Packing CharacterizationMass Transfer Properties Chao Wang Carbon Management Project of PSTC Advisors: Gary Rochelle and Frank Seibert Research Engineer: Micah Perry 6th Trondheim CCS Conference June 15, 2011 Mass Transfer in a Typical CO2 Capture Process kGa kGa a kLa H CO 2 1 1 1 ∆PCO 2 * ( ) = + + KG a kG a a k 2 [ Am]DCO 2 kl a ∆cCO 2 Research objective • ae—effective gas-liquid contact area--CO2 capture absorber • kGa–gas film mass transfer coefficient– water wash, gas cooler • kLa– liquid film mass transfer coefficient– stripper • Objective: -measure ae, kG and kL for novel structured and random packings • - develop a fundamental model can predict ae, kG and kL for novel packings. Packed Column ID:0.43m Packing Information Packing Name RSP 250 Type Hybrid Surface Area (m2/m3) 250 FP 1.6 Y HC Mellapak 2X RSR #0.5 250 High Capacity 60° angle 295 205 Random metal 1” Plastic Pall Ring Random plastic 210 Corrugatio n Angle N/A 45 60 N/A N/A N/A 0.017 0.02 N/A N/A Void fraction, ε 0.92 0.95 0.99 N/A N/A Channel Side, S (m) Effective gas-liquid contact area • Absorption of CO2 into 0.1 N NaOH solution • Pseudo first order reaction • Liquid phase control ae = yCO2in ) uG ln( yCO2out k g' = ZKG RT ≈ yCO2in ) uG ln( yCO2out ZkG' RT kOH − [OH − ]DCO 2, L H CO 2 Gas-liquid contact area of MP2X Fractional Area, ae/ap 1.2 uG = 4.87 ft/s uG = 3.25 ft/s uG = 1.95 ft/s ae/ap= 0.70L0.125 1.0 0.8 0.6 0 10 20 Liquid Load, GPM/ft2 30 Tsai’s area model (Tsai,2010) 1,3 1,2 Fractional area, ae/ap 1,1 ρ L 1/ 3 L 4 3 ae = 1.34 ( ) g ( ) ap aP σ 0.116 +13% 1 0,9 0,8 -13% 0,7 9 structured packings ap: 125 – 500 m2/m3 μL: 1 – 15 mPa·s σ: 30 – 72 mN/m 0,6 0,5 0,4 0,0001 0,001 0,01 ρ L 13 L g σ ap 4 0,1 3 Tsai R. "Mass Transfer Area of Structured Packing". The University of Texas at Austin. Ph.D Dissertation. 2010 Gas-liquid contact area Fractional Effective Area ae/aP 1.4 +20% 1.2 1 RSP250 (Hybrid) -20% RSR#0.5 (60 angle) Tsai area (High Capacity) 0.8 0.6 MP2X FP1.6YHC 1"PPR (Plastic Random) (Metal Random) 0.4 5.0E-6 1.0E-5 2.0E-5 4.0E-5 8.0E-5 Generalized Liquid Superficial Velocity uL/aP (m2/s) Gas Film Mass Transfer Coefficient • Gas film control (SO2/NaOH solution system) • Instantaneous reaction • Liquid film resistance can be neglected yin uG ln( ) yout kG a = ZRT kG a k G= ae • SO2 concentration is measured by two different range SO2 analyzers. Outlet sample SO2 analyzer can detect can use 10 feet packing 0.1 ppb SO2 Gas film mass transfer coefficient kG of MP2X 5.0 GPM/ft2 kG = 0.026uG0.77 10.0 GPM/ft2 0.12 20.0 GPM/ft2 kG, ft/s 0.08 0.04 0.00 0 2 4 6 Gas Velocity, ft/s 8 kG summary kG/(m/s) 0.04 1"PPR n=0.87 RSR#0.5 n=0.96 RSP250 n=0.8 MP2X n=0.73 0.02 FP1.6YHC n=1.05 0.01 kG=kG,uG=1m/s*(uG/1)n 0.005 0.5 1 Gas Superficial Velocity uG (m/s) 2 Modified Rocha-Bravo-Fair1 kG Model kG S (uGE + u LE ) ρ G S 0.8 µG 0.33 = 0.054( ) ( ) DG µG DG ρ G (uGE + uLE ) ρ G 0.88 µG 0.33 kG = 0.032( ) ( ) aP DG aP µG ρ G DG uGE uGS = ε (1 − hL ) sin θ 1.Rocha JA, Bravo JL, Fair, JR. “Distillation Columns Containing Structured Packings: A Comprehensive Model for Their Performance.2. Mass-Transfer Model.” Ind Eng Chem Res. 1996;35:1660–1667. kG model 16 MP2X +20% FP1.6YHC -20% RSP250 ShG=kGdeq/DG 8 ShG=0.0317*ReG0.88ScG0.33 4 Average Deviation 16.2% 2 150 300 600 Re=uGEρGdeq/μG Liquid film Mass Transfer Coefficient • Liquid film control (Air/Toluene/Water system) • No chemical reactions • Mass transfer resistance mainly in liquid film stripping: • uL k L a = ln(cLin / cLout ) Z kLa k L= ae Liquid film mass transfer coefficient kL of MP2X 3E-4 uG = 4.87 ft/s uG = 3.25 ft/s uG = 1.95 ft/s kL = 2E-05uL0.6809 kL, ft/s 2E-4 1E-4 0E+0 0 10 20 Liquid Load, GPM/ft2 30 kL summary MP2X n=0.70 kL/(m/s) 6E-5 3E-5 2E-5 1"PPR n=0.63 RSR#0.5 n=0.81 FP1.6YHC n=0.76 RSP250 n=0.71 kL=kL,uL=0.0067*(uL/0.0067)n 8E-6 5.0E-6 1.0E-5 2.0E-5 4.0E-5 8.0E-5 Generalized Liquid Superficial Velocity uL/aP (m2/s) Brunazzi2 dimensionless kL model (1997) Gz B ShL = A C Ka Gz = Re L ScL σ 3ρL Ka = 4 µL g A=409, B=0.5, C=0.09 δ sin θ H el δ =( ρ L SU LE Re L = µL U LS 0.5 3µ L ) ρ L g sin θ hL sin θ ScL = µL ρ L DL uLE = uLS εhL sin θ • Consider the mixing of liquid phase occurs at junctions. Kapista number Ka • Includes the flow path length factor, which is Hel/sinθ • Includes packing geometry factor S, liquid film thickness • 2.Brunazzi E, Paglianti A. "Liquid-Film Mass Transfer Coefficient in a column Equipped with Structured Packings." Ind Eng Chem Res. 1997;36:3792-3799 kL model 1600 800 ShL=kLdeq/DL +20% MP2X FP1.6YHC RSP250 -20% 400 ShL=409*Gz0.5Ka-0.09 Average Deviation 20.2% 200 100 15 30 60 120 Gz=ReLScLδsinθ/Hel 240 480 Conclusions • ae is a function of L, ~uL0.155, not a function of G , Tsai’s area model: ae ρ L 1 / 3 Q 1 4 / 3 0.116 = 1.42[( ) g ( * ) ] ap σ A ap • kG ~uG0.88, not a function of uL 0.88 0.33 Modified RBF kG model: ShG = 0.0317 * ReG ScG • kL ~uL0.74, not a function of uG Modified RBF kL model: ShL = 409 * Gz 0.5 Ka −0.09 Thank You Chao Wang [email protected]
© Copyright 2025 Paperzz