JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 106, NO. D22, PAGES 28,347-28,356, NOVEMBER 27, 2001 Remote sensing of aerosol optical characteristics in sub-Sahel, West Africa G. Pandithurai, •,2 R. T. Pinker, • O. Dubovik, 3,4B. N. Holben, 3 and T. O. Aro s Abstract. We have determinedthe characteristics of sub-Sahelianaerosolsfrom a 2-year record of continuousground-basedmeasurements,made at the University of Ilorin, Ilorin (08ø19'N,04ø20'E),Nigeria, in cooperationwith the Aerosol Robotic Network. Observationsof spectralaerosoloptical depthsduring the dustyharmattan seasonindicate more than a twofoldincrease,when comparedto other seasons.Retrieved columnar volume size distributionsshowthe existenceof bimodalitywith a dominant coarsemode. The retrievedsize distributionswere groupedaccordingto different rangesof aerosol optical depthsto characterizethe aerosolsfor this particular region. Monthly meansof retrievedsingle-scattering albedosshowa sharpdecreasefrom -0.95 to -0.85 at 500 nm from the preharmattanto the harmattanseasonwhen biomassburningis alsopracticed, increasingthe presenceof absorbingaerosols.On the basisof thesecomprehensive observations, we proposeto augmentexistingdesert aerosolmodels,as presentedin the literature, to better characterizethe dust outbreak seasonin West Africa, which is quite prolongedand overlapswith the biomassburningseason. 1. Introduction It hasbeen observedthat eachyear, betweenNovemberand March, a large amount of dust is transportedover Nigeria to the Gulf of Guinea [Kalu, 1979].The cold and dry wind, which is the main agentfor this dusttransportis known as the "harmattan."During thisseason,the atmosphereoverthisregionis characterizedby high dust levels,relativelyhigh daytime and low nighttime temperatures,dry and weatheringvegetation, high incidenceof forest fires, and poor visibility.The harmattan aerosols have been known to have adverse health affects, acterizationof harmattan dustwas alsocarried out [Coxet al., 1982;Adedokunet al., 1989;Afeti and Resch,2000];however,a complete optical characterizationof the harmattan aerosols and long-term remote measurementsare almostnonexistent. Recently,it has been speculatedthat sincethe onsetof the droughts that started in the 1970s, the Sahel is the major sourceregionof wind-bornedust,contraryto earlier belief that it is the Sahara desert [N'TchayiMbourou et al., 1994, 1997]. Nicholson[2000] reported that (1) there has been a steady increasein the frequencyof occurrenceof dust conditionsat the surfaceover West Africa sincethe early 1970s,(2) an increasein dust occurrencehas paralleled a decreasein rainfall, and (3) the lengthof the seasonwith dustyconditionshas steadilyincreased. Several studiessuggestthat dust aerosol has a significant impact on meteorologicalprocesses [Karyampudiand Carlson, 1988;Chang,1993;Alpert etal., 1998].Generalcirculation (GCM) studies[TegenandMiller, 1998]haveshownthat regionalclimate cannotbe realisticallysimulatedwithout introducingdustmobi- suchas causingacute respiratoryinfections,pneumonia,and bronchitis,as documentedfor northern Nigeria, where the effect is most severe,byAdefolalu[1984] andAdedokunet al. [1989].The atmospherichaze and the occasionalearly morning/eveningfogsdue to northwardincursionsof moist southwesterlywindslead to frequentcancellationof flights,resulting in a heavy lossof revenue [Adefolalu,1984]. Moreover, the "harmattanhaze" is a threat to safetyof civil aviation.Out of the 11 air disastersin Nigeria and the Ivory Coast during the lization in the model, and modelshave shownthat the dust has an periodNovember1969to January2000(http://www.airdisasters.impacton synopticconditionsand thereforeon rainfall [Tegen of dust co.uk/Disasters.htm), 10 occurredduring the harmattan sea- and Fung, 1994;1995].Hence long-termmeasurements characteristics are needed in climate research. son.The harmattandustepisodeof January30, 2000, and the In this paper we documentthe annual variation of aerosol corresponding opticalparametersasobservedat the Ilorin site optical characteristics obtainedfrom 2 yearsof ground-based are discussed by Pinkeret al. [2001].The harmattandusthaze measurements,which were made as part of a NASA Earth is a well-knownphenomenonand was first investigatedusing Observing System (EOS) validation program, within the visibilitydata [Adebayo,1989;McTainsh,1980].Chemicalcharframeworkof the Aerosol Robotic Network (AERONET). •Department of Meteorology, University of Maryland,CollegePark, Maryland, USA. gindianInstituteof TropicalMeteorology, Pune,India. 3Laboratory for TerrestrialPhysics, NASA GoddardSpaceFlight 2. Experimental Site and Data The experimentalsite is locatedon the campusof the Universityof Ilorin, Ilorin, Nigeria (08ø19'N,04ø20'E,350 m above 4AlsoatScience Systems andApplications, Inc.,Lanham, Maryland, mean sealevel (amsl)), at the uppertip of the Guinea savan- Center, Greenbelt, Maryland, USA. USA. 5University of Ilorin,Ilorin,Nigeria. Copyright2001 by the American GeophysicalUnion. Paper number 2001JD900234. 0148-0227/01/2001 JD900234509.00 nah zone in the sub-Sahel, under the influence of the annual oscillationof the Intertropical ConvergenceZone (ITCZ). During the "dry season"(November-March) the prevailing northeasterlywind, known as "harmattan,"brings in air containingSaharandustfrom the Chadbasinwhen a large amount 28,347 28,348 PANDITHURAI Ja•t•a•l ET AL.: SUB-SAHEL AEROSOLS tional Space DevelopmentAgency (NASDA) of Japan, 1 9 99 ADEOS-II mission. The instrumentusedin the presentstudyto monitoraerosol propertiesis a CIMEL skyradiometer,of the typeusedin the AerosolRoboticNetwork(AERONET), whichis a worldwidefederatednetworkoperatedat numerousclimaticallyimportant regionsand led by the NASA GoddardSpaceFlight Center [Holbenet al., 1998].The instrumentis an automatic Sun-tracking skyradiometercapableof measuringboth Sun and sky radianceat eight spectralchannels.The filters are centeredat wavelengths340, 380, 440, 500, 670, 870, 940, and 1020nm,locatedin a filterwheel,whichis drivenby a stepper motor. The observations are transmitted almost in real time via the EuropeanMeteosat(D. Tanre, private communication, 1997).Detailedinformationon measurement protocol,radiometricprecision, calibration procedures, andprocessing methods are describedby Holbenet al. [1998].Data usedin the presentstudyutilize directsolarand skyradiancein the almucantarfrom April 1998to March2000.The CIMEL skyradiometeropticalheadhasbeenreplacedwith a recalibratedone in August 1999in order to meet the AERONET maintenance schedule. 3. lO > [ms-,] Figure 1. NCEP reanalysisof surfacewindsoverWest•rica for JanuaE 1999 and 2000. of dustparticlesis transportedin a plumedownwindfrom the sourceregionby the strongnortheasterly windsmainlyat the 900 and 850 mbar levelsnorth of the ITCZ, taking a southwesterlytrajectoryover Nigeria [Kalu, 1979].In this season, dustplumescanhavea thickness of up to 3 km, varystrongly in aerosolcontent,and reducethe visibilityto lessthan 1 km. Harmattanwindsare the main mechanism for dusttransport and produceseverewinter weather conditionsin West Africa, known as the "harmattanhaze." During the "wet season" (April-October), conditionsare typified by moist maritime southwesterlyflow from the Gulf of Guinea over West Africa. Figure1 showsthe averagesurfacewindflowpatternsasprovided by the National Center for EnvironmentalPrediction (NCEP), NumericalWeatherPrediction(NWP) modelanalysisfor January1999and 2000.As evident,the intensityof the northeasterly flow in January2000wasmuchstrongerthan a year before. Measurements of aerosolopticaldepthsat thissitestartedin 1987 [Pinkeret al., 1994],measurements of surfaceradiative fluxesstartedin 1992[Miskolczi etal., 1997]andwereupgraded in May 1995,underthe NASA EOS ValidationProgram.The siteis beingcontinuously upgradedto meet the requirements of theWorldClimateResearch Programme (WCRP) Baseline SurfaceRadiationMeasurement(BSRN) Network[Ohmuraet al., 1998]. The radiation observationsmade at the site are archivedat the World RadiationData Center(WRDC) locatedat the Eidgenossische Technische Hochschule (ETH), Zurich,Switzerland. Observations of aerosolopticalproperties at Ilorin, Nigeria,havebeenupgradedin May 1998,aspart of the AerosolRoboticNetwork(AERoNET) activity,in support of current and future satellitemissionssuchasthe Clouds Results and Discussion 3.1. SpectralAerosol Optical Depth Timeseriesof aerosolopticaldepthsat 500nm andmonthly meansat all the wavelengths are shownin Figures2 and 3a, respectively.Optical depthsduring Decemberto March for bothyearsare higherwhencomparedto othermonths.Thisis due to the dust outbreaks(natural) and biomassburning events(anthropogenic) mostcommonduringthe dryseasonat the observational site.A strongspectraldependence in aerosol opticaldepths(AODs) is alsoevident.Thissuggests that aerosolsfrom biomassburningare presentduringthe dry season andaresignificant. The day-to-day variabilityof aerosoloptical depthwasconsiderably higherduringthe dryseasonthanduring the otherseasons, dueto dustandbiomass burningevents. In thepast,N'TchayiMbourouetal. [1994,1997]usedvisibility data to examinethe spatialand temporaldistributionof dust over West Africa. From those studies it was evident that there hasbeen a steadybuildupof dustover West Africa sincethe early 1970s, and it is consistentwith the increasedtrend in African dust as measuredat sitesdownstream[Carlsonand Prospero,1972].While there are severalsourceareasfor dust aerosols, the areaof Bilma(Niger)andFayaLargeau(Chad) are the main sourceregionsfor dust over Nigeria [Wilson, o 3.0- [ 2000 2.5- 1998 1999 0 2.0. o 0 •1.$ oøo 0 o • o o ø •.o. o • • 0.0 • , , 1O0 &•o o o • •• 0 - o- o oo•O••a• , o • , , 200 , • , , 300 o •_ o •o o •oo , • , , , 400 500 600 700 800 Day Number(fromApril 1998) and Earth RadiantEnergySystem(CERES), the Moderate- Figure 2. Time seriesof dailymeanaerosolopticaldepthsat ResolutionImagingSpectroradiometer (MODIS), andtheNa- 500 nm as observedat Ilorin, Nigeria. PANDITHURAI ET AL.: SUB-SAHEL AEROSOLS 28,349 1.6 1.4 •1020 nm ß870 nm +380 nm -• 1.2 ß,e ßß 670 nm • ---•--- 500 nm 440 nm X 340 nm 0.6 0.4 0.2 0.0 [ I ' M98 I ' J98 I ' S98 I ' I N98 ' J99 I M99 ' I ' M99 I ' J99 I ' S99 I N99 ' I J00 ' I MOO Figure3. Month-to-month variationin spectralaerosolopticaldepths(in sevenspectralintervals)as observedat Ilorin, Nigeria. duringApril 1998 to March 2000. 1971;Kalu, 1979].In summer,AODs are found to be lower overNigeriawhendustaerosols followa trajectoryoversouthernAlgeria,Morocco,andacross theAtlanticto the Caribbean Islands[Martin,1975;Prospero, 1999]. In Figure4 a comparison of the intensities of directshortwaveradiation,asmeasuredwith an EppleyNormal Incidence Pyrheliometer duringtwodifferentdaysin the harmattanseason,is presented. The top panelis for a high-aerosol loading 1.5 800.• 700 - Feb 10, 1999 Clear Sky . 1.4 600 . 500 1.3 . 400 . 300 1.2 . •-. 200 E - • 100 -,-' 0 ._ rh 6 ß 800 • 700 1.2 m__. Feb 07,1999 o ..c 600 <--Cloudy Sky '• 1.0 500 400 300 case(% (500 nm) ---1.3)whenthe maximumnormalincidence shortwave radiationwasonly400W m-2. The bottompanelis for a relativelylow-aerosolloadingcase(% (500 nm) ---0.8) when normal incident shortwave radiation reached as much as 600 W m -2. This is to illustrate the drastic radiative effects duringhigh-aerosolloadingdays,which are frequentduring the harmattan season. 3.2. Intraseasonal Variation in Spectral Aerosol Optical Depth and Precipitable Water Vapor To studythe intraseasonal variationin spectralaerosoloptical depthsand in precipitablewatervapor,the observations weregroupedintofour seasons, asshownin Figure5. There is a significant increasein aerosolopticaldepthand strongspectral dependence duringDecember-March,ascomparedto the other seasons.Aerosol optical depthsremained almostconstantduringthe other seasons, but there was an increasein spectralAODs in 1999-2000ascomparedto 1998-1999.Precipitablewater vapor,as derivedfrom the CIMEL observationsin the spectralchannels870 and 940 nm, alsoshowsa systematic seasonal variation,high duringJune-Augustand low duringDecember-February.The precipitablewatervapor asavailablefrom the NCEP reanalysis datais shownalongwith the CIMEL-derived values for comparison.SpectralAODs duringthepreharmattan season (SON) dependstrongly on the start of the biomassburning of the savannahs.Interannual variationof AODs suggestthat the lengthof the seasonwith dustyconditions is longerin the 1998-1999harmattanascompared to the 1999-2000 harmattanseason. 200 3.3. 100 0.6 øI 6 ' I ' I ' I ' I ,oI ' 8 10 12 14 16 18 Size Distribution The spectraldependenceof AOD containsinformation aboutthe sizeof the particles[Junge,1955;Rangarajan,1972; Pandithurai et al., 1997; Rerner et al., 1999]. The Angstrom exponenta, whichis a measureof the sizedistribution, canbe Figure 4. Diurnal variationof normal incidenceshortwave obtainedby fittinga powerlaw to the aerosolopticaldepths radiationand aerosolopticaldepths(at 500 nm) duringhigh- andwavelength[Ecket al., 1999;Reidet al., 1999],asgivenin Time (Hrs) and low-aerosolloading days. the followingexpression: 28,350 PANDITHURAI ET AL.: SUB-SAHEL AEROSOLS 1.5 7 Precipitablewater vapor •CIMEL !r2'272• 340nm 1727-/I380nm • • 440nm • rrmm• 670nm • • r:• 550nm 870nm 6 1.0 5 '5' O.5 2 0.0 ' : AM98 JJA98 SON98 DJF98-99 MAM99 JJA99 SON99 1 DJF99-00 Season Figure 5. Intraseasonalvariation of spectralaerosoloptical depthsand precipitablewater vapor, as observedat Ilorin, Nigeria. Precipitablewater was derivedboth from the CIMEL skyradiometerobservations and from the NCEP reanalysis. ß x Angstrom exponentscomputed from such spectral dependence were grouped into monthly means and are shown in Figure 6. In general, the exponentis higher when there is a relative dominance of small particles. The monthly mean values of the Angstrom exponentshow higher values during both July-Septemberand November-January.The largernumberof accumulation modeparticlesobservedduring November-Januaryis due to aerosolsfrom biomassburning. Size distributionswere retrieved using a radiative transfer algorithmdevelopedbyDubovikandKing[2000].Opticalcharacteristics of aerosolssuchasopticalthickness, phasefunction, and single-scattering albedoare modeledfrom microstructure parametersusingthe followingapproximations: ,ext(X)P(0; X) = •rm max Kscat(0,X, m, r)n(r) dr, in where Kscatis a scatteringcrosssection,P(0, X) is the phase function,and n(r) denotesparticlenumbersize distribution. Aerosolsare assumedto be sphericalparticlesand approximated by Mie functionsderived for sphericaland homogeneousparticleswith a complexrefractiveindexm (,•). Volume size distributionswere retrieved using a detailed radiative transfer Sun-skyradiance algorithm by Dubovik and King [2000].More detailson the procedureand aboutthe accuracy of the retrievedaerosolopticalpropertiescan be found in the work of Duboviket al. [2000]. The retrievedvolume size distributionsgenerallyrepresent bimodal or trimodal distributions. About 135 retrieved size distributionswere grouped as a function of aerosoloptical depth. Figure 7 illustratesthe aerosolsize distributionsas a function of AOD at 670 nm. A bimodal distribution is evident, 1.4- and for intermediateoptical depthvalues,a secondarycoarse modeis present.In general,moderadii decreasefor increasing opticalthicknessvaluesduringthe harmattanseasondustep- 1.2- isodes, accumulation mode radii shift from 0.10 to 0.07 /•m, and coarsemode radii vary from 2.0 to 4.0/•m. Characterizing particlesas sphericalintroducebiases,namely,the appearance of an artificiallyhigh mode of smallparticlesin sizessmaller than 0.1/•m may be an artifact of nonsphericity. 0.6- 0.4- 0.2- 3.4. Single-ScatteringAlbedo Single-scattering albedo(•Oo)of atmosphericaerosolsis an important parameter for obtainingaccurateestimatesof the Figure 6. Month-to-month variation in Angstrom exponent Earth's radiativebudget.Proceduresto retrieve •oo are not yet as observedat Ilorin, Nigeria, during April 1998 to March well established due to the limited information content of 2000. opticalmeasurements. The inversionmethodusedin thisstudy M98 J98 S98 N98 J99 M99 M99 Month/Year J99 S99 N99 JO0 MOO PANDITHURAI ET AL.' SUB-SAHEL AEROSOLS 1.00 1.4 ß 0.96 1.2 o •670' 1.0 • m --o-- o • ,, ,•, _ ,,•, 670 nm --,•-- 870 nm •IL,,•',•51• •':', ,,',•', ---•---1020 nm '•• / 0.92 '•,,' •-" '.•--,•-•'•',", Id2, •-,_ U-•-•',' '.'• 0,34 ---(:>--0.61 ß' • 0.88 --.A..0.68 I-.-o.741 i ---o--0.84I o.8 • 28,351 ß .0'\ '• '•, ._ i_._0.98I 1_•_1.•91 • 0.84 ,•.•- E '---' 0.80 13.6 , 0.0 ' 0•.2 ' 0'.4 ' 0:6 ' 0•.8 I , ' 1:2 1.4 Angstrom exponent Figure 9. Single-scatteringalbedo rooas a function of the Angstrom exponentfor wavelengths440, 670, 870, and 1020 0.4 nm. 0.2 0.0 , , , , ill, 0.01 , , • 0•.1 , 111 , , , '•i 1; ............. 1oo Radius (;am) Figure 7. Proposedsizedistributionmodel for differentvalues of aerosoloptical depth. allowsglobal fitting of spectraland multiangleSun/skyradiance with a simultaneous search for the size distribution and complexrefractiveindex.Accuracyassessments of the inversion code by Dubovik et al. [2000] indicate that the error in retrieved roois smallerfor higher optical thickness,-0.03 for ra (440nm) -> 0.5, andfor solarzenithanglesgreaterthan45ø. Becauseopticalthicknessis highover Ilorin, Nigeria, throughout the year, and since the recommendedcriteria for solar zenithangleswere applied,the expectederrorsin the retrieved rooare low. In theretrieval process, [heaerosol particles areassumed to be polydispersed homogeneous sphereswith the samecomplex refractive index. Tests have shown that the assumptionsof homogeneous sphereswith an effectivecomplexindex of refractionallowboth the accuratefitting of the majorityof actual observationsof atmosphericradiance and the appropriate modelingof the main radiativeeffectsof the aerosol(absorption and scattering).The current estimatesof accuracyfor desertdust or other aerosoldominatedby coarseparticlesare as follows:dV(r)/ln r, 15-25% for r -> 0.5 ram;tOo(k),0.03; k(x), S0%; 0.0S. If the nonsphericityassumptionis not satisfied,it is possible to obtain nonrealistically high fine mode with maximum at r < 0.1 ram. This effect is at a maximum for high solar zenith angles and at a minimum for low solar zenith angles(20ø-30ø). Monthly and seasonalmean valuesof spectralrooare shown in Figure 8. To increasethe reliability of the retrieval, only observationsfor which solar zenith angleswere greater than 45øwere used.This resultedin missingvaluesfor somemonths. The spectraldependenceof rooshowsincreasingvalueswith an increasein wavelength,and a reversewavelengthdependence of roocan be noted in the dry season,which is due to the dominanceof absorbingaerosolsfrom biomassburning. Seasonalmeansof rooindicatelow values(<0.9) during DJF of 1998-1999 and 1999-2000. Lower valuesof a,o duringSON of 1999 are due to the early start of biomass burning in the vicinityof the observingstation.Differencesbetweenthe spectral dependenceof rooof DJF of 1998-1999 and DJF of 19992000 indicate the dominanceof dust aerosolsduring January 1.60 0.98 1.55 0.94 m 0,92 .•_ .-. 1.50 • 1.45 • 1.40 ,_ • 0.90 .• 0.88 ._> -- 670 nm --A-- 870 nm '7 • 1.35 440 nm ---e--- = I• 1.30 440 nm ---o-- 670 nm ---•-- 1020 nm 870 nm )• 1.25 1020 nm 1.2O M98 J98 S98 N98 J99 M99 M99 J 9 S 9 N 9 J 0 M 0 I Month/Year M98 ' I J98 , I S98 ' I N98 ' I J99 ' I ' M99 I M99 ' i J99 , i S99 , i N99 , I J00 ' I MOO Month Figure 8. Month-to-month variation in spectral singlescatteringalbedoas observedat Ilorin, Nigeria, duringApril Figure 10. Month-to-month variation of the real part of the 1998 to March refractive 2000. index. 28,352 PANDITHURAI ET AL.: SUB-SAHELAEROSOLS 0.018 1.2 -- 0.015 ._E 0.012 +AVHRR (4N, 5E)I 440 nm .-.-e... 670 nm -- •--- 870 nm .... v---.1020 -- CIMEL nm x • 0.009 ._> 0.4 '• 0.006 0.2 0.003 0.0 0.000 ' i M98 , i J98 • i S98 , i' N98 , i ' J99 i M99 ' i M99 ' i ' J99 i S99 ' i N99 ' i ' J00 ' I M98 i ' I ' J98 I S98 ' I N98 ' I ' J99 MOO I ' M99 I M99 ' I J99 ' I S99 ' i N99 , I J00 ' i MOO Month Month Figure 13. Comparisonof CIMEL-derivedaerosoloptical Figure 11. Month-to-month variationof the imaginarypart depthsat 670 nm and the NOAA 14 AVHRR operational of refractive index. aerosolopticaldepth[Stoweet al., 1997]. andFebruary2000.Frequency distribution of single-scattering and composition of the aerosol.The albedoat all fourwavelengths indicatesa modalvalueof >0.95 generationmechanisms maybe represented by (mostlyof scattering aerosols), but the 2-yearmean(<0.9) bulkopticalpropertiesof the aerosols indexof refraction (m = r/real-- inimag) whichisa suggests anabsorbing typeof aerosols (biomass burning). Vari- a complex able elementalratios reflect variable mineralogicalcomposi- functionof wavelengthin bothvisibleand infraredregionsof The concepts for determining aerosolrefractive tion of soils.Dust in the Sahelianregionis characterizedby a the spectrum. are based highFe/A1ratio due to abundance of ferraliticsoilsin the indicesfrom multiangularradiancemeasurements of theeffectsof refractive Sahel [Sokolikand Toon, 1999]. In Figure 9 the single- on theprincipleof partialseparation scatteringalbedois presentedas a functionof the Angstrom index and size distributionon the angular variability of sky andvonHoyningen-Huene, 1994;Yamasoe et exponent. Asevident, several distinct sections canbeidentified radiance[Wendish in thisfigure,startingwithrelativelyhighervaluesof too above al., 1998].The retrievalmethodof DubovikandKing[2000], 0.95 at lowvaluesof the Angstromexponent,characteristic of usedin the presentstudy,implementsretrievalvia simultadust,and graduallydecreasing towardlowervaluesof too at neousfitting of radiancesmeasuredin the entire available highervaluesof the exponent, characteristic of a highercon- angularand spectralrange and thus can improveretrieval A sufficientlyaccurateretrievalof aerosolsinglecentrationof aerosolsfrom biomassburning,indicatingclearly accuracy. albedoandcomplexindexof refractionarepossible that dustis muchlessabsorbing than aerosolsemanatingfrom scattering onlyfor high-aerosol AOD. On the basisof a sensitivity study the burningof biomass. [Duboviket al., 2000]it wasfoundthat the AOD at 440 nm 3.5. Complex Refractive Indices shouldbe largerthan 0.2. This conditionis satisfiedin the The aerosolrefractiveindicesare determinedby the physical presentstudy. The retrieved real and imaginaryrefractiveindiceswere andchemical properties of the aerosol,namely,in termsof the 4 100 200 300 400 500 600 700 800 Day Number(FromApril1998) Figure12. Comparison of CIMEL-derived aerosolopticaldepthsat 340nm andTOMS-derived aerosol indexfor a 2-yearperiod[Hermanand Celarier,1997]. PANDITHURAI Table 1. Sub-Sahelian Season Harmattan Aerosol *a (440) 0.895 (Nov.-March) ET AL.: SUB-SAHEL AEROSOLS 28,353 Model a ,a (500) ,• (670) 0.830 0.695 0.59b 0.653c 0.29 f 0.485 e ,• (870) ,• (1020) 0.602 0.558 PWV, cm 2.787 2.76c 1.35d 0.333 g Nonharmattan (April-Oct.) 0.476 1.13 e 0.455 0.405 0.431b 0.704 e 0.372 0.363 4.620 2.75d 0.19 f 3.84 e 0.273 g aSpectralaerosoloptical depthsand precipitablewater vapor information. bdVtlmeida [1987],measurements madeat Zaria,Nigeria,during1981-1982. CFaizounet al. [1994], measurementsmade at Ouangofitiniduring 1985-1987. dTuller[1968]. eFaizounet al. [1994], measurementsmade at Bidi during 1987-1989. fTegenet al. [1997],obtainedfrom monthlymeantotalsof nine individualspecies, derivedfrom transportmodels,in a grid cell over Ilorin, Nigeria. gValuesfrom the Global Aerosol Data Sets(GADS) by Koepkeet al. [1997] for winter (0% RH) and summer(70% RH), at 500 nm over a 10øN,5øEgrid box. groupedinto monthlymeansand are shownin Figures10 and 11. Monthly meansof the real part of the refractiveindexshow a gradual decreaseduring the wet season.Starting from November,there is an increasein thesevalues,peakingin January.The artificialspectraldependenceobservedin the real part of refractive index is mainly due to nonsphericityerrors, and therefore onlyvaluesfor 870 and 1020nm shouldbe used.The frequency distributionof the real refractive indices gives a mean value of 1.46 at 670 nm, which is in agreement with refractiveindicesof quartz and silicates[Krekov,1993]. Mineralogical analysisof the harmattan dust indicated that it is predominantlycomposedof quartz (>70%) followed by microcline,kaolinite, and tracesof mica and halloysite;chemical analyses indicateda predominanceof SiO2(>60%) [Adedokun et al., 1989]. Monthly means of imaginary refractive indices also show significantseasonalvariationwith highvaluesin the dry season (more absorbingaerosols,suchas mineral dust and biomass) and low valuesin the wet season(scattering-typewater soluble). Interannualvariationsshowa significantspectraldependence during the 1999-2000 harmattan season.A statistical analysisof retrieved imaginaryrefractive indicesover Ilorin, Nigeria, yieldsa mean value of 0.0065 at 670 nm. Lindbergand tion of retrieved values from recently launched instruments, suchas the EOS MODIS on the TERRA mission[Kinget al., 1992].To comparethe groundmeasurements with the TOMS aerosolindex,whichis derivedmainlyfrom the 340 and 380 nm reflectances,CIMEL-observed aerosoloptical depths at 340 nm were groupedinto dailymeansfor 2 years(from April 1998 to March 2000). TOMS aerosolindexover Ilorin, Nigeria, was computedby taking weighted means from four neighboring grids of 1ø spatial resolution. A comparisonof daily mean AOD at 340 nm and TOMS aerosolindex is shownin Figure 12, illustrating good agreement in the detection of the dust Laude[1974]measured F/imag asa functionof wavelength for 3.7. desertdust at visibleand near-infraredwavelengthsby diffuse reflectance spectroscopy,and their values decreasedfrom -0.01 at 400 nm to -0.006 at 600 nm. Lindbergand Gillespie [1977] reportedthat the larger soil particles,thosewith aerodynamicradii >5.5 /•m, showedsignificantlyless absorption than the smallerparticles,reflectingon differencesin composition. It is evident from our observationsthat the imaginary refractive indices are found to be low during the dust storm episodes.The seasonalmeansindicatehigh imaginaryrefractive indicesduringthe dry season,which is dominatedby biomassburningeventsand soildusttransportto the site [Nicholson, 2000;Kalu, 1979]. Desert aerosolshave large variability in their physicaland opticalproperties,when comparedto other typesof aerosols. Generally, during the winter season,the aerosolsare considered as desertbackgroundaerosols,and thoseduringthe summer seasonare termed aswind carried [d9tlmeida,1987].This 3.6. outbreak. Monthly means of analyzed aerosol optical depths at the closestocean grid (4øN, 5øE) to Ilorin (08ø19'N, 04ø20'E), Nigeria, is shown in Figure 13, along with CIMEL-derived AODs at 670 nm. The NOAA operationallyretrieved AODs compare well with the nearest ground-basedmeasurements, being slightlylower, as shouldbe expected.The possibledifferencesmay be due to excesscloud screeningin the NOAA product, or the difference in distancebetween the two sites. The much higher valuesobservedduring November 1999 over Ilorin may be due to local biomassburning effects. "Sub-Sahelian Aerosol is not the case over sub-Sahel. Table 2. Sub-Sahelian Season Harmattan Comparison With TOMS and AVHRR Data Ground-basedremotelysensedaerosoldata over this region can be usedto evaluateexistingspace-basedaerosolretrievals, suchas thosefrom TOMS [Hermanand Celarier,1997; Torres et al., 1998] and AVHRR [Stoweet al., 1997; Nakajima and Higurashi,1998;Chowdharyet al., 2001] and for future valida- Dust" Nonharmattan Dust mobilization Aerosol to0 (440) Model Model a to0 (670) to0 (870) 0.880 0.887 0.887 0.71b 0.75b 0.72b 0.71 c 0.92 c 0.929 0.932 0.935 0.75b 0.79b 0.83b aSingle-scattering albedo. bd9tlrneida [1986,1991]. CCarlson and Cavefly[1977]. occurs over to0 (1020) 0.889 0.938 28,354 PANDITHURAI Table 3. Sub-Sahelian Aerosol ET AL.: SUB-SAHEL AEROSOLS Model a Ref Index Season Harmattan Ref Index (440) Ref Index (670) Ref Index (870) Real Real Real 1.436 Imag 0.0085 1.468 0.01b Imag 0.0074 Imag (1020) Real Imag 1.475 0.0075 1.470 0.0077 1.457 0.0042 1.465 0.0044 0.004b 0.008 c 0.006 d 0.01d Nonharmattan 1.525 e 1.405 0.005 e 0.0036 1.434 0.0039 areal and imaginaryrefractiveindices. bpatterson et al. [1977]. CCarlson and Caverly[1977]. dLindberg andLaude[1974]. eGramset al. [1974]. sub-Sahelduring the winter due to favorablemeteorological related with precipitablewater vapor. The proposedsize distribution model suggests bimodal/trimodaldistributionwith a model, characteristicof the Sahelian conditions,could aug- dominant coarse mode. Shift in coarse mode radii and trimoment existingdust models and better fit the conditionsin this dal distributionfor higheropticaldepths(ra (6 70) > 1.0) can region. Moreover, during the dry winter conditionsin this be noted.The seasonal variationof the single-scattering albedo region,biomassburningis practicedand hasa strongeffect on showslowervaluesduringthe dry season,indicatingthe domthe optical properties of the aerosols.The 2-year record of inance of aerosolsfrom biomassburning. Despite the lower continuousobservations of directSunand diffuseskymeasure- accuracyin the real and imaginaryrefractiveindicesretrieval, ments made at this site servesfor constructinga preliminary the mean valuesof the spectralreal and imaginaryrefractive sub-Saheliandustmodel that describesmore closelyconditions indicesare closeto valuesreported for silicatesand organic in thisregionthan the availabledesertaerosolmodelsfoundin species. conditions, such as the harmattan wind. As such, a dust aerosol the literature. The proposedcharacteristics for the sub-Sahelianaerosols are presented in Tables 1-3. The spectral aerosol optical depths,single-scattering albedo,real, and imaginaryrefractive indices exhibit strong seasonalvariation and therefore were groupedasfollows:(1) the dryseason(November-March)and (b) the wet season(July-September).In Table 1 the spectral aerosolopticaldepthsand precipitablewatervaporfor dry and wet seasonsare given and comparedwith information from other sources.In Table 2 the single-scatteringalbedo at different wavelengthsis illustrated and comparedwith results from previousstudies[dMlmeida, 1987; Carlsonand Caverly, 1977]. In Table 3 the real and imaginaryrefractiveindicesare presentedfor different wavelengths,both for the dry and for the wet seasons.Imaginaryrefractiveindicesshowhighvalues during the dry season,suggestingan abundanceof absorbing aerosols.The presentstudyis basedon state of the art observations of accurate Sun and sky measurements,as well as advancedretrieval techniques[Dubovikand King, 2000]. It is hoped that the proposed aerosol characteristicswill depict more accuratelythe conditionsin this unique region. Acknowledgments.This work was supportedunder NASA EOS Validationgrant NAG-56464 (D. O' C. Starr, ProjectManager) and grantNAG-11832 (R. J. Curran,ProjectManager).Thanksare due to the grantingagency,to the AERONET team,to D. Tanre for real-time transmissionof the CIMEL data, to J. K. Schemmand S. Nigam, for providingthe NCEP wind data, to C.-J. Meng, for helpingwith the wind analysis,to F. Miskolczifor technicalassistance with the instrumentation,and the Universityof Ilorin stafffor the dailymaintenance of the skyradiometer. References Adebayo,S. I., Trajectoriesof advectedSaharandust in Nigeria,Atmos. Environ., 23, 1581-1589, 1989. Adedokun, J. A., W. O. Emofurieta, and O. A. Adedeji, Physical, mineralogicaland chemicalpropertiesof Harmattan dustat Ile-Ife, Nigeria, Theor.Appl. Climatol.,40, 161-169, 1989. Adefolalu,D. O., On bioclimatological aspectsof Harmattandusthaze in Nigeria,Arch. Meteorol.Geophys. Bioclimatol.Ser.B, 33(4), 387404, 1984. Afeti, G. M., and F. J. Resch,Physicalcharacteristics of Saharandust near the Gulf of Guinea, Atmos. Environ., 34, 1273-1279, 2000. Alpert, P., Y. J. Kaufman, Y. Shay-E1,D. Tanre, A. da Silva, S. Schubert,and J. H. Joseph,Quantificationof dust-forcedheatingof the lower troposphere,Nature,395, 367-370, 1998. American GeophysicalUnion, The perfect haze: Scientistslink 1999 4. Summary U.S. pollution episodeto Midwest aerosolplumes and Kennedy Optical characteristics of aerosolsobservedover Ilorin, Niplane crash,Eos Trans.AGU, 81(2), 13-14, 2000. geria, are distinctlydifferent during the harmattan, as com- Bruegge,C. T., J. E. Conel, R. O. Green, J. S. Margolis, R. G. Holm, and G. Toon, Water vapor column abundanceretrievalsduring pared to other seasons.The strong spectraldependencein FIFE, J. Geophys.Res.,97, 18,759-18,768, 1992. aerosolopticaldepthsduringthe dry seasonindicatesan abunCarlson,T. N., and R. S. Caverly,Radiativecharacteristics of Saharan danceof sub-micron-size particles.During dust storm events, dustat solarwavelengths, J. Geophys.Res.,82, 3141-3152, 1977. spectral aerosol optical depths were found to have near- Carlson, T. N., and J. M. Prospero,The large scale movement of Saharanair outbreaksoverthe northernequatorialAtlantic,J.Appl. neutral extinction,with Angstromexponentsbeingreducedto Meteorol., 11,283-297, 1972. 0.3. Precipitablewater vapor,whichwas retrievedusingdirect Chang,C.-B., Impact of desertenvironmenton the genesisof African Sun measurementsat 940 nm [Bmeggeet al., 1992], exhibits wave disturbances,J. Atmos. Sci., 50, 2137-2145, 1993. significantseasonalvariation and agreeswell with NCEP re- Cox, R. E., M. A. Mazurek, and B. R. T. Simoneit,Lipids in Harmattan aerosolsof Nigeria, Nature,296, 848-849, 1982. analysisvalues.Seasonalmeansof AODs are negativelycot- PANDITHURAI ET AL.: SUB-SAHEL AEROSOLS 28,355 Chowdhary,J., B. Cairns,M. Mishchenko,and L. Travis, Retrieval of propertiesover the oceanusingpolarizationas well as intensityof reflected sunlight,J. Geophys.Res., 102, 16,989-17,013, 1997. aerosolpropertiesoverthe oceanusingmultispectralandmultiangle photopolarimetricmeasurements from the ResearchScanningPo- Mishchenko,M. I., I. V. Geogdzhayev,B. Cairns,W. B. Rossow,and larimeter, Geophys.Res.Lett., 28, 243-246, 2001. A. A. Lacis,Aerosol retrievalsover the oceanby use of channels1 d'Almeida, G. A., A model for Saharandust transport,J. Clim. Appl. and 2 AVHRR data: Sensitivityanalysisand preliminary results, Meteorol., 24, 903-916, 1986. Appl. Opt., 38, 7325-7341, 1999. d'Almeida, G. A., On the variability of desert aerosolradiative char- Miskolczi, F., T. O. Aro, M. Iziomon, and R. T. Pinker, Surface acteristics, J. Geophys.Res.,92, 3017-3026, 1987. radiativefluxesin Sub-SahelAfrica, J. Appl. Meteorol.,36, 521-530, 1997. d'Almeida,G. A., P. Koepke,and E. P. Shettle,Atmospheric Aerosols, Nakajima, T., and A. Higurashi,A useof two-channelradiancesfor an Global Climatologyand Radiative Characteristics,561 pp., A. Deepak, Hampton, Va., 1991. aerosolcharacterizationfrom space,Geophys.Res.Lett., 25, 38153818, 1998. Dubovik, O., and M.D. King, A flexibleinversionalgorithmfor retrieval of aerosol optical propertiesfrom Sun and sky radiance Nicholson,S., Land surfaceprocessesand Sahel climate, Rev. Geomeasurements,J. Geophys.Res., 105, 20,673-20,696, 2000. phys.,38, 117-139, 2000. Dubovik, O., A. Smirnov,B. N. Holben, M.D. King, Y. J. Kaufman, N'Tchayi Mbourou, G. M., J. Bertrand, M. Legrand, and J. Baudet, Temporal and spatial variationsof the atmosphericdust loading T. F. Eck, and I. Slutsker,Accuracyassessment of aerosoloptical properties retrieval from AERONET Sun and sky radiance meathroughoutWest Africa overthe lastthirty years,Ann. Geophys.,12, 265-273, 1994. surements,J. Geophys.Res.,105, 9791-9806, 2000. Eck, T. F., B. N. Holben, J. S. Reid, O. Dubovik, A. Smirnov, N. T. N'Tchayi Mbourou, G. M., J. Bertrand, and S. E. Nicholson, The diurnal and seasonalcyclesof wind-borne dust over Africa north of O'Neill, I. Slutsker,and S. Kinne, Wavelengthdependenceof the the equator,J. Appl. Meteorol.,36, 868-882, 1997. opticaldepthof biomassburning,urban,and desertdustaerosols,J. Ohmura, A., et al., Bull. Am. Meteorol. Soc., 79, 2115-2136, 1998. Geophys.Res., 104, 31,333-31,349, 1999. Faizoun, C. A., A. Podaire, and G. Dedieu, Monitoring of Sahelian Pandithurai,G., P. C. S. Devara, P. E. Raj, and S. Sharma,Retrieval aerosoland atmosphericwater vapor content characteristics from of aerosolsizeindexfrom high-resolution spectroradiometer observations, Aerosol Sci. Technol., 26, 154-162, 1997. sun-photometermeasurements,J. Appl. Meteorol., 33, 1291-1304, 1994. Patterson,E. M., D. A. Gillette, and B. H. Stockton,Complexindexof Grams, G. W., I. H. Blifford Jr., D. A. Gillette, and P. B. Russell, refractionbetween300 and 700 nm for Saharanaerosols,J. Geophys. Res., 82, 3153-3160, 1977. Complexindex of refractionof airbornesoil particles,J. Appl. Meteorol., 13, 459-471, 1974. Haywood,J. M., V. Ramaswamy, and B. J. Soden,Troposphericaerosolclimateforcingin clear-skysatelliteobservations overthe oceans, Science,283, 1299-1303, 1999. Herman, J. R., andE. Celarier,Earth'ssurfacereflectivityclimatology at 340-380 nm from TOMS data, J. Geophys.Res., 102, 28,00328,012, 1997. Holben, B. N., et al., AERONET--A federated instrument network and data archive for aerosol characterization, Remote Sens.Environ., 66, 1-16, 1998. Houghton, J. T., L. G. M. Filho, B. A. Callandar, N. Harris, A. Kat- ternberg,and K. Maskell (Eds.), IPCC 95, climate change,in The Scienceof Climate Change,572 pp., CambridgeUniv. Press,New York, 1996. Junge,C. E., The size distributionand aging of natural aerosolsas determinedfrom electricaland optical data on the atmosphere,J. Meteorol., 12, 13-25, 1955. Kalu, A. E., The African dustplume: Its characteristics and propagation acrossWest Africa in winter, in Saharan Dust, edited by C. Morales,pp. 95-118, 1979. Karyampudi,V. M., and T. N. Carlson,Analysisand numericalsimulations of the Saharan air layer and its impact on easterlywave Pinker, R. T., G. Idemudia, and T. O. Aro, Characteristic aerosol optical depthsduringthe Harmattan seasonin sub-SaharaAfrica, Geophys.Res.Lett., 21, 1099-1103, 1994. Pinker, R. T., G. Pandithurai, B. N. Holben, O. Dubovik, and T. O. Aro, A dustoutbreakepisodein sub-SahelWest Africa, J. Geophys. Res., in press,2001. Prospero,J. M., Long-termmeasurementsof the transportof African mineral dust to the southeasternUnited States:Implicationsfor regional air quality,J. Geophys.Res., 104, 15,917-15,927,1999. Rangarajan,S., Wavelengthexponentfor hazescatteringin the tropics asdeterminedby photoelectricphotometers,Tellus,24, 51-59, 1972. Reid, J. S., T. F. Eck, S. A. Christopher,P. V. Hobbs, and B. N. Holben, Use of the Angstromexponentto estimatethe variabilityof optical and physicalpropertiesof agingsmokeparticlesin Brazil, J. Geophys.Res., 104, 27,473-27,489, 1999. Remer, L. A., Y. J. Kaufman, and B. N. Holben, Interannual variation of ambient aerosol characteristics on the east coast of the United States,J. Geophys.Res., 104, 2223-2231, 1999. Shettle, E. P., Optical and radiative properties of a desert aerosol model, in Proceedings of the Symposiumon Radiation in theAtmosphere,edited by G. Fiocco,pp. 74-77, A. Deepak, Hampton, Va., 1984. disturbances,J. Atmos. Sci., 45, 3102-3136, 1988. Sokolik,I. N., and O. B. Toon, Incorporationof mineralogicalcomKaryampudi,V. M., et al., Validation of the Saharan dust plume positioninto modelsof the radiativepropertiesof mineral aerosol from UV to IR wavelengths, J. Geophys.Res.,104, 9423-9444, 1999. conceptualmodel using lidar, Meteosat and ECMWF data, Bull. Am. Meteorol. Soc., 80, 1045-1075, 1999. Stowe,L. L., A.M. Ignatov,and R. R. Singh,Development,validation, and potential enhancementsto the second-generation operational Kaufman,Y. J., Satellitesensingof aerosolabsorption,J. Geophys. Res., 92, 4307-4317, 1987. aerosolproductat the National EnvironmentalSatellite,Data, and Kaufman,Y. J., and R. S. Fraser, The effect of smokeparticleson Information Serviceof the National Oceanicand AtmosphericAdcloudsand climate forcing, Science,277, 1636-1639, 1997. ministration,J. Geophys.Res., 102, 16,923-16,934, 1997. King, M.D., Y. J. Kaufman, W. P. Menzel, and D. Tanre, Remote Tegen, I., and I. Fung, Modeling of mineral dust in the atmosphere: Sensingof cloud,aerosolandwatervaporpropertiesfrom the ModSources,transport, and optical thickness,J. Geophys.Res., 99, 22,897-22,914, 1994. erate Resolution Imaging Spectrometer(MODIS), IEEE Trans. Geosci.Remote Sens.,30, 2-27, 1992. Tegen,I., and I. Fung,Contributionto the atmosphericmineralaerosol load from land surface modification, J. Geophys.Res., 100, Koepke,P., M. Hess,I. Schult,and E. P. Shettle,Global AerosolData 18,707-18,726, 1995. Set (GADS), MPI Meteorol.Rep. 243, 44 pp., Max Planck Inst., Hamburg, Germany, 1997. Tegen, I., and R. Miller, A general circulation model study on the interannual variability of soil dust aerosol,J. Geophys.Res., 103, Krekov, G. M., Models of atmosphericaerosols,in AerosolEffectson 25,975-25,995, 1998. Climate,edited by S. G. Jennings,pp. 9-64, 1993. Lindberg,J. D., andJ. B. Gillespie,Relationships betweenparticlesize Tegen, I., P. Hollrig, M. Chin, I. Fung, D. Jacob, and J. Penner, and imaginaryrefractiveindex in atmosphericdust,Appl. Opt., 16, Contributionof different aerosolspeciesto the global aerosolex2628-2630, 1977. tinctionopticalthickness: Estimatesfrom modelresults,J. Geophys. Res., 102, 23,895-23,915, 1997. Lindberg,J. D., and L. A. Laude, Measurementof the absorption Torres, O., P. K. Bhartia, J. R. Herman, Z. Ahmad, and J. Gleason, coefficientof atmosphericdust,Appl. Opt., 13, 1923-1927,1974. McTainsh,G., Harmattandustdepositionin northernNigeria,Nature, Derivation of aerosol properties from satellite measurementsof 286, 587-588, 1980. backscatteredultraviolet radiation: Theoretical basis,J. Geophys. Mishchenko, M. I., and L. D. Travis, Satellite retrieval of aerosol Res., 103, 17,099-17,110, 1998. 28,356 PANDITHURAI ET AL.: SUB-SAHEL AEROSOLS Tuller, S. E., World distributionof mean monthlyand annualprecipitable water, Mon. WeatherRev., 96, 785-797, 1968. Wendish, M., and W. von Hoyningen-Huene,Possibilityof refractive index determination of atmosphericaerosol particles by groundbased solar extinction and scatteringmeasurements,,4tmos.Environ., 28, 785-792, 1994. Westphal, D. L., O. B. Toon, and T. N. Carlson,A case study of mobilizationand transportof Saharandust,J.,4tmos.Sci.,45, 2145- Holben, and P. Artaxo, Retrieval of the real part of the refractive index of smoke particles from Sun/sky measurementsduring SCAR-B, J. Geophys.Res., 103, 31,893-31,902, 1998. T. O. Aro, Universityof Ilorin, Ilorin, Nigeria. O. Dubovik and B. N. Holben, Laboratoryfor Terrestrial Physics, NASA Goddard Space Flight Center, Code 923, Greenbelt, MD 20771. G. Pandithuraiand R. T. Pinker, Departmentof Meteorology,UniWilson, I. G., Desert sandflow basinsand a model for the develop- versity of Maryland, College Park, MD 20742, USA. (pinker@ ment of ERGS, Geograph.J., 137, 180-199, 1971. atmos.umd.edu) Wilson,R., and J. Spengler(Eds.),Particlesin OurAir: Concentrations and HealthEffects,254 pp., Harvard Univ. Press,Cambridge,Mass., 1996. (ReceivedAugust31, 2000;revisedMarch 29, 2001; Yamasoe, M. A., Y. J. Kaufman, O. Dubovik, L. A. Remer, B. N. acceptedApril 4, 2001.) 2175, 1988.
© Copyright 2026 Paperzz