 3 x 18 0 ( x 6)( x 3) 0 6 x 3 2 © Gauteng Department of Education x 2 3x 18 0 x 2 3x 18 0 ( x 6)( x 3) 0 6 x 3 (4) 40 1(a)(4) 2 7x 2x 0 2 7x 2x 2 7x 2 2 x 2 2 7 x 4 x2 0 4 x2 7 x 2 0 (4 x 1)( x 2) 1 x or x 2 4 x 2 1(b)(1) 2 x 2 2 (2 x 2) 2 2 x 2 2 (4 x 2 8 x 4) 2 x2 2 4 x2 8x 4 6 x2 8x 2 0 2 7x 2x 2 7 x 4 x2 0 (4 x 1)( x 2) 1 or x 2 x 4 selecting x 2 (5) substitution multiplication standard form factors x-values y-values (6) 3x 4 x 1 0 (3x 1)( x 1) 0 2 x 1 3 or x 1 1 y 2 2 3 4 y or 3 1(b)(2) 1(b)(2) or y 2(1) 2 y0 ( x 2 8 x 16) ( y 2 2 y 1) 0 ( x 4) ( x 4)2 ( y 1)2 0 x 4 and y 1 ( y 1) x 4 y 1 0 answers and x 5 0 x 5 3(5) y 0 3x y 0 y 15 y 15 1(c) 4 x will be non-real if: x6 2 2 3x y x 5 0 x 5 3(5) y 0 y 15 (4) (4) non-real if 4 x 0 x4 x6 (3) © Gauteng Department of Education 41 1(d) 4 x 0 x 4 x 4 However, the expression will be undefined if x 6 . Therefore, the expression will be non-real if x 4 where x 6 5 p 2 x( x 3 p) 5 p 2 x 2 3 px 0 x 2 3 px 5 p 2 (3 p ) 2 4(1)(5 p 2 ) 0 x 2 3 px 5 p 2 (3 p)2 4(1)(5 p 2 ) 11p 2 0 (4) 9 p 2 20 p 2 11 p 2 0 2(a)(1) 3 81 . 3 3 4 1 1 81 3 3 3 34 3 1 3 3 34 2(b)(1) 30 1 16 3 54 3 128 3 4 3 43 34. 3 2(a)(2) applying surd rule same bases multiplying exponents adding exponents and obtaining 1 (4) 3 128 8 2 3 27 2 3 64 2 3 64 2 2 2 3 2 43 2 3 3 43 2 3 2 43 2 1 4 23 2 33 2 43 2 3 2 3 4 2 1 4 32 x 3x 2 32 3x 3x. 32 32 x 3x. 32 32 3 x Let k 3x k 2 9k 9 k k 2 10k 9 0 (k 9)(k 1) 0 k 9 or k 1 3x 32 or 3 x 30 x 2 or x 0 © Gauteng Department of Education (5) k 3x k 2 10k 9 0 (k 9)(k 1) 0 k 9 or k 1 x 2 or x 0 (6) 42 2(b)(2) 1 1 1 x2 x4 6 0 k x4 k2 k 6 0 (k 3)(k 2) 0 1 Let k x 4 1 1 k 2 ( x 4 )2 x 2 1 k2 k 6 0 (k 3)(k 2) 0 k 3 or k 2 1 1 x 4 3 or x 4 2 x 81 (5) 1 x 4 3 or x 4 2 x 81 no solution 2(b)(3) 2 1 x3 4 ( x 3 )2 4 1 1 1 x 3 2 or x 3 2 x 8 x 8 (4) ( x 3 )2 4 1 Let k x 3 k2 4 k2 4 0 (k 2)(k 2) 0 k 2 or k 2 1 1 x 3 2 or x 3 2 1 3(a) 1 ( x 3 )3 (2)3 or ( x 3 )3 ( 2)3 x 8 or x 8 1 a2 a a 2 2a 1 a (a 1) 2 a a 1 a a 1 a a a a ( a 1) a a 2 2a 1 a (a 1) 2 a a 1 a © Gauteng Department of Education a 1 a to get a a answer (4) 43 3(b) 3(c) 3x 0 for all real values of x 1 p 0 3 0 1 p 0 p 1 p 1 p 1 ( x 3) 2 0 ( x 3) 0 ( x 3) 2 0 ( x 3) 0 x3 x (3) 2 2 The only solution is x 3 since (3) ( x 3) 2 0 for all real values of x 3(d) px 2 2 px rx 2 3rx p 0 ( p r ) x 2 (2 p 3r ) x p 0 (2 p 3r ) 4( p r )( p ) 2 standard form 9r 2 16 pr 9r 2 16 pr 0 16 p 9 4 p 2 12 pr 9r 2 4 p 2 4 pr r 9r 2 16 pr For equal roots, 0 9r 2 16 pr 0 substitution of r 25 px 2 30 px 9 p 0 (5 x 3)(5 x 3) 0 3 x (8) 5 r (9r 16 p) 0 9r 16 p 0 [ r 0] 9r 16 p 16 p r 9 16 p 2 16 p p x 2 p 3 x p 0 9 9 25 p 2 16 p x 2p x p 0 9 3 25 p 2 10 p x x p 0 9 3 25 px 2 30 px 9 p 0 25x2 30 x 9 0 [ p 0 ] (5 x 3)(5 x 3) 0 3 3 x or x are the equal roots 5 5 3(e) x2 5x 6 0 ( x 3)( x 2) 0 2 x 3 P (2) 2 5(2) 6 20 For x 2 ( x 3)( x 2) 0 2 x3 P (2) 2 5(2) 6 20 P (3) 2 5(3) 6 30 © Gauteng Department of Education 44 20 x 30 P (3) 2 5(3) 6 30 For x 3 Possible values of P are: (5) 20 x 30 SESSION: 14 TOPIC: REVISION OF FUNCTIONS SECTION A: 1(a) (CONSOLIDATION) SOLUTIONS TO HOMEWORK QUESTIONS Subst (2 ; 9) into g ( x) 2 1(b) 1(c) 9 a 1 9 2 a 1 a 3 x 0 or x 0 If f ( x) 2 x 2 , x 0 If f ( x) 2 x , x 0 x 2 y 2 , y 0 ( f 1 ) x 2 y 2 , y 0 ( f 1 ) x , x0 2 f 1 ( x) 1(d) and Subst (2 ; 8) into f ( x) 8 b(2) 2 8 4b b 2 2 f 1 ( x) y 1 x 3 g ( x) log 1 x x , x0 2 substituting correct point into each function 1 a 3 b 2 for either one x 2 y 2 x x or 2 2 correct sign for root 1 x 3 log 1 x 2(a) vertical: horizontal: (3) y (2) 3 Transformation of 2 right and 3 up 1 h( x ) 3 (1) 3 1(e) (3) x2 3 x 1 y0 2 right 3 up x 2 1 3 (3) 3 vertical asymptote horizontal asymptote (2) © Gauteng Department of Education 45 2(b) x 1 (0;2) (1;1) x 1 y0 left branch coordinates on left branch right branch coordinates on right branch (6) 1 x x 1 (2) (3; 1) (2; 2) 2(c) x 1 1 (0;2) (1;1) y 1 1 (3; 1) (2; 2) Therefore 2 1 for 1 x 1 x 1 2(d) Domain of f : x ; where x 1 3(a) Substitute y 12 x ; x 1 12 4 x 32 D(5 ; 12) 12 4 x 32 x 5 D(5 ;12) 3(b) y a( x 5)2 12 4 a(7 5) 2 12 8 4a 3(c) Range: (2) y a( x 5)2 12 Substituting (7 ; 4) a 2 Substitute (7 ; 4) a 2 (2) g ( x) 2( x 5)2 12 (4) y ;12 (1) g ( x) 2( x 5) 2 12 y ;12 © Gauteng Department of Education 46 4(a) y a . bx 3 [Horizontal asymptote is y 3 ] Substitute the point (0 ; 2) 2 a . b0 3 2 a .1 3 a 1 Substitute the point (1; 1) 1 (1) . b1 3 b 2 f ( x) 2 x 3 4(b) 1 unit left 4 units up h( x ) 2 . 2 x 1 h( x ) 2 x 1 1 h( x) 2 x1 3 4 h( x) f ( x 1) 4 This is a translation of the graph of f 1 unit left and 4 units up. SECTION B: 1(a)(1) SOLUTIONS TO TYPICAL EXAMINATION QUESTIONS Intercepts with the axes: x-intercepts: Let y 0 0 ( x 1) 2 4 0 x2 2 x 1 4 0 x2 2 x 3 0 ( x 3)( x 1) x 3 or x 1 (3 ; 0) (1; 0) y-intercept: Let x 0 y (0 1)2 4 y 3 (0 ; 3) (6) y-intercept x-intercepts coordinate of TP axis of symmetry shape © Gauteng Department of Education (2) 47 Method 1 y ( x 1) 2 4 Axis of symmetry: x 1 Turning point: (1; 4) Method 2 y ( x 1)2 4 y x2 2x 1 4 y x2 2x 3 x-coordinate of turning point: b 2 x 1 2a 2(1) y-coordinate of turning point: y (1)2 2(1) 3 x 1 y 4 Turning point: (1; 4) ( 3 ; 0) (1 ; 0) (0 ; 3) ( 1 ; 4) y 4 ; 1(a)(2) Range: 1(a)(3) The graph increases for x 1 1(b)(1) g ( x) x 2 4 x 3 b 4 xTP 2 2a 2(1) yTP (2) 2 4(2) 3 1 Turning point is (2 ;1) Max value is 1 answer (2) answer (1) xTP 2 yTP 1 Max value is 1 (3) completing the square Max value is 1 © Gauteng Department of Education 48 Alternatively: g ( x) x 2 4 x 3 g ( x ) ( x 2 4 x ) 3 2 2 2 4 4 g ( x) x 4 x 3 2 2 g ( x) ( x 2) 2 4 3 g ( x) ( x 2) 2 4 3 g ( x) ( x 2) 2 1 max value is 1 1(b)(2) The graph of g shifts 1 unit left. Therefore the turning point of the shifted graph is (1 ; 1) Alternatively: g ( x) x 2 4 x 3 g ( x 1) ( x 1) 2 4( x 1) 3 recognising left shift (1 ; 1) (2) algebraic manipulation (1 ; 1) g ( x 1) ( x 2 2 x 1) 4 x 4 3 g ( x 1) x 2 2 x 1 4 x 1 g ( x 1) x 2 2 x 2 xTP 1 2(1) yTP (1) 2 2(1) 1 Turning point is (1;1) © Gauteng Department of Education 49 2(a) y a( x 1)2 4 y a ( x 1)2 4 Substitute (0 ; 3) 3 a(0 1)2 4 a 1 3 a (0 1)2 4 3 a 4 a 1 2(b) 2(c) 2(d) 3(a) f ( x) ( x 1)2 4 f ( x) ( x 1) 2 4 a y 4 x 1 Substitute (0 ; 3) y a 3 4 0 1 3 a 4 a 1 1 g ( x) 4 x 1 1 0 4 x 1 0 1 4( x 1) 0 1 4x 4 0 4x 3 4 x 3 3 x 4 3 ; 0 4 g ( x) 0 for 0 x a 4 x 1 a 1 g ( x) 1 4 x 1 1 4 x 1 3 x 4 3 ; 0 4 (4) 0 x0 3 x 4 0 2x 3 2 Q ; 0 3 3 4 0 2x 3 2 2 Q ; 0 3 3 h(2) 2( 2) 3 7 h(4) 2(4) 3 5 x 3(b) (4) Endpoint coordinates for h are ( 2 ; 7) and (4 ; 5) ( 2 ; 7) and (4 ; 5) ( 7 ; 2) and (5 ; 4) 7 x 5 Endpoint coordinates for h 1 are ( 7 ; 2) and (5 ; 4) © Gauteng Department of Education (3) (2) (2) (3) 50 3(c) Domain of h 1 is 7 x 5 endpoints intercepts line (3) x 2y 3 x 2(2 x 3) 3 x3 (3) (5 ; 4) 4 3 2 3 7 5 h 1 2 (7 ; 2) 3(d) y 2x 3 3(e) x 2y 3 (h 1 ) x 2(2 x 3) 3 x 4x 6 3 3 x 9 x 3 OP 2 ( x 0) 2 ( y 0) 2 ( h) OP2 x2 y 2 OP 2 5 x 2 12 x 9 0 10x 12 OP 2 x 2 y 2 OP 2 x 2 (2 x 3) 2 12 6 10 5 1,34 x OP x 4 x 12 x 9 2 2 2 OP 2 5 x 2 12 x 9 d (OP 2 ) 10 x 12 dx 0 10 x 12 12 6 x 10 5 (5) 2 6 6 min length of OP 5 12 9 1,8 5 5 2 min length of OP 1,8 1,34 units 3(f)(1) Since f ( x) 0 for all 2 x axis) and since f ( x) 0 for all 3 2 3 2 (h is below the x- f ( x) 0 x 4 (h is above f ( x) 0 the x-axis), this means that the graph of f has a local minimum at x 32 © Gauteng Department of Education 2 x 3 2 3 2 x4 (2) 51 3(f)(2) 4. 1,34 The maximum gradient of f occurs at x 4 since the maximum value of x in the interval 2 x 4 for the graph of h (which represents the gradient of f is x4 h(4) f (4) 2(4) 3 5 Vertical asymptote is x 2 a y q x2 The vertical asymptote is y q a q x2 a 4 y x2 shape asymptotes (1) y The coordinates of the point of intersection of the asymptotes is therefore (2 ; q) This point will lie on the axis of symmetry y x 6 Substitute the point (2 ; q) into this equation to get the value of q. q 2 6 q 4 a y 4 x2 Since the graph is increasing a 0 y x6 (2 ; 4) y4 x 2 © Gauteng Department of Education (4) 52 5. mx 32 2 x 2 4 x 30 2 x2 (4 m) x 2 0 mx 32 2 x 2 4 x 30 2 x 2 4 x mx 2 0 2 x 2 (4 m) x 2 0 (4 m) 2 4(2)(2) 16 8m m 2 16 m2 8m m2 8m 0 m(m 8) 0 m 0 or m 8 (6) m 2 8m For equal roots (one point of intersection): 0 m 2 8m 0 m(m 8) 0 m 0 or m 8 6(a) m tan135 1 1 4x 5 x 1 P( 1 ; 6) (4) P( 1 ; 6) y 1x q y x 5 (2) 6 1(1) q q 5 y x 5 The line y x 5 intersects the parabola at one d 5 (1) Gradient of g is: m tan135 1 Gradient of f is: f ( x) 4 x 5 1 4 x 5 4 x 4 x 1 f (1) 2(1) 2 5(1) 3 6 P( 1; 6) 6(b) 6(c) y 1x q point. It will cut the parabola more than once if the line shifts down (y-intercept of the line less than 5). However, if the line shifts up, it will not cut the parabola (y-intercept of the line greater than 5) d 5 © Gauteng Department of Education 53 7(a) 4 2a 1 1 a 2 y 2a x Substitute ( 1; 4) 4 2 a 1 2 4 a 4a 2 1 a 2 1 f ( x) 2 2 1 f ( x) 2 2 7(b) 7(c) (3) x 0 0 1 y 2 2 2 (0 ; 2) 1 g ( x) 2 2 x 1 2 2 (0 ; 2) x 1 g ( x) 2 2 (2) x g ( x ) 2(2 x ) g ( x) 2(2 x ) g ( x ) 21 x g ( x) 2x1 (3) y-intercept x-intercept asymptote shape (4) g ( x ) 2 x 1 7(d) (0 ; 2) (1 ; 0) y 1 © Gauteng Department of Education 54 8(a) 8(b) y a x 1 1 a 01 2 1 a 1 2 1 1 2 a a 2 y 2 x 1 f x 2 y 1 f 1 log 2 x y 1 substitution of point a2 (2) x 2 y 1 f 1 ( x) log 2 x 1 (2) log 2 x 1 y f 1 ( x) log 2 x 1 8(c) y y 2 x 1 y x y log 2 x 1 (2 ; 2) For y 2 x 1 : y-intercept one other point For y log 2 x 1 : x-intercept one other point functions intersecting at (1 ; 1) and (2 ; 2) (5) (1 ; 1) (0 ; 12 ) x ( 12 ; 0) 8(d) Domain of f 1 : x0 x0 © Gauteng Department of Education (1) 55 SESSION NO: 15 TOPIC: REVISION OF GRADE 11 EUCLIDEAN GEOMETRY SECTION A: (CONSOLIDATION) SOLUTIONS TO HOMEWORK QUESTIONS QUESTION 1 (a) (b) ˆ D ˆ 90 D 1 2 in a semi-circle But D̂2 50 given D̂1 40 ˆ 2D ˆ M ˆ D ˆ 90 D 1 2 D̂1 40 (2) at centre 2 at circumference ˆ 2D ˆ M 1 1 1 1 M̂1 2(40) M̂1 80 (2) M̂1 80 (c) (d) Ê2 50 's in same segment ˆ 2D ˆ M 1 1 F̂2 50 's opp equal sides ( ME FE , equal radii) 's in same segment F̂2 50 (2) ˆ Fˆ Fˆ G 1 2 ˆ Fˆ Fˆ G 1 2 Ĝ 10 50 (e) Ĝ 60 ˆ Eˆ 180 ˆ D ˆ G sum of the 's of a triangle D 1 2 1 40 50 60 Eˆ 180 1 Ê1 30 Ĝ 60 (2) ˆ Eˆ 180 ˆ D ˆ G D 1 2 1 Ê1 30 (2) QUESTION 2 (a) Pˆ2 Pˆ1 given Pˆ2 Pˆ1 But P̂1 22 given P̂2 22 (2) R̂ 2 22 reason (2) Pˆ2 Pˆ3 Pˆ4 90 P̂2 22 (b) R̂ 2 22 tan-chord (c) Pˆ2 Pˆ3 Pˆ4 90 in a semi-circle But P̂2 22 Pˆ3 Pˆ4 90 22 68 P̂3 68 reason (3) © Gauteng Department of Education 56 (d) Rˆ 1 Rˆ 2 Pˆ1 Pˆ2 But Pˆ Pˆ 44 1 2 tan-chord given ˆ R ˆ 44 R 1 2 But R̂ 2 22 tan-chord R̂1 22 44 ˆ Rˆ Pˆ Pˆ R 1 2 1 2 ˆ Rˆ 44 R 1 2 R̂1 22 reasons (4) R̂1 22 (e) R̂1 22 proved T̂1 22 equal radii, ’s opp Ô1 44 reasons (3) (f) T̂1 22 equal sides Ô1 44 ˆ 180 Rˆ Pˆ Q 2 2 ext of triangle sum of the 's of a triangle ˆ 180 22 (90 22) Q 2 ˆ 180 ˆ Pˆ Q R 2 2 Q̂2 46 reason (3) Q̂2 46 QUESTION 3 (a) ˆ Lˆ 3 M 1 ˆL Pˆ 3 alt 's equal tan-chord 1 ˆ Pˆ M 1 1 (b) LM LP sides opp equal 's ˆ Pˆ N 1 1 ˆ Pˆ M ML subtends equal 's ˆ N ˆ M 1 2 ˆ ˆ N N PL subtends equal 's 1 1 (c) proved 1 ˆ Pˆ M 1 1 ˆ ˆ N P 1 1 2 proved ML subtends equal 's ˆ N ˆ M 1 1 LM is a tangent to circle MNQ. between line and chord ˆ M ˆ L 3 1 ˆ ˆ L P 3 1 LM LP reasons (4) ˆ Pˆ N 1 1 ˆ N ˆ M 1 2 ˆ N ˆ M 1 2 reasons (4) ˆ Pˆ M 1 1 ˆ ˆ N P 1 1 ˆ N ˆ M 1 1 reasons (4) © Gauteng Department of Education 57 QUESTION 4 (a) D̂3 90 ˆ B ˆ 90 B 1 in semi-circle given 2 ˆ B ˆ B ˆ D 3 1 2 ABCD is a cyclic quad (b) ˆ D ˆ A 1 1 ˆ Eˆ D 1 ext of quad equals int opp BC subtends equal angles tan-chord 1 ˆ Eˆ A 1 (c) 2 ˆ B ˆ B ˆ D 3 1 2 reasons (4) ˆ D ˆ A 1 1 ˆ Eˆ D 1 reasons (3) ˆ A ˆ C ˆ A 1 2 3 ˆ D ˆ C ˆ A ˆ C ˆ A 1 2 3 ˆ D ˆ C ext int opp ˆ D ˆ D 4 2 ˆ ˆ D ˆ A1 A 2 2 vertically opp 's ˆ D ˆ D 4 2 ˆ ˆ ˆ A A D BD BA sides opp equal 's ˆ D ˆ C 2 2 ˆ ˆ D2 D4 ˆ D̂ C AB subtends equal 's reasons (5) ˆ D ˆ C 2 2 ˆ ˆ D D 3 (d) D̂3 90 ˆ B ˆ 90 B tan-chord 4 4 vertically opp 's 3 3 1 2 4 2 2 4 tan-chord ˆ D̂4 C 3 reasons (4) ext of AMP ˆ M ˆ Pˆ1 A 1 1 ˆ ˆ M K ˆ C ˆ C 2 3 QUESTION 5 ˆ M ˆ Pˆ1 A 1 1 ˆ ˆ But M K 1 ’s opposite equal sides 1 ˆ K ˆ Pˆ1 A 1 1 ˆ ˆ ˆ But P C K 2 1 ˆ C ˆ and A 1 Pˆ Pˆ 1 2 ext of AMP tan-chord 1 1 ˆ K ˆ Pˆ1 A 1 1 ˆ ˆ ˆ P2 C K1 ˆ C ˆ A 1 Pˆ1 Pˆ2 reasons (7) © Gauteng Department of Education 58 SECTION B: SOLUTIONS TO TYPICAL EXAMINATION QUESTIONS QUESTION 1 (a)(1) equal to 90 (a)(2) bisects the chord (b)(1) Ĉ 90 angle in semi-circle (b)(2) Ê1 90 corr angles equal (b)(3) Perp from centre to chord (b)(4) Given AE 8 units 2 2 2 OE 10 8 OE 6 units But OD AO 10 units ED 4 units answer (1) answer (1) answer reason (2) answer reason (2) answer (1) AE 8 units OE 6 units ED 4 units (3) QUESTION 2 (a) B̂1 40 tan-chord (b) D̂2 40 angles opp equal sides (c) Ĉ 100 sum of the ’s of a (d) Ô2 200 at centre 2 at circle (e) Ô1 160 ’s round a point (f) ˆ 180 sum of the ’s of a ˆ B ˆ O D 3 2 1 B̂1 40 reason (2) D̂2 40 reason (2) Ĉ 100 reason (2) Ô2 200 reason (2) Ô1 160 reason (2) ˆ 180 ˆ B ˆ O D 3 2 1 ˆ ˆ D B 3 © Gauteng Department of Education 2 59 ˆ B ˆ 160 180 D 3 2 ˆ B ˆ 20 D 3 D̂3 10 (3) 2 ˆ B ˆ But D 3 2 ˆ D ˆ 20 D 3 angles opp equal radii 3 ˆ 20 2D 3 D̂3 10 (g)  80 opp ’s cyclic quad or at centre 2 at circle  80 reason (2) QUESTION 3 (a) Ĉ1 20 Alt angles equal (b) Ô1 40 at centre 2 at circle (c) D̂ 20 (d) Ê1 40 at centre 2 at circle or angles in same segment Ext of triangle (e) ˆ 40 Ê1 O 1 Ĉ1 20 reason (2) Ô1 40 reason (2) D̂ 20 reason (2) Ê1 40 reason (2) answer (1) QUESTION 4 (a) (b) ˆ N ˆ 90 given N 1 2 T̂3 90 in semi-circle ˆ N ˆ Tˆ N 1 2 3 MNPT is a cyclic quad Ext int opp T̂3 90 ˆ N ˆ Tˆ N Tˆ1 Tˆ 4 ˆ Tˆ M vertically opp angles ˆ Pˆ M 1 Tˆ Pˆ ext of cyclic quad NP NT sides opp equal s 4 1 tan chord ˆ N ˆ 90 N 1 2 1 2 reasons (4) Tˆ1 Tˆ 4 ˆ Tˆ M 4 1 ˆ Pˆ M 1 Tˆ Pˆ 1 1 reasons (5) © Gauteng Department of Education 3 60 QUESTION 5 (a) ˆ A ˆ 90 A 1 2 tan radius Â2 x tan-chord Â1 x 90 Â1 90 x ˆ A ˆ B ˆ Eˆ 180 sum of the ’s of a A 1 2 1 90 x Eˆ 180 Ê 90 x ˆ Eˆ A 1 AB is a tangent to circle ADE since between line and chord equals in alt segment. ˆ A ˆ ext of cyclic quad C 1 1 ˆ Eˆ 90 x proved A (b) 1 ˆ Eˆ C 1 ˆ A ˆ 90 A 1 2 Â2 x Â1 90 x ˆ A ˆ B ˆ Eˆ 180 A 1 2 1 Ê 90 x ˆ Eˆ A 1 reasons (7) ˆ A ˆ C 1 1 ˆ Eˆ 90 x A 1 (2) QUESTION 6 AB x AC2 AB2 BC2 (13)2 x 2 (x 7) 2 tangents from the same point B̂ 90 tan rad AB x (13) 2 x 2 (x 7) 2 0 x2 7 x 60 0 ( x 12)( x 5) x5 (5) 169 x 2 x 2 14 x 49 0 2 x 2 14 x 120 0 x 2 7 x 60 0 ( x 12)( x 5) x 12 or x 5 But x 12 x 5 QUESTION 7 (a) ˆ Tˆ1 Pˆ2 Q 1 ˆ ˆ T̂ Q Q 1 3 Pˆ2 Rˆ 1 ˆ R̂ Q 1 3 ˆ P̂2 Q 3 2 ext of s opp equal sides s in the same seg s opp sides ˆ Tˆ1 Pˆ2 Q 1 ˆ ˆ T̂ Q Q 1 3 ˆ Pˆ2 R 1 ˆ R̂ Q 1 3 ˆ P̂2 Q 3 © Gauteng Department of Education 2 61 ˆ Q ˆ Q 1 2 (b) ˆ Pˆ 180 Pˆ1 QPR 5 ˆP Rˆ 1 2 ˆ R ˆ R 2 3 ˆ ˆ P R 1 tan-chord theorem 3 5 1 2 ˆ Pˆ1 R 3 ˆ ˆ Pˆ 180 R 3 QPR 5 ˆ ˆ ˆ R Y P 180 given ˆ QPR ˆ Pˆ 180 R 3 5 ˆ ˆ ˆ Now R Y P 180 3 adj s on a line ˆ Q ˆ Q 1 2 (6) ˆ Pˆ 180 Pˆ1 QPR 5 ˆ ˆ P R 3 int s of ˆ Y ˆ QPR QP is a tangent to the circle betw line and chord ˆ Y ˆ QPR reasons (7) © Gauteng Department of Education 5
© Copyright 2026 Paperzz