Simple Inverted Pendulum Cart Dynamics Lagrangian Development by Jaspen Patenaude Lagrange We will start by writing an expression for the system's total kinetic energy (T) and for the system's potential energy (V). Kinetic Energy T 1 M xdot2 2 c thetadot2 1 M xdot2 2 c 1 M 2 p xdot 1 M xdot 2 p 2 thetadot l cos theta 2 2 1 thetadot l cos 2 1 Mp 2 thetadot l sin theta 2 1 M thetadot2 l2 sin 8 p 2 2 1 2 1 M l2 thetadot2 24 p 1 Mp l2 12 (1) Potential Energy V Mp g l 2 cos theta 1 M g l cos 2 p The Lagrangian is defined as L 1 L := M xdot2 2 c 1 M xdot 2 p T 1 thetadot l cos 2 (2) V 2 1 M thetadot2 l2 sin 8 p 2 1 M l2 thetadot2 24 p 1 M g l cos 2 p 1 1 M xdot2 M 2 c 2 p 1 M g l cos 2 p 2 1 thetadot l cos 2 xdot 1 M thetadot2 l2 sin 8 p Using the standard holonomic form of Lagrange's equation, d dL d qdot dt qeneralized coordinate vector coordinate. x T c 1 M l2 thetadot2 24 p 2 (3) dL = Qi where q is the dq i and Qi is the generalized force corresponding to the generalized Pendulum Equation of Motion Evaluating the Lagrange equation's first term for thetadot gives us simplify diff L, thetadot 1 M l 6 p simplify diff 1 M l 6 p 3 cos 1 M l 3 sin 6 p t xdot t d dt t 3 cos t xdot (4) 2 thetadot l 2 thetadot t l , t xdot t 3 cos d xdot t dt t d thetadot t dt 2 (5) l while the second gives simplify diff L, theta 1 M l sin 2 p thetadot xdot (6) g Combining the two terms and realizing that the generalized force in the theta direction is 0, we get 1 M l 3 sin 6 p expand simplify 1 M l sin 2 P 1 l Mp sin t 2 1 l MP sin 2 t d dt t d dt t t thetadot t xdot t xdot t g 3 cos xdot t 2 d thetadot t dt l =0 1 l Mp cos t 2 1 thetadot t xdot t l MP sin 2 t d xdot t dt t 1 M 3 p d xdot t dt t d thetadot t dt l2 (7) g=0 by simplification this can be written as 1 M l cos 2 p t d2 x t dt2 1 d2 M l2 theta t 3 p dt2 1 M l sin 2 p t g =0 Cart Equation of Motion Evaluating the Lagrange equation's first term for xdot gives us simplify diff L, xdot Mc xdot simplify diff Mc xdot t Mp xdot t Mp xdot 1 M thetadot l cos 2 p 1 M thetadot t l cos 2 p t ,t (8) Mc 1 M 2 p d d xdot t Mp xdot t dt dt 1 M thetadot t l sin t 2 p d dt d thetadot t dt l cos (9) t t while the second gives: simplify diff L, x (10) 0 Combining the two terms and realizing that the generalized force in the theta direction is F, we get d xdot t dt expand simplify M c Mc p 1 M thetadot t l sin t 2 p d d xdot t Mp xdot t dt dt 1 M thetadot t l sin t 2 p 1 M 2 p d xdot t dt M d dt t l cos t =F 1 M 2 p d dt d thetadot t dt d thetadot t dt t l cos (11) t =F by simplification this can be written as Mc d2 x t dt2 c Mp 1 M l cos 2 p d2 dt2 t 1 Mp l sin 2 t 2 d dt t t =F SUMMARY Governing equation for the pendulum motion 0= d2 dt2 1 M l2 3 p 1 M l sin 2 p t t 1 M l cos 2 p g d2 x t dt2 c t Governing equation for the cart motion F = Mc d2 x t dt2 c Mp 1 M l sin 2 p 2 d dt t t 1 M l cos 2 p t d2 dt2 t The governing equations for the cart and pendulum can also be expressed in matrix form as M c 1 M l cos 2 p M p 1 M l cos 2 p t 0 1 M l sin 2 p dt2 F t g = dt2 d2 1 M l2 3 p t d2 0 x t c t 0 0 1 M l sin 2 p t 0 d dt t d x t dt c d dt t
© Copyright 2026 Paperzz