WATERSANITATIONFORPLANTPRODUCTION Essentiallyanysizenurserycaninstallawaterrecyclingandsanitationsystem.Thishandoutwillfocuson sanitation.However,wewillbrieflydiscussallfivesteps,sincebetterwaterqualityimproveseffectivenessof manysanitationtreatments. Therearebasicallyfivestepsthatareperformedwhenrecyclingandtreatingwater: 1)Collectionofrunoffwater 2)Removaloffloatingdebris 3)Removalofsuspendedparticulatematter(sand,silt,clay,organicmatter) 4)Sanitation–treatmentforpathogencontamination 5)Controloffertilizerlevels 1.Collectionanddetentionofuntreatedandtreatedwatersupplies a.Detentionbasinsize–Ifrunoffwaterisbeingcollected,thesizeofthecollectionbasinmustbeconsidered.In addition,abasinforsanitizedwatershouldbeconsidered,thesizeofwhichwillbedeterminedbythewater demandsofthenursery. b.Locationofcollectionbasin(s).Thetopographyofthenurseryandspaceavailablemustbetakeninto consideration.Also,iftherearedifferenttypesofproductionsites,i.e.propagation,plugproduction,field crops,orcontainercrops,theremaybemultiplewatersourcesandwaterrecyclingunits.Ifthenurseryis situatedonahill,thenthecollectionbasincanoftenbelocatedatthelowerelevationsothatgravitycanbe usedtocollectrunoff. 2.Removaloffloatingdebris Mostfloatingdebriscaneasilyberemovedviabaffleslocatedatornearthecollectionbasinorsedimentationpits. 3.Removalofsuspendedmaterial Severaltypesofmethodsmaybeimplementedtoremovesuspendedmatterfromrunoffwater.Thetechniqueto usewillbedeterminedbythedegreeofpurificationdesiredandthetypeofsuspendedresiduesinthewater. a.Sedimentationthroughgravity.Thisisthemostcommonandeconomicalprocessusedbynurseries.Most suspendedmaterialwillsettleoutinthesedimentationpondorcollectionbasinwithinafewhours.However, clay,beingaveryfinecolloidalmaterial,mayrequireseveraldaystosettleoutofthewater.Sedimentationpits willneedtobecleanedoutoccasionallytoremovethebuildupofparticulatematteronthebottom. b.Flocculation.Thisistheprocesswhereacombinationofferricsulfate,alum,orapolymerareaddedtothe watertoflocculatethesuspendedclayparticles,resultinginarapid(5minutes)sedimentationofflocculated clay. c.Sand/Charcoalfiltration.Thisprocessisdonetofilteroutanyremainingsuspendedmaterials. 4.Sanitation Runoffwaterandirrigationwaterderivedfromsurfacewatersusuallycontainplantpathogenssuchas Phytophthora,Pythium,etc.Severalmethodsofsanitationavailableonthemarket.Thetypeofmethodtousewill bedeterminedbythecleanlinessofthewater,thedegreeofsanitationdesired,thetypeorrecyclingsystembeing used,andlocalregulations. 5.Fertilizerinjection Fertilizerinjectionisusuallythefinalstepintheprocess,sincevarioussanitationmethodsmaydenaturefertilizer chelatessuspendedinthewater,orevenremovefertilizerfromthewater.Fertilizerblendingisusuallydonein conjunctionwithmixingoffreshwaterwithrecycledwaterinawaythattheelectricalconductivitydoesnot increaseintheproductionsystem. AmericanHort provides this on a “Not For Publication” basis. Publication of this information, in part or whole, is only permissible through written permission of the author(s). Page1of12 SANITATIONMETHODS Thelistofthemostcommonsanitationmethodsareasfollows: a.Chlorination b.Slowsandfiltration c.Rapidsandfiltration d.Membrane‐mediatedfiltration e.Heat f.Ultravioletlight g.Ozonation h.Copperionization Caution– 1. Testasanitationmethodbeforeinstallingonalargescale.Beforepurchasingandinstallingatreatment system,asmallpilotsystemshouldbetestedtomakesurethetreatmentmethodworksforyournursery. Newmethodsofwatersanitationareoccasionallydevelopedandmarketed,buttheymaynotbesuitablefor youroperation. 2. Routinelycheckefficacyofsanitationsystem.Onceasanitationsystemisinstalled,itshouldberoutinely inspectedandtestedtomakesurethateffectivesanitationprocessesareoccurring. 3. Keeprecords.Maintainalogofthesystemforeaseoftroubleshootingifproblemsdooccur. 4. RegulationsandSafety.Followallapplicableregulationsandsafetyprocedures. CHLORINATION Chlorinetreatmentisoneofthemostpopularmethodsutilizedforthecontrolofhumanandplantpathogens. Whenchlorineisaddedtothewatersupply,asidefromkillingpathogens,itmayalsobindtoorganicmatteror chemicalssuchammoniacalnitrogen.Ifchlorinebindstoorganicorchemicalcomponents,thechlorineis consideredunavailableforpathogencontrol.Thereforetheeffectiveor‘residual’chlorineconcentrationis reduced.Thisisthereasonthatchlorinationismoreeffectivewithwatersourcesthatarenotheavily contaminatedwithorganicmatter.Whenmostpathogensareexposedtohighenoughconcentrationsofchlorine forasufficientperiodoftime,theywillbekilled. Effectivenessoftreatmentisinfluencedbysixfactors: (1)Chlorineconcentration–Thegreatertheconcentration,themorequicklyitdisinfects.However,toomuch chlorinemayalsokillplants.Mostplantsaresafeifresidualchlorineconcentrationsare<100ppm(3 meq/L),andirrigationisappliedtotherootmedia.However,somecropsareverysensitivetochlorine. Also,someplantswillbesensitivetochlorineirrigationwaterappliedtoleavesatmuchlower concentrations,whichcancauseleafspots. (2)Durationofpathogenexposuretochlorine–Effectiveexposuretimesmayrangefrom1minuteto24hours. (3)Initialcleanlinessofwater–Dirtywatertiesupchlorine,reducingdisinfectantefficacy. (4)WaterpH–Chlorineismorestable,andthereforemoreeffective,whenirrigationwatershaveaneutralpH. (5)Pathogentype.Somepathogenswhichhavethecapabilityofformingdormantcystsorweedseednodules, whichcanallowthemtosurvivetreatmentwithchlorine (6)Watertemperature–Relativelyhigh(>20C)orlowtemps(<10C)maydecreasetheeffectivenessofchlorine. Advantages +Operationcosts–Sincechlorineinjectionrequireslimitedenergy. +Capitalcosts–Low.Mostcostsareforchlorine. +Exposuretime–Mostpathogensarekilledwithinsecondstoafewminutesofchlorineexposure. +Technicalcomponents–Fewtechnicalcomponentsifsodiumorcalciumhypochloriteisused. Page2of12 +Maintenance–Lowmaintenancerequirements.Ifchlorinegasisused,theinjectionsystemwillneedtobe inspectedperiodically. +Adaptability–Veryadaptabletosmallandverylargeproductionsystems. +Chemicalcontrol–Properlyperformedchlorinationshouldnotaffectthechemicalnatureofthewater. +Space–Asidefromchlorinestorage,noadditionalspaceisrequired. +Labor–Systemislow‐laborinput.Manualadditionsofliquidchlorinecanbedone.Somelaborisrequiredto routinelycheckequipmentifchlorinegasisused. Disadvantages –Chemicals–Athighconcentrations,residualchlorinecankillplants.Atlowerconcentrations,residualchlorine cancauseleafspotswhenwaterisappliedtoleaves.Someplantsaremoresensitivethanothers.Organic matterinwaterandmediausuallytiesupexcesschlorinebeforesignificantdamagecanoccuroncrops,except forinhydroponicsystemsorwithsensitiveplantspecies. –Safetyandregulation–Allformsofchlorinehavetherequirecautionwithworkersafety.Chlorinegasin particularrequiresadditionalsafetytrainingandprecautions,anditsuseandstoragemayberegulatedby governmentagenciesorcompaniessellingtheproduct.Otherformsofchlorinearehazardousintheir concentratedforms. –Herbicideandpesticideremoval–Chlorinedoesnotbreakdownorremovemostpesticidesorherbicides. –Floatingdebrisremoval–Largersuspendeddebrisshouldberemoved,sothatfreechlorineisnotinactivated byorganicmatter. –Dissolvedorganicmatter–Colorationduetodissolvedorganicmatterandacidsisnoteliminated. ChlorinationMethods.Thereareseveralformsofchlorineavailablefordisinfections,eachwithmethodsof incorporatingchlorineintoirrigationwater: (1)ChlorineGas–Thisisprobablythemostcommonandtheleastexpensivefornurseryandgreenhouse sanitation.However,chlorinegasisdangeroustoworkwithandtherearemanyregulationsthatdictateits storageanduse.Ifchlorinegasisconsidered,checkwithlocalagenciesforthenecessarypermits. (2)Sodiumhypochlorite–Commercialbleachwhichhas100,000–140,000mgchlorine/L.Thisisoftenusedin theindustry. (3)Calciumhypochlorite–Whichhas350,000mgchlorine/L.Thisisoccasionallyused,especiallyifsodium buildupisaconcernwiththeuseofsodiumhypochlorite.Italsocomesintabletform,whichmaybemore convenientandsafertohandle. (4)Onsitegeneration–Hypochlorousacidandchlorinedioxidecanbegeneratedonsitewithspecialized equipment.Whiletheinitialcapitalcostsmaybehigherthatothermethodsofchlorine,onsitegeneration hastheadvantageofeliminatingtheneedforstorageofchlorineproducts,thusreducingsafetyconcerns. Note:ChlorineasadisinfectantforwaterhasbeenbannedrecentlyinsomeEuropeancountriesduetothefact thatchlorinewillreactwithhumiccompoundstoformtrihalomethanes,whicharetoxictohumanhealth. SLOWSANDFILTRATION(SSF) Slowsandfiltration(SSF)isamethodoffilteringwaterthroughfinesand(0.15–0.35mm).Unlikecoarsesand (1.0–2.0mm),finersandstrapsomepathogensandalsoallowbeneficialmicroorganismstodeveloponthesand surface,whichkillpathogenicbacteria,fungiandcertainviruses.Efficiencyisbasedon1)sandparticlesizeand2) thebeneficialmicroorganismsthatdeveloponthesandsurface(‘Schmutzdecke’),whichactivelybreakdown pathogensviachemical,physical,andbiologicalmeans. Effectivenessoftreatment.Physically,pathogenscanbetrappedinthefinesandofthefilter.The biological/chemicaleffectisthroughthebeneficialorganismsthatdeveloponthesurfaceofthesand.Thisliving matrixhasbeenshowntoeliminatepathogenssuchasPhytophthora,Pythium,Cylindrocladium,Fusarium, Verticilliumdahliae,Thielaviopsis,andXanthomonas.Forexample,inonestudywithgreenhouse‐growntomatoes Page3of12 growinginrockwool,thecontrolofPhytophthoracinnamomiinrecycledwaterwas100%,whenfine(0.15–0.35 mm)andmedium(0.20–0.80)gradesands,ratherthancoarsesands(0.5–1.60mm)wereusedandtheflowrates werelow(10cm/hcomparedto30cm/h).Basedonthisandotherstudies,flowratesof100to300 liter/hour/meter2arerecommended.Theslowertheflowrates,themoreeffectivethesystemisintrappingand killingpathogens. Advantages +Operationcosts–Lowenergycostssincethesystemworksthroughgravity. +Installationcosts–Low.Financialoutputsareprimarilyforretentionbasins. +Chemicals–nochemicalsrequiredtokillpathogens(mostorganisms.) +Technicalcomponents–Notechnicalcomponentsorcontrolsystems. +Maintenance–Lowmaintenancerequirements. +Adaptability–Adaptabletowiderangeofproductionsystems. +Pathogenremoval–AnestablishedSSF,whereabiologicalactivefilmhasformedontopofthesand,will removeand/orbreakdownpathogens. +Chemicalcontrol–ProperlymaintainedSSFsdonotalterthepHoftheeffluentwater. Disadvantages –FiltrationTime–Longerfiltrationtime(0.05–0.55gpm/ft2)thanrapidsandfiltration(2.0–20gpm/ft2). –Labor–Occasionalcleaningmaintenancerequireslabor. –Space–Requiresapproximatelyfourtimesmoresurfaceareathanrapidsandfiltration. –Herbicideandpesticideremoval–Abilitytofilterorbreakdownherbicidesandpesticidesdoesnotoccur,but placementofalayerofgranular‐activatedcarbon(charcoal)canadsorbcertainorganicherbicidesand pesticides. –Floatingdebrisremoval–Largersuspendeddebrisshouldberemoved,sothatintervalsbetweencleaning filtersisextended. –Dissolvedorganicmatter–Colorationduetodissolvedorganicmatterandacidsisnotalwaysremovedthrough SSF. StructureandOperationalConsiderations Housing.Thesandfiltercanbehousedinacementtanks,plastic,orfiberglassdrumsorcontainers.Itis recommendedtohavetwosmallerunitsratherthanonelargeunit,sothatonesystemcanbeshutoffforcleaning, whilestillhavingtheotherunitoperating. Filtrationcomponents. *Inletstructure–Theinletforuntreatedrunoffwatershouldbeconstructedsothatthesandsurfaceisnot disturbedbyincomingwater. *Water–Aconstantdepthofapproximately1meterofsupernatantwatershouldbeontop,theweightofwhich allowspercolationthroughthesandbelow. –Stability.Thewaterlevelshouldnotfluctuate,sothatflowratesthroughthesandcolumndonotchange. Variableflowratesdecreasefilteringperformance. –Level.Thewaterlevelshouldnevergobelowthelevelofthesandfilter.Thewatercolumnprotectsthe beneficialbiologicallyactivefilm/filterthatdevelopsonthesandsurface.Hightemperaturesanddrying willkillorimpedetheactivityofthebiologicalfilter. –Flowrates.Theflowrateshouldbecontinuous.Biologicalfilterswilldiethroughoxygenstarvationin stagnantwater. *Organicfilm–Thisorganicfilm,called‘Schmutzdecke’,isalayerofbeneficialmicroorganismsandorganic matterthatnaturallydevelopontopofthesandfilterbed.Thisisthekeycomponentthatfiltersand/orkills manypathogens. *Sand–Alayerofsand80–150cm(32–60inches)deep. –Particlesize.Particlesizeof0.15to0.35mmisrecommended. –Uniformitycoefficient.Theuniformitycoefficient(UC)ofthesandshouldbelessthan5,butrecommended tobelessthan2.TheUC=d60/d10,whered60isthesievesize,inmm,thatallowspassagethroughthesieve Page4of12 of60%ofthesand(byweight),andd10isthesievesize,inmm,thatallowspassagethroughthesieveof 10%ofthesand(byweight). *Granularactivatedcharcoal–Optional.Thisadsorbsmostorganicchemicalssuchaspesticidesandherbicides. Thiscanbeplacedinbetweenthesandcolumn.Placednewthesurface,theactivatedcharcoalshouldbe replacedwhenthetoplayerofsandisreplaced. *Gravelbed–Alayerofgravelpreventssandfromblockingthetreatedwateroutlet.Inmoresophisticated systems,threedifferentgradedlayersofgravelareused:2–8mm,8–16mm,and16–32mm. *Drainpipe–Aperforateddrainagepipeisplacedinthebottomlayerofgravel.Additionalfilteringcanbe accomplishedwithatextilefabricplacedoveroraroundthedrainagepipe. *Flowmeterandcontrolvalve–Foroptimalperformance,flowratesshouldbeconsistentlymaintainedwiththe installationofacontrolvalveattheendofthedrainpipe. Operationalsettings *Filtrationrate–10–30cm/hr(2.5–7.5inches/hr).Lowflowrates(10cm/hr)arerecommendedwhencontrol ofpathogenssuchasFusariumarerequired,whilehigherflowratesof30cm/hr)aresuitableforthecontrolof pathogenssuchasPhytophthoraandPythium,whicharecommonlyfoundinnurseriesproducingcontainerized woodyornamentals. *Filtercapacity–100–300L/m2/hr(25–75gal/yd2/hr). Maintenance–Whenflowratesdiminish,theupper1–4cmofsandareremovedalongwiththebiological ‘schmutzdecke’layerthatdevelopedonthesurface.Thefrequencyofthismaintenanceisbasedonthecleanliness oftherunoffwater,watertemperature,andamountofwaterbeingfilteredinagiventimeperiod.Cleaning frequencyintervalsmayrangefromeveryseveralweekstoeveryseveralmonths. RAPIDSANDFILTRATION(RSF) Intheliterature,RapidSandFiltration(RSF)isusuallyreferredtoas‘SandFiltration’.However,forclarityofthis articleitwillbereferredtoasRapidSandFiltration(RSF)todifferentiateitfromSlowSandFiltration(SSF).RSF utilizescoarsesand(>1.0mm)andpossiblyothersubstratessuchasactivatedcharcoal.Unlikethefinersands utilizedinSSF,RSFdoesnottrapmanypathogens;therefore,additionalmeansofwatersanitationsuchas chlorination,maybeneeded. Advantages +Operationcosts–Lowenergycostssincethesystemworksthroughgravity. +Installationcosts–Low.Financialoutputsareprimarilyforretentionbasins. +Filtrationtime–Filtrationprocessesarerapid(15–25gpm/ft2)comparedtofiltrationratesforSSF(0.05–0.55 gpm/ft2). +Maintenance–Routinebackflushingrequiresminimalinput. +Chemicalcontrol–ProperlymaintainedRSFdonotalterthepHoftheeffluentwater. +Space–RequireslesssurfaceareathantraditionSSFsystems. Disadvantages –Chemicals–Otherchemicalssuchaschlorinemayberequiredtokillpathogens. –Labor–Occasionalcleaningmaintenancerequireslabor. –Herbicideandpesticideremoval–Doesnotfilterorbreakdownpesticideandherbicides,butplacementofa layerofgranular‐activatedcarbon(charcoal)canadsorbcertainorganicherbicidesandpesticides. –Floatingdebrisremoval–Largersuspendeddebrisshouldberemoved,sothatintervalsbetweencleaning filtersisextended. –Dissolvedorganicmatter–Colorationduetodissolvedorganicmatterandacidsisnotalwaysremoved. Page5of12 StructureandOperationalConsiderations Housing.Thesandfiltercanbehousedinacementtanks,orcompletelyenclosedsteeltanks.Itisrecommended tohavetwosmallerunitsratherthanonelargeunit,sothatonesystemcanbeshutoffforbackwashing,utilizing thewaterfromtheothersandfilter. Filtrationcomponents. *Inletstructure–Theinletforuntreatedrunoffwatershouldbeconstructedsothatthesandsurfaceisnot disturbedbyincomingwater. *Water–Aconstantdepthofapproximately1meterofsupernatantwatershouldbeontop,theweightofwhich allowspercolationthroughthesandbelow. –Stability.Thewaterlevelshouldnotfluctuate,sothatflowratesthroughthesandcolumndonotchange. Variableflowratesdecreasefilteringperformance. *Sand–Alayerofsand,thethicknessofwhichisvariable. –Particlesize.Particlesizeof1mmandlargerisused.Asthecoarsenessofthesandincreases,thespeedof filtrationwillincreasebutthequalityofthefilteredwaterwilldecrease. –Uniformitycoefficient.Theuniformitycoefficient(UC),asdescribedinthesectiononSSFshouldbeno morethan5,butnolessthan2.However,parametersofthisnaturehavenotbeendefinedforcoarse‐sand filtersusedinRSF. *Granularactivatedcharcoal–Optional.Thisadsorbsmostorganicchemicalssuchaspesticidesandherbicides. Thiscanbeplacedinbetweenthesandcolumn. *Gravelbed–Optional.Alayerofgravelpreventssandfromblockingthetreatedwateroutlet.Inmore sophisticatedsystems,threedifferentgradedlayersofgravelareused. *Drainpipe–Optional.Aperforateddrainagepipemaybeplacedinthebottomlayerofgravel.Additional filteringcanbeaccomplishedwithatextilefabricplacedoveroraroundthedrainagepipe. *Flowmeterandcontrolvalve–Foroptimalperformance,flowratesshouldbeconsistentlymaintainedwiththe installationofacontrolvalveattheendofthedrainpipe. Operationalsettings *Filtrationrate–15–25gpm/ft2(900–1,500gph/ft2).UnlikeSSF,lowerflowratesdonotassistinthecontrolof pathogenssincethesandissocoarse. *Filtercapacity–Filtercapacitywilldependonthetypeofsystembeinguse.However,thefiltrationrateof 900–1,500gph/ft2,makesthissystemsuitableforthelargescalenurseries(>100acresthatareusing overheadirrigation. Maintenance–Frequencyofmaintenanceisdictatedbythedirtinessofthewater.Dailybackwashingisnot uncommon.Thedebrisfromthebackwashmaybepumpedbackintothereservoir,pumpedintofields,ordrained andcomposted.However,oneshouldcheckwithlocalagenciesregardingregulationspertainingtothedisposalof backwashdebris. MEMBRANE‐MEDIATEDFILTRATION Therearebasicallyfourtypesofmembrane‐mediatedfiltrationprocesses:(1)ReverseOsmosis,(2)Nanofiltration, (3)Ultrafiltration,and(4)Microfiltration.Allofthesetechniquesinvolvepassingwaterthroughmembranes, whichfilteroutunwantedsubstances.Pressure(energy)isrequiredtopumpthewaterthroughthemembranes, withthesmaller‐poredmembranesrequiringmorepressuretoforcewaterthroughtheporescomparedtothe largerporedmembranes.Themajordifferencesbetweenthesesystemsarethesizesofthemembranepores.The advantagesanddisadvantagesofthesesystemsaredescribedinTable1andtherelativesizesandweightsof chemicalsandorganismsfoundinirrigationwateraredescribedinTable2. ReverseOsmosis(RO)–Alsocalledhyperfiltration,utilizesmembraneswiththesmallestporesofthefourfilter systems.Becauseofthesmallpores,ROremovesdissolvedsalts,chargeparticles,andcompoundsofmolecular Page6of12 weightgreaterthanabout200daltons(1dalton=1atomicmassunit[amu]),aswellasmostpathogens.Nurseries thatareforcedtouselowquality(salty)water,usuallymustutilizeROtoremovedissolvedsalts.Sincethis processremovesdissolvedsalts,includingfertilizer,donotutilizethismethodafterfertilizerhasbeenaddedto theirrigationsystem;otherwisethefertilizerwillberemovedfromthewater. Nanofiltration–UtilizesmembranesofalargerporesizethanthoseusedinRO;however,poresarestillsmall enoughtofilteroutlargersizedmolecules(≈200–1000daltons).Theseporesareusuallylargeenoughtoallow chelatednutrientstopassthrough,sincemostchelatessuchasiron‐EDTAhaveamolecularweightunder500 daltons.Also,somechargedparticlesmaynotpassthroughthesefilters. Ultrafiltration–Utilizesmembraneswithporesizesofapproximately1.0to20nm,whicharelargerthanporesof nanofiltrationsystems.Nodissolvedsalts(fertilizer)willberemovedwiththissystem.However,ultrafiltration willstillremovesuspendedclayandpathogenssuchasbacteria,nematodesandmostfungalsporesandsome viruses.However,somesmallerviruseswillnotberemoved.Therefore,itmaybenecessarytodoaddition sanitationtreatmentstothewater. Microfiltration–Utilizesmembraneswithporesizesofapproximately100to10,000nm(0.0001to0.0100mm). Whilethisfiltrationsystemrequirestheleastamountofenergytopasswaterthroughthemembranes,italsodoes notscreenoutmostpathogens;therefore,additionalsanitationtreatmentswillberequired.Thisprocessis sometimesusedbeforetheROprocess. Table1.Physicalcharacteristics,costofoperation,andadvantagesanddisadvantagesoffourtypesofmembrane‐ mediatedfiltrationsystems.OneDalton=1atomicmassunit(amu) Membrane type Reverse Osmosis Approximate Relative filtrationporesize cost 0.1nm High Nanofiltration 1.0nm Moderate Ultrafiltration 1to20nm Low Microfiltration 100to10,000nm Lowest Advantages Disadvantages * removeschargedions (incl.salts) *removescompounds≥250amu *almostessentiallyallpathogens * removessomechargedions. *removescompounds≥200–1000 amu *removesessentiallyallpathogens * removesbacteria *fungalspores *removesnematodes * requiresleastamountofenergy *removesdissolvedfertilizer *mayremovesomechelates *virusmaynotberemoved *manypathogenswillnotbe removed Table2.Relativesizesofwaterandfertilizermoleculesandsomecommonpathogenssometimesfoundin irrigationwater.Sizesofpathogensareranges,sincetherearemanytypesofviruses,bacterialandfungi.Please notethatthereisnocorrelationbetweenweightandsize,sincesomeorganismmaybedenser(heavier)thanother organismsorchemicalsofthesamesize. Organism/particle Watermolecule Iron‐EDTAchelate virus E.coli Fungalspores nematodes Weight(Daltons) z 18 526 7,000,000 Over3,000,000,000 NA NA Size(nm) 0.20nm NA 20to200nm 2000nm 2000to5,000nm 300,000nmandlarger zAdaltonisequalto1atomicmassunit(amu). Maintenance *Flushing–Allmembranesystemswillrequireperiodicflushingofmembranes,thefrequencyofwhichis dependentonthecleanlinessandthevolumeofwaterbeingtreatedduringagiventimeperiod. Page7of12 *ConcentrateDisposal–Theresiduescollectedwillneedtobedisposedof,themethodofwhichwilldependon regulationsinyourregion. *Membranereplacement–Membraneswillneedtobereplacedafteragivenperiodofusage. HEATDISINFECTION Usingheattosanitizematerialshasbeencommonlyusedtosterilizerootmediainthenurseryindustry.Heathas alsobeenusedtosterilizewater,especiallyfornurseriesinEuropeancountries.Sincenochemicalsareaddedin thisprocess,thereisnoconcernregardingchemicalstorageorchemicalresidues. Howdoesheattreatmentwork? Alllivingorganismshaveacertainheattolerance,theabilitytowithstandacertainmaximumtemperaturefora specifiedperiodoftime.Oncethistimeortemperatureisexceeded,theorganismdies.Virusesarekilledat temperaturesaslowas130F(55C)ifthattemperatureismaintainedforaperiodof1.5hours.Athigher temperatures,therequiredheatdurationfororganismdeathdecreases. Proceduresforheattreatment Metalheatexchangersaresituatedatonepointalongthewatertreatmentsystem.Thenumberandsizeof exchangerswilldependonthevolumeofwaterthatneedstobetreatedduringagiventimeperiod.Priorto passingovertheheatexchanges,thewaterpHmaybeacidifiedto4.5topreventcalciumaccumulationonthe exchangers.Ifthewaterisparticularlydirty,filtrationmayberecommendedpriortoheattreatment.After heating,thewatermustbecooledbeforeusingonplants. Advantages +Nochemicalresidues–Sincenochemicalsused. +Noadditionalchemicals–Properheatingprocedureswillrequirenochemicaltreatment. +Maintenance–Nomaintenance,unlesscalciumbuildsuponexchangers. +Pathogencontrol–Allpathogenswillbekilled. +Algaecontrol–Thesystemwillkillalgae. +Plantsafe–Ifcooledsufficientlyafterheattreatment,therearenopotentialtoxicitiesfromheating. Disadvantages –Difficultmonitoring–Watermustbecheckthroughlaboratoryprocedurestoensurethatthatallpathogensare killed. –Watercooling–Watermustbecooledpriortousage. –Lengthytreatmentperiod–Dependingonthemaximumtemperatureutilized,heatingdurationmaytakeupto 1.5hourstoachieve100%mortalityofpathogens. –Spaceallocation–Sincetheefficacyofheattreatmentisrelatedtoexposuretimeatacertaintemperature, tankswillbeneededtoholdtreatmentwaterandcoolingwater. –Highoperationcost–Forelectricalsource,naturalgas,oroil. –WaterpH–WaterwillrequireacidificationtoapHofapproximately4.0–4.5priortoheating(toprevent calciumbuilduponheatexchangers),andthenwillhavetobeneutralized(tocroprequirements)afterheat treatment. –Floatingdebrisremoval–Doesnotbreakdownorremovefloatingdebris. –Clayandsiltremoval–Claysandothersoilparticlesarenotremovedorbrokendown. –Chelatesdestroyed–Ifchelatesforironorothernutrientsareused,temperaturesupto150Fshouldnotbea problem.However,accidentaltemperaturesnearboiling(212F)willdenaturechelates. –Pesticidebreakdown–Pleasecheckpesticidelabelsfortemperaturestabilitiesinsolutions. Page8of12 ULTRAVIOLETLIGHT WhatisUltravioletlightandhowdoesitwork. Ultravioletlightfitsintothelightspectrumofwavelengthsfrom100‐400nanometers(nm).Thisisthesamelight wavelengththatisnotoriouslyknowntocauseskincancerinhumans.Visiblewavelengthsrangefrom390‐810 nm.TheUVlight,likechlorinetreatments,killsthepathogens(bacteria,fungi,andviruses)suspendedinwater. However,sinceitisalightsource,thewatermustbecleanofsuspendedclaysandorganicacids. Ultra‐violetlightsources. TherearethreetypesofUVsources:(1)lowpressuremercuryvaporlamps;(2)Xenonflashlamps;and(3)excimer lasers.Low‐pressuremercurylampsemitawavelengthof254nm.Theuseof‘high’pressuremercurylampsmay alsobeused,buttheyalsoemitwavelengthsof190nm,whichresultsintheformationofozonewhichcanalso sanitizethewater.Xenonflashlampsemitpulsesoflightthatisahigherpowersourceofemission.However, Xenonlampsalsoemitwavelengthsoveralargerspectrum,someofwhicharenotUV,makingXenonlampsless energyefficient.ThethirdsourceofUVlightistheexcimerlaser,whichemitspulsesoflight(248nm). *Advantages +Operationcosts–Costofoperationwillbelowifthewatersourceisclarified. +Installationcosts–Relativelylowerforcleanerwatersupplies. +Chemicals–Nochemicals,regardlessofthelightsourceutilized. +Technicalcomponents‐‐Fewtechnicalcomponentsorcontrolsystems. +Pathogenextermination–Killsbacteriaandfungiandviruses. +Chemicaleffects–NoeffectonwaterpH. +Space–Smallspacerequiredforinstallationoflightsourceandpowersupply. +Algaecontrol‐‐Thesystemwillkillalgaesuspendedinthewatersource. +Nontoxictoplants–UVtreatedwaterhasnotoxiceffectonplants. *Disadvantages ‐Chemicaleffects–lightsourceswillchemicallydenaturechelates. ‐Effectiveness–OrganicacidsorclaywillreduceefficacyoftheUVlighttreatment. ‐HerbicideandPesticideremoval‐‐Doesnotremoveotherchemicalsfromthewater.TheeffectsofUVlightmay breakdownlight‐sensitiveherbicidesandpesticides.Consultmanufacturerforspecificchemical questions. ‐Floatingdebrisremoval‐‐Doesnotbreakdownorremovefloatingdebris. ‐Dissolvedorganicmatter‐‐Colorationnotremoved. ‐Clayandsiltremoval‐‐Claysandothersoilparticlesarenotremoved. ‐Exposuretime–UVlightmayrequireanexposuretimeof30secondsorlonger,dependingontheclarityofthe water.Slowerflowrateswillberequired,butlowerflowrateswillalsoreducewaterturbulenceand efficiency. OZONATION Ozonekillspathogensthroughthechemicalprocessofoxidation.Ozoneisachemicallyunstablegasmoleculethat consistsofthreeoxygenatomslinkedtogether.Thismoleculewouldliketohavetwomoreelectronstobecome morestable,andthereforecan'take'electronsfromanothermolecule,oxidizingthatmolecule.Itis,therefore, consideredanoxidant.Infact,ozone’soxidizingabilityistwicethatofchlorine. Definitionsregardingoxidationandreductionprocesses *Oxidant=anychemicalthatiscapableoftakingelectronsawayfromanotherchemical.Thesetypesof chemicalreactionswereoriginallytermed'oxidation'becauseitwasbelievedthatoxygenwastheonly chemicalabletotakeelectronsfromanothermolecule.Chemicalsotherthanoxygenarenowknowntobe oxidants,buttheterm'oxidation'isstillused.Theabilityofaspecificchemicalenvironmenttocauseoxidation Page9of12 ismeasuredas'redoxpotential'(REDOX)or'oxidationreductionpotential'(ORP).ORPvaluesof700mv shouldprovidecompletedisinfection.OPRvalueslessthan300mvareusuallyconsideredsafeformost aquaticlife. *Freeradical=anyatomormoleculethathasatleastoneunpairedelectron,buthasanoverall0charge.(Itisa particlethatisneitherpositivelynornegativelycharged).Eventhoughafreeradicalhasachargeof0,ithas theabilitytotakeelectronsfromothermolecules.Ozoneitselfisnotafreeradical,butwhenozonebreaks down,oxygenfreeradicals(O·)andhydroxylfreeradicals(HO·)canbeproduced. *Antioxidant=anychemicalthatprotectsanorganismfrombeingoxidizedoranychemicalthatinhibitsthe abilityofoxidantstooxidize.Blueberriesaregoodforyoubecausetheyhavealotofantioxidants! Note:Intheworldofoxidationreactionsandfreeradicals,twogeneralassumptionsinchemistrymustbe understood:(1)mostcompoundsarestableatanelectricalchargeof0,and(2)electronsareonlystableaspairs. Howdoesozoneworkindisinfectingirrigationwater? Ozone,likechlorine,disinfectswaterbyoxidizingcellmembranesanddisruptingkeyphysiologicalreactionsin livingorganismsandoxidizingdifferenttypesofchemicalssuspendedordissolvedinthewater.Inaddition,as ozonebreaksdown,itproducesfreeradicals(Equation1).Thesefreeradicalsalsodisruptcellmembranesand physiologicalprocessesbyupsettingtheelectronbalanceofthecellwallstructuresandchemicalpathways. Equation1O3+H2OO2+2OH· Ozone+wateroxygen+2freeradicalhydroxyls Proceduresforozonationofirrigationwater (1)Providearelativelypureoxygensource.Theuseofregularairwillnotworksinceitisonly21%oxygen. (2)Electricallychargetheoxygen(O2),whichformsozone(O3).Thisisoftenperformedthroughcorona dischargeorplasmadischargeunits.Over80%oftheenergyiswastedintheformofheat,whichmustbe removedfromtheozonegenerator,sinceheatwilldecomposeozone. (3)Bubbletheozonethroughthewatersource.Aninjectionrateof1oz.per1,000gallonsofwaterwithaone hourexposuretimeistargetrate,butmayvaryaccordingtodifferentwatersources.Treatedwatershould bemaintainedinaclosedpressurizedsystemtopreventoff‐gassingoftheozone. (4)Ultravioletlightcanbeusedtoincreasetherateofbreakdownofozone,whichcausestherapidincreasein freeradicalhydroxyl(·OH)groups.Thisactsasabetterdisinfectant.Thistechniqueiscalled'Advanced PhotoOxidation'. (5)Deactivateexcessozonebyventingthroughanactivatedcharcoalfilter. Advantages +Powerfuldisinfectantwithnochemicalresidues–Ozonebreaksdowntooxygen.Sotherearenochemical residuesdirectlyfromozone. +Noadditionalchemicals–Properozonationwillrequirenootherchemicalcontrol. +Nochemicalstorage–Sinceozoneismadeon‐site +Easymonitoring–EfficacyofsystemeasilymonitoredbymeasuringtheORP(redoxpotential). +Maintenance–Lowmaintenanceunlessoxygensourceisnotclean,thenelectrodesmustbecleaned. +Pathogencontrol–Mostpathogenswillbekilled. +Algaecontrol–Thesystemwillkillalgae. +Pesticidebreakdown–Manypesticideswillbeoxidized. Disadvantages –Lengthytreatmentperiod–Dependingontheamountoforganicmatterinwater,ozoneexposuremayrequire upto20minutesto1hourtoachieve100%mortalityofpathogens. –Spaceallocation–Sincetheefficacyofozoneisrelatedtoitsconcentrationandexposuretime,collectiontanks fortreatedozonewaterwillbeneededsothatozonatedwatercanbestoredlongenoughforeffective disinfection. Page10of12 –Highoperationcost–Forelectricalsource. –IncreasedwaterpH–OzonewillincreasewaterpH,sowateracidificationmaybenecessary. –Effectivenessreducedwithdirtywater–Organicmatterwillreactwithozone,decreasingtheamountofozone availabletokillpathogens. –Floatingdebrisremoval–Doesnotbreakdownorremovefloatingdebris. –Pathogenresistance–Thechlamydosporesandmicrosclerotiaofsomepathogensaremoredifficulttokillwith ozone. –Clayandsiltremoval–Claysandothersoilparticlesarenotremovedorbrokendown. –Chelatesdestroyed–Ifchelatesforironorothernutrientsareused,ozonationmayreactwiththechelates, precipitatingthenutrientoutofsolution. –Elementprecipitation–Ozonemayoxidizeandprecipitateoutofsolutionsomeessentialnutrientssuchas iron,evenifchelatesarenotbeingused. –Planttoxicity–Ozoneistoxictoplants,soozonelevelsshouldbebelowtoxicitylevelsbeforeapplyingtowater. COPPERIONIZATION Theuseofcopperandsilverionizationarepopularmethodsoftreatingdrinkingwaterforpathogens.Historically, thesemethodsofwatertreatmentgainedpopularityaftertheoutbreakofLequionellapneumophila,thebacteria responsibleforLegionnaires’disease,whichoccurredatthe58thstateconventionoftheAmericanLegionin Philadelphia,Pennsylvaniain1976.Theconcentrationnecessaryforpathogencontrolisapproximately100ppb fordrinkingwaterand20ppbtotreatpoolwater. Howdoescopperionizationwork? Ionizationworksviainsertingcopper‐coatedceramicelectrodesintoonepointofthewatersystem.Anelectric currentpassesthroughthiselectrode,releasingcopperions(Cu2+).Thesepositively‐chargedcopperionsare attractedtonegatively‐chargedparticles,suchasorganicmatter,siltandclayparticlesandtothemembranesof bacteria,algaeandmold.Ifcopperbindstotheorganicmatter,siltorclay,thenthecopperbecomeschemically inactive.However,ifthecopperbindstothemembranesoftheorganisms,theorganismsdie. Copperinagriculture Copperisaheavymetalthathasbeentraditionallyusedinagricultureasabactericideoncropsthrough applicationsofcoppersulfate,whichhasbeenusedaloneorwithotherpesticides.Thoughitistoxictoplantsat highconcentrations,copperisanessentialplantnutrient,andisrequiredatrelativelylowconcentrations(0.002– 0.003%)(20–30ppmplantdryweight).Inmostnutrientformulations,especiallymicronutrientblends,copperis mixedintomediaatarateofapproximately0.01–0.40g/pot.Forhydroponically‐growncrops,copperissupplied atconcentrationsofapproximately0.05ppm.Becauseofsuchrelativelylowrequirements,anyadditionalcopper thatisaddedtoaplantsystem,eitherasapesticideorfertilizer,shouldbemonitoredsothatcoppertoxicityis avoided. Copperionizationinnurseryproduction Copperionizationhasbeenusedsuccessfullyinagriculturalprocessessuchas:(1)coolantpadwatertreatmentto keepfiltersfreeofalgaeand(2)postharvestwashingoffruitsandvegetables.Informationregardingcopper ionizationusageinirrigationwaterrecyclingsystemsislimited.Inmostcopperionizationsystems, recommendationsaretomaintainactivecopperionconcentrationsat0.50to1.5ppm.Copperelectrodesare insertedintothewatersystem—preferablyafterthewaterhasbeenfilteredofdebrisandsuspendedclayand organicmatter.Thenumberofcopperelectrodesrequiredwilldependontheamountofwaterthatneedstobe treated,thecleanlinessofthewater(presenceoforganicmatterandsuspendedclay)andthesizeoftheelectrodes. Someofthemodelscurrentlyavailablewilltreatabout200gallonsofwaterperminute.Additionalelectrodeswill berequiredforhigherflowrates. Page11of12 Advantages +Operationcosts–Moderate.Electrodereplacement(upto$10,000)andthecostofelectricity. +Installationcosts–Low.Financialoutputsareprimarilyforinstallationofcoppercoatedelectrodesand electricalsource. +Chemicals–Somecompaniesclaimthatnoadditionalchemicalsarerequiredforpathogencontrol.However, othersindicatethatoxidizerssuchaschlorinewillstillbeneeded,butatlowerconcentrations. +Technicalcomponents–Fewtechnicalcomponentsorcontrolsystems. +Maintenance–Low(occasionalreplacementofcopperelectrodes.) +Pathogenremoval–Pathogenssuchasbacteriaandfungiwillbekilled. +Chemicaleffects–CopperionizationwillnotalterthepHoftheeffluentwater. +Space–Requiresnoadditionallandfortheconstructionoflargetreatmentfacilities. +Algaecontrol–Thesystemwillkillalgaeonwaterandoncoolantpads. Disadvantages –Coppertoxicityofwater–Someornamentalcropsaresensitivetothecopperconcentrations(0.5–1.5ppm) thatarerecommendedtoeffectivelytreatwater.Nodataisavailableoncopperaccumulationwithlong‐term usageofcopperionizationinaclosedrecyclingirrigationsystem.Coppertoxicitywasdocumentedfor chrysanthemum(Dendranthema),miniaturerose(Rosa),andgeranium(Pelargonium)at0.32ppm,0.15and 0.50ppm,respectively. –Effectivenessreducedwithdirtywater–Sincecopperionsarepositivelycharged,theywillbeattractedtoand bindtonegativelychargedparticlesoforganicmatterandclay,makingthecopperionsinactive.Therefore, greaterinjection(releaserates)ofcopperionsfromelectrodeswillbeneededtokeepthecopperionsat concentrationseffectivetokillpathogens. –HerbicideandPesticideremoval–Doesnotremoveotherchemicalsfromthewater. –Floatingdebrisremoval–Doesnotbreakdownorremovefloatingdebris. –Dissolvedorganicmatter–Colorationduetodissolvedorganicmatterandacidsisnotremovedfromthewater. –Clayandsiltremoval–Claysandothersoilparticlesarenoteffectivelyremovedwithcopperionization. –Copperaccumulationinclosedrecyclingsystems–Copperwillbindtoorganicmatterandclaythatsettlesout inreservoirs.Therefore,ifthissludgeisrecycledbackintothemedia,copperconcentrationsinthesludge couldbetoxictosomecrops.Testsshouldbeperformedtocheckcopperconcentrationsofthesludgeand mediabeforeuseoncrops. Coppertoxicitysymptoms Leaves:Reddishbrownlesions,whichcoalesceinseverecases. Roots:Stuntinganddeathofroottipsandanincreasedproductionoflateralroots.Underseveretoxicitytheentire rootsystemwillsenesce. Page12of12
© Copyright 2026 Paperzz