Mark Scheme (Results) January 2009 GCE GCE Mathematics (6665/01) Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH January 2009 6665 Core Mathematics C3 Mark Scheme Question Number 1 Scheme Marks ) ( 1 d d √ ( 5 x − 1) ) = ( 5 x − 1) 2 ( dx dx 1 −1 = 5 × ( 5 x − 1) 2 2 (a) M1 A1 dy 5 −1 = 2 x √ ( 5 x − 1) + x 2 ( 5 x − 1) 2 dx 2 At x = 2 , (b) dy 10 10 = 4√9 + = 12 + dx 3 √9 46 = 3 M1 A1ft M1 Accept awrt 15.3 d ⎛ sin 2 x ⎞ 2 x 2 cos 2 x − 2 x sin 2 x ⎜ ⎟= x4 dx ⎝ x 2 ⎠ A1 M1 (6) A1+A1 A1 (4) [10] Alternative to (b) d sin 2 x × x −2 ) = 2 cos 2 x × x −2 + sin 2 x × ( −2 ) x −3 ( dx ⎛ 2 cos 2 x 2sin 2 x ⎞ = 2 x −2 cos 2 x − 2 x −3 sin 2 x ⎜ = − ⎟ x2 x3 ⎠ ⎝ 6665/01 GCE Mathematics January 2009 2 M1 A1 + A1 A1 (4) Question Number 2 Scheme 2x + 2 x +1 2x + 2 x +1 − = − x − 2 x − 3 x − 3 ( x − 3)( x + 1) x − 3 (a) 2 2 x + 2 − ( x + 1)( x + 1) ( x − 3)( x + 1) = (b) Marks = ( x + 1)(1 − x ) ( x − 3)( x + 1) = 1− x x−3 M1 A1 M1 Accept − x −1 x −1 , x −3 3− x d ⎛ 1 − x ⎞ ( x − 3)( −1) − (1 − x )1 ⎜ ⎟= 2 dx ⎝ x − 3 ⎠ ( x − 3) = − x + 3 −1 + x ( x − 3) 2 = A1 (4) M1 A1 2 ( x − 3) 2 cso A1 (3) [7] Alternative to (a) 2 ( x + 1) 2x + 2 2 = = 2 x − 2 x − 3 ( x − 3)( x + 1) x − 3 M1 A1 x + 1 2 − ( x + 1) 2 − = x −3 x −3 x−3 1− x = x−3 Alternatives to (b) 1− x 2 −1 1 = −1 − = −1 − 2 ( x − 3 ) f ( x) = x −3 x−3 −2 f ′ ( x ) = ( −1)( −2 )( x − 3) = 2 2 ( x − 3) −1 f ( x ) = (1 − x )( x − 3) −1 −2 f ′ ( x ) = ( −1)( x − 3) + (1 − x )( −1)( x − 3) − ( x − 3) − (1 − x ) 1 1− x =− − = 2 2 x − 3 ( x − 3) ( x − 3) = 2 2 ( x − 3) 6665/01 GCE Mathematics January 2009 M1 A1 M1 A1 cso A1 3 (3) M1 A1 A1 2 (4) (3) Question Number Scheme Marks 3 (a) ( 3, 6 ) y ( 7, 0 ) O Shape ( 3, 6 ) B1 ( 7, 0 ) B1 Shape ( 3, 5 ) B1 ( 7, 2 ) B1 B1 (3) x (b) y ( 3, 5) ( 7, 2 ) 6665/01 GCE Mathematics January 2009 4 (3) [6] x O B1 Question Number Scheme Marks x = cos ( 2 y + π ) 4 dx = −2sin ( 2 y + π ) dy dy 1 =− dx 2sin ( 2 y + π ) At y = π 4 dy 1 1 =− = 3π 2 dx 2sin 2 , y− π 1 x 4 2 1 π y = x+ 2 4 = M1 A1 dx dy before or after substitution Follow through their A1ft B1 M1 A1 (6) [6] 6665/01 GCE Mathematics January 2009 5 Question Number 5 Scheme Marks g ( x) ≥ 1 (a) B1 ( ) = 3e f g ( x ) = f ex (b) 2 = x 2 + 3e x ( fg : x a x 2 x2 + lne x 2 + 3e x 2 ) (c) fg ( x ) ≥ 3 (d) 2 2 d 2 x + 3e x = 2 x + 6 x e x dx ( ) 2 2 A1 (2) B1 (1) M1 A1 M1 A1 6 x − x2 = 0 x = 0, 6 6665/01 GCE Mathematics January 2009 M1 2 2x + 6x ex = x2 ex + 2x 2 ex ( 6 x − x2 ) = 0 ex ≠ 0 , 2 (1) A1 A1 6 (6) [10] Question Number 6 (a)(i) Scheme Marks sin 3θ = sin ( 2θ + θ ) = sin 2θ cos θ + cos 2θ sin θ = 2sin θ cos θ .cos θ + (1 − 2sin 2 θ ) sin θ M1 A1 = 2sin θ (1 − sin 2 θ ) + sin θ − 2sin 3 θ M1 = 3sin θ − 4sin 3 θ (ii) (b) cso 8sin 3 θ − 6sin θ + 1 = 0 −2sin 3θ + 1 = 0 1 sin 3θ = 2 π 5π 3θ = , 6 6 π 5π θ= , 18 18 √3 (4) M1 A1 M1 A1 A1 sin15° = sin ( 60° − 45° ) = sin 60° cos 45° − cos 60° sin 45° 1 1 1 − × 2 √2 2 √2 1 1 1 = √ 6 − √ 2 = (√ 6 − √ 2) 4 4 4 = A1 (5) M1 × M1 A1 cso A1 (4) [13] Alternatives to (b) 1 sin15° = sin ( 45° − 30° ) = sin 45° cos 30° − cos 45° sin 30° 1 √3 1 1 × − × √2 2 √2 2 1 1 1 = √ 6 − √ 2 = (√ 6 − √ 2) 4 4 4 M1 = M1 A1 cso A1 (4) 2 Using cos 2θ = 1 − 2sin 2 θ , cos 30° = 1 − 2sin 2 15° 2sin 2 15° = 1 − cos 30° = 1 − sin 2 15° = 2−√3 4 √3 2 M1 A1 2 1 2−√3 ⎛1 ⎞ ⎜ ( √ 6 − √ 2 ) ⎟ = ( 6 + 2 − 2 √ 12 ) = 4 ⎝4 ⎠ 16 1 Hence sin15° = ( √ 6 − √ 2 ) 4 6665/01 GCE Mathematics January 2009 7 M1 cso A1 (4) Question Number 7 (a) Scheme f ′ ( x ) = 3e x + 3 x e x M1 A1 3e x + 3 x e x = 3e x (1 + x ) = 0 x = −1 f ( −1) = −3e −1 − 1 M1 A1 B1 x1 = 0.2596 x2 = 0.2571 x3 = 0.2578 B1 Choosing ( 0.257 55, 0.257 65 ) or an appropriate tighter interval. M1 (b) (c) Marks (5) B1 B1 (3) f ( 0.257 55 ) = −0.000 379 ... f ( 0.257 65 ) = 0.000 109 … Change of sign (and continuity) ⇒ root ∈ ( 0.257 55, 0.257 65 ) ( ⇒ x = 0.2576 , is correct to 4 decimal places) Note: x = 0.257 627 65 … is accurate 6665/01 GCE Mathematics January 2009 8 A1 cso A1 (3) [11] Question Number 8 (a) (b) Scheme R 2 = 32 + 42 R=5 4 tan α = 3 α = 53 ... ° Maximum value is 5 Marks M1 A1 M1 awrt 53° A1 ft their R B1 ft At the maximum, cos (θ − α ) = 1 or θ − α = 0 θ = α = 53 ... ° (c) (d) (4) M1 ft their α A1 ft (3) f ( t ) = 10 + 5cos (15t − α ) ° Minimum occurs when cos (15t − α ) ° = −1 M1 The minimum temperature is (10 − 5 ) ° = 5° A1 ft 15t − α = 180 t = 15.5 6665/01 GCE Mathematics January 2009 awrt 15.5 9 M1 M1 A1 (2) (3) [12]
© Copyright 2026 Paperzz