f (x) = 2 cos(x) sec(x) ( ⇡3 , f ( ⇡3 )). f 0 (x) f (x) = e ex p 5x+3 ln(x) (ex )0 = ex (ln(x))0 = 1/x ✓ x x=4 f f (x) = 1 x sin(x) cos(x) x C(x) = 200 + 500x C̄ = 800 ln(x) C(x) . x C̄min . y0 y = x( p x2 ) x x2 + 2xp + 8p2 = 2300 2 sin2 (3x) x!0 1 cos(3x) lim F F (x) = x 1 f (x) 2 f f (x) = cos2 (x) + p 3 sin(x) ( ⇡/2, ⇡/2). f (4n+2) (x) f (x) = sin(x) n = 0, 1, 2, . . . g 0 ( 2) g f (x) = 3x3 f ( 1) = f (x) = e2x , f 1 x 2 c f f (x) = x 6 sin(ln(x)) + 3 cos(ln(x)) f (x) = 3 x 3 ln x 3 9 3 [4, 7]. f g f, g g(x) = g 0 (x) = 1 f (x) 1 f 0 (g(x)) f 00 (g(x))(g 0 (x))2 = f 0 (g(x))g 00 (x) lim x!0 sin(4x) 6|x| r 1 + x2 1 x2 f (x) = 2 + 4(3 x)ex f (x) = ln 2
© Copyright 2026 Paperzz