Optically p y Stimulated Luminescence (OSL) dosimetry in radiotherapy Joanna E.Cygler yg 1 and Eduardo Yukihara2 The Ottawa Hospital Regional Cancer Centre, Ottawa, Canada 2Department of Physics, Oklahoma State University, Stillwater, Oklahoma 1 The Ottawa L’Hopital Hospital d d’Ottawa Ottawa Regional Cancer Centre Disclosure The authors have received research support from Landauer Inc. Inc Outline • • • • Principles of OSL dosimetry OSL readers and stimulation methods Optically Simulated Luminescence Dosimeters (OSLDs) Dosimetric characteristics of Al2O3:C OSLDs for radiotherapy applications – – – – – – Environmental corrections Linearity of dose response Dose-rate dependence Energy dependence Directional dependence Fading g • Advantages and disadvantages • Clinical dosimetry applications • Summary OSL dosimetry - Introduction • OSL known for more than 50 years • Widely used in luminescence dating • Highly sensitive Al2O3:C introduced in 90’s • Developed for personal dosimetry at Oklahoma State University OSL dosimetry - Introduction • Used in the LuxelTM and InLightTM dosimetry systems (Landauer Inc.) • >1.5 million users (25% of world market) • Used in space by NASA • Starting g to be adopted p in radiotherapy and diagnostic radiology LuxelTM (Landauer Inc.) Introduction to luminescence dosimetry EXPOSURE Radiation \ Radiation sensor (insulating crystal) Introduction to luminescence d i t dosimetry STORAGE Introduction to luminescence d i t dosimetry READOUT Light emission (e.g., blue, UV) Thermal stimulation ti l ti (heating) Introduction to luminescence d i t dosimetry READOUT Light stimulation (e.g., green) Light emission (e.g., blue, UV) Introduction to luminescence d i t dosimetry READOUT Optically Stimulated Luminescence detectors (OSLD ) (OSLDs): Al2O3:C (TLD500) Thermoluminescence detectors (TLDs): LiF:Mg,Ti, CaF2 Light stimulation (e.g., green) Thermal stimulation ti l ti (heating) Light emission (e.g., blue, UV) OSL readout system Light source PMT Detection filters Stimulation filters OSL Dosimeter (OSLD) Methods of OSL stimulation • CW-OSL ((continuous wave OSL)) • POSL (pulsed ( ls d OSL) • LM-OSL (linearly modulated OSL) CWCW -OSL readout method CW W-OSL (a arbitratry u units) 400 300 constant 200 100 0 0 100 200 300 Time (s) 400 500 600 Stimulatio on intensity POSL readout method 0 50 100 150 200 250 300 350 400 450 500 550 0 50 100 150 200 250 300 350 400 450 500 550 Gate S State on off Time (s) Commercial OSL dosimetry systems (L d (Landauer I Inc.)) InLightTM • One manufacturer MicroStarTM • Two types of readers • CW- stimulation readout • Detectors D t t from f L Landauer d Inc. only www.Landauer.com, www.osldosimetry.com OSL dosimeters Dot nanoDot Characteristics of Al2O3:C OSLDs for radiotherapy applications Ideal detector •Small size •Good reproducibility •None None or well defined environmental corrections •Dose linearity •Dose D rate t independence i d d •Energy independence •No directional dependence -isotropic response to radiation OSLD reproducibility 40 35 % number 30 25 20 15 10 5 0 0.94 0.96 0.98 1.00 1.02 1.04 Relative sensitivity y Courtesy of C. Yahnke 1.06 1.08 Environmental corrections Temperature dependence • During irradiation • During readout OSL temperature dependence during irradiation Jursinic, Med. Phys. 34(12), 4594-4604, 2007 Temperature effect during OSL stimulation ti l ti ((readout) d t) Andersen et al, Radiation Measurements, 43, 948 – 9532008 OSLD dose linearity, 6 MV 1200 Rdg g (arbitrary y units) 1000 800 600 400 200 0 0 100 200 300 400 Dose / cGy Viamonte et al Med. Phys. 35(4), 1261-6, 2008 500 OSL dose supralinearity at hi h doses higher d Schembri V and Heijmen BJM. Med. Phys. 2007; 34:2113-2118. DoseDose -rate dependence 6 MV Viamonte et al Med. Phys. 35(4), 1261-6, 2008 Absorbed dose energy dependence f(Q) for Al2O3:C and LiF TLD Energy 60Co gamma rays Mean Energy (keV) Q F Al 2O3 Co Q F LiF Co Ratio Al 2 O3 /LiF 1250 1.000 1.000 1.00 50 kV X-rays 29 3.219 ± 0.3% 1.463 2.20 100 kV X-rays 60 2.861 ± 0.3% 1.376 2.08 150 kV X-rays 105 1.607 ± 0.3% 1.245 1.29 250 kV X-rays 170 1.449 ± 0.3% 1.192 1.19 6 MV X X-rays 2020 0 990 ± 0.3% 0.990 0 3% 0 987 0.987 1.00 1 00 10 MV X-rays 3050 0.983 ± 0.3% 0.976 1.00 15 MV X-rays 4180 0.980 ± 0.3% 0.976 1.00 25 MV X-rays 6600 0.973 ± 0.3% 0.976 1.00 Mobit et al. Radiat Prot Dosim 119, 497-499, 2006). Absorbed dose sensitivity y relative to 6 MV photons as a function of beam quality for Al2O3:C OSLD 60Co: Viamonte et al 2008, Reft, 2009 Jursinic, Med. Phys. 34(12), 4594-4604, 2007 Yukihara et al, Phys Med Biol 53, R351-R379, 2008 OSL LET dependence Yukihara et al. 2006 OSL LET dependence in carbon beam beam Reft, Med. Phys. 36(5), 1690-9, 2009 Directional dependence Jursinic, Med. Phys. 34(12), 4594-4604, 2007 Fading of OSL signal 1.2 Q(t))/Q(1min) 1.0 0 8 0.8 0.6 0.4 0.2 0 0 2 4 6 Time / min Reft, Med. Phys. 36(5), 1690-9, 2009 8 10 12 Fading of signal with time S ( t ) A B e kt Jursinic, Med. Phys. 34(12), 4594-4604, 2007 OSL dosimetry Advantages Ad t vs. disadvantages di d t Advantages • • • • • • • Disadvantages High sensitivity • Sensitivity to light High precision • Non-tissue equivalent – energy Size d dependence d Convenience • Only 1 material currently Readout flexibility available (only 1 provider) Fast non-destructive Fast, non destructive readout Narrow stimulating beams may could allow dose mapping • No significant fading - dose storage • No need for annealing • Although it can be bleached and re-used if needed* Clinical dosimetry applications • In phantom − PDD − ROF −IMRT QA • In vivo −external beam (entrance, exit dose) −brachytherapy 60Co relative output factor Viamonte et al Med. Phys. 35(4), 1261-6, 2008 In vivo dosimetry y J Danzer* et al AAPM 2007 The small Al2O3:C C crystals M Aznar, M. Aznar Phys. Phys Med. Med Biol. Biol 49, 49 1655 1655–69 69, 2004 courtesy of C. Andersen, Risø Riso OSLOSL-optical fibre dosimetry system t OSL c e τt dt OSL c e t dt Both RL and OSL signals are seen on the th computer t screen M. Aznar, Phys. Med. Biol. 49, 1655–69, 2004 courtesy t off C C. Andersen, A d Ri Risø In - vivo measurements for a b brachytherapy h h patient • Cervix recurrence just above the vaginal wall • Treated in 15 needles – OSL crystals in 2 needles • 30 Gy delivered in 50 pulses over 50 hours courtesy of C. Andersen, Risø Stability of the Risø system • OSL measured pulse dose between each pulse • RL signal g integrated g to give g pulse p dose • TPS with +/- 1 mm uncertainty courtesy of C. Andersen, Risø Remote dosimetry application • Recently evaluated by Radiological Physics Center (RPC) for remote dosimetry y application pp • OSL dosimeters were irradiated in an acrylic minip phantom • Results indicated that the precision of OSL dosimeters is comparable to that provided by TLDs used for remote dosimetry Summary • OSLD have linear dose response and good reproducibility (screened) for standard clinical doses • Minimal energy dependence in megavoltage photon beams • Suitable bl for f accurate d dosimetric measurements – individual calibration factors • Can C b be used d in i variety i t of f clinical li i l applications li ti – surface dose detectors – entrance t and d exit it dose d measurements t – brachytherapy – dose mapping • Are suitable for remote dosimetry Acknowledgements • Claus Andersen, Risø National Laboratory • Cliff Yahnke, Landauer Inc. Thank you Energy dependence Al2O3:C water Zeff=10.2 Zeff=7.2 LM-OSL arbitrary un nits LMLM -OSL readout method Time (s)
© Copyright 2026 Paperzz