ESP / ESMO: Diagnostic and therapeutic advances in neuroendocrine tumours Hormonally active and non-active neuroendocrine tumours of the gastrointestinal tract Aurel Perren Institute of Pathology University of Bern ECP, Köln 2016 1 Programm pathology: 1. Classifikation of NEN: WHO 2017 i. Grading ii. Concept of differentiation iii. Reasons for changing WHO classification 2. Diagnostic biomarkers i. When to use hormones ii. Transcription-factors 3. Predictive biomarkers MBI (Ki67): Grading <3 TNM-Grading: Evidence pNET JNCI 2012, Rindi et al. TNM-Grading: Evidence NET 270 NET patients after PRRT EJNMMI; 2016, Brunner et al New WHO Klassifikation of NEN 2010 old 1. Neuroendocrine Tumor, NET G1 Grading <2% MIB <2 Mitosis 2. Neuroendocrine Tumor, NET G2 3. Neuroendocrine carcinoma, NEC (small or large-cell) +TNM Staging Bosman FT, Carneiro F, Hruban RH, Theise ND WHO Classification of Tumours of the Digestive System, 2010 Differentiation WHO Classification 2017 (pNET) 1. Neuroendocrine Tumor, NET G1 Grading <3% MIB <2 Mitosis 2. Neuroendocrine Tumor, NET G2 3a. Neuroendocrine Tumor, NET G3 3b. Neuroendocrine carcinoma, NEC (small or large-cell) Differentiation +TNM Staging Programm pathology: 1. Classifikation of NEN: WHO 2017 i. Grading ii. Concept of differentiation iii. Reasons for changing WHO classification 2. Diagnostic biomarkers i. When to use hormones ii. Transcription-factors 3. Predictive biomarkers NEC G3 NET G3 NET common features Neuroendocrine markers Syn Growth patterns Crg-A Ki-67 in NET G3 lower 13 AJSP 2015, Basturk et al. Programm pathology: 1. Classifikation of NEN: WHO 2017 i. Grading ii. Concept of differentiation iii. Reasons for changing WHO classification 2. Diagnostic biomarkers i. When to use hormones ii. Transcription-factors 3. Predictive biomarkers G3 NEN, response to therapy 15 Ann Oncol 2013, Sorbye et al. G3 NEC, genetically = NET P53 RB mutations 11 small cell NEC p53 RB Mutation 9 large cell NEC DAXX/ATRX/Men1/mTOR 11 pNET 16 AJSP 2012, Yachida et al. Diagnosis NET G3 AJSP 2016, Tang et al. How to do it? Ki67 >20%: Small-cell NEC Large-cell not allways search for wd areas search for adeno-ca areas heterogenous Ki-67- low Ki-67 progression from wd NET? - NET G3 IHC markers DAXX/ATRX loss, MEN1 loss P53 / Rb NET G3 NEC G3 Clin Cancer Research 2015, Tang et al. Programm pathology: 1. Classifikation of NEN: WHO 2017 i. Grading ii. Concept of differentiation iii. Reasons for changing WHO classification 2. Diagnostic biomarkers i. When to use hormones ii. Transcription-factors 3. Predictive biomarkers Immuno for Hormones? 1. When you need them i. (potentially) multiple tumors ii. CUP iii. Confirm clinical syndrome Gastrin Glucagon Insulin PP Somatostatin Unclassified Lk Metastasen Endokrine Tumore > 5 mm < 5 mm - 1 mm < 1 mm - 0.5mm endokrine Hyperplasie sstr2 + < 0.5 mm Anlauf et al. AJSP 2008 Cdx-2 Ileum Isl1 ileum Cdx-2 peripancreatic Isl1 peripancreatic Liver metastasis, NET G1/G2 Transcription-factors Ileum, Appendix Pancreas, duodenum Lung, (MTC) Cdx-2 Isl-1 Ttf-1 This does not work for NEC! Programm pathology: 1. Classifikation of NEN: WHO 2017 i. Grading ii. Concept of differentiation iii. Reasons for changing WHO classification 2. Diagnostic biomarkers i. When to use hormones ii. Transcription-factors 3. Predictive biomarkers NEN: Common features AJSP 2012, Körner et al. Sstr2 on paraffin 270 patients with DOTATOC treatment EJNMMI; 2016, Brunner et al MGMT expression IHC for MGMT, loss in subset of pNET MGMT promotor methylation correlates Response to TMZ better if MGMT loss Kulke et al, (2006) JCO Walter et al, (2015) BJC The future? pNET, RNA expression profiles: 4 Subgroups pNET, miRNA expression profiles: 2 Subgroups pNET, Methylation data - Ch. Thirlwell Needs • Standardization • Interdisciplinary collaboration • Clinical trials • Follow-up • Networks • Tissue banks Survival AJSP 2015, Basturk et al. Unpublished data NEC vs. NET 200 G3 NEN of Nordic NEC study Review by 4 pathologists interobserver wd vs pd: 0.7-0.78 High correlation with Ki-67 31 Tang et al. NET G3 vs NEC G3 Tang et al. In prep More than Ki-67 Survival 33 Tang et al. Tissue biomarkers: 1. Diagnostic - Synaptophysin, Chromogrannin-A, others if neded - Ki-67 - DAXX/ATRX, P53, RB 2. Predictive - Sstr-2? - MGMT?
© Copyright 2026 Paperzz