CONTENTS Crop water relationships and climate 1 Introduction ..................................................................................................................................................................................................................................................... 4.1 2 Climate .................................................................................................................................................................................................................................................................. 4.1 2.1 Rainfall ................................................................................................................................................................................................................................................. 4.1 2.1.1 Rainfall parameters .............................................................................................................................................................................................. 4.1 2.1.2 Effective rainfall ...................................................................................................................................................................................................... 4.1 2.2 Evaporation .................................................................................................................................................................................................................................... 4.3 2.2.1 Evaporation measurement ........................................................................................................................................................................... 4.3 2.2.1.1 Erection .............................................................................................................................................................................................................. 4.3 2.2.1.2 Calibrating the scale .......................................................................................................................................................................... 4.3 2.2.1.3 Reading the scale ................................................................................................................................................................................... 4.4 2.2.1.4 Maintenance ................................................................................................................................................................................................. 4.6 2.3 Radiation ............................................................................................................................................................................................................................................ 4.6 2.4 Sunshine duration ................................................................................................................................................................................................................... 4.6 2.5 Temperature ................................................................................................................................................................................................................................... 4.7 2.6 Water vapour ................................................................................................................................................................................................................................ 4.7 2.7 Wind ...................................................................................................................................................................................................................................................... 4.11 2.8 Automatic weather stations .................................................................................................................................................................................... 4.11 3 Crops .................................................................................................................................................................................................................................................................... 3.1 The role played by water in plants ................................................................................................................................................................ 3.2 Plant roots ..................................................................................................................................................................................................................................... 3.2.1 Root systems ............................................................................................................................................................................................................ 3.2.2 Factors influencing root development ..................................................................................................................................... 3.3 Groundwater withdrawal patterns.................................................................................................................................................................... 4.12 4.12 4.12 4.13 4.14 4.15 4 Evapotranspiration ............................................................................................................................................................................................................................. 4.15 4.1 General ............................................................................................................................................................................................................................................. 4.15 4.2 Daily and seasonal evapotranspiration .................................................................................................................................................... 4.16 4.3 Peak periods of evapotranspiration ................................................................................................................................................................ 4.16 4.4 Factors influencing evapotranspiration ..................................................................................................................................................... 4.16 4.5 Effect of groundwater levels on crop growth and harvests .............................................................................................. 4.17 4.6 Critical periods ....................................................................................................................................................................................................................... 4.17 4.7 Determination of evapotranspiration .......................................................................................................................................................... 4.18 4.7.1 A-pan evaporation and crop factors ........................................................................................................................................... 4.18 4.7.2 Relationship between short grass (ETo) and A-pan evaporation (Eo) ................................................ 4.19 4.7.3 Direct application of Penman Monteith method (short grass reference) ..................................... 4.21 5 References ..................................................................................................................................................................................................................................................... 4.42 All rights reserved Copyright ¤ 2003 ARC-Institute for Agricultural Engineering (ARC-ILI) ISBN 1-919849-24-6 Crop water relationships and climate 4.1 1 Introduction The first phase in project planning and design is the determination of the crop water requirement. A plant is actually an organic pump that withdraws water from the soil reservoir. It is, however, more than that as it reacts to groundwater tension or a water surplus and is usually able to adapt to its water environment within reason. Plants absorb and release moisture to the atmosphere through the transpiration process, which takes place through stomata where water is exposed to the atmosphere and is lost as water vapour. Only a negligible amount (less than 10%) of the water absorbed by a plant is retained in the plant fibres as almost everything is lost during the plant cooling process. Transpiration rate is high when evaporation is normally high, that is during dry, warm, windy conditions and low during cool, moist conditions. Therefore the water requirement of a plant is determined by the amount of water which is absorbed and lost through transpiration. However, the actual water requirement is not only determined by the reigning weather conditions, but also by the type, age, health and feeding status of the plant as well as the opening and closing of the pores as they react to light and water shortages within the plant. The size and quality of the harvest are highly influenced by the magnitude and duration of water tension within the plant. Furthermore it is known that most plants experience definite growth stages during which water shortages have a higher influence on crop size than other times. On the other hand, crop size does not simply increase with an increase in water applied to a plant, as nourishment and care also play a role. 2 Climate Climate is influenced by the following: 2.1 Rainfall Rainfall is the depth of rain measured in a correctly set up rain gauge for a specific period. 2.1.1 Rainfall parameters The rainfall for an area is often characterised by the average of the total annual rainfall measured over a long period. Usually the results of at least 30 years are used to determine an acceptable average. As extreme values strongly influence the average, a tendency to express rainfall for an area in terms of a median value has arisen. The median is the middle value obtained when yearly values are arranged in ascending order. The average annual rainfall is used in the planning of dam capacities and also in irrigation water balance calculations. The shorter the period for which averages are determined, the less reliable the results are. 2.1.2 Effective rainfall All rain that falls is not available to plant roots because of interception, evaporation, run-off and seepage. Rainfall figures are often used as if all rainfall reaches the soil surface. This is not the case as dense foliage needs more water to wet the leaf cover to such an extent that water will move between the leaves to wet the soil. The part of rainfall which remains on branches and leaves of plants is known as intercepted water, which is considered only as water being lost by evaporation and not water which may eventually trickle down the stalk. 4.2 Irrigation Design Manual A relatively large quantity of water is therefore subtracted from the measured rainfall as evaporation losses and depends mainly on the following: x Density of foliage: Trees and shrubs intercept more water for the same area than strawberries or onions. x Leaf area: Leafy crops intercept more water than stalky crops, e.g. potatoes as opposed to wheat. x Rainfall duration: A short shower will have a higher percentage of interception than a long shower. x Rainfall intensity: High intensity showers have a lower percentage of interception and vice versa, for the same time. Statistics obtained from South African weather experts indicate that interception by plants makes up no more than 10 - 15% of annual rainfall. With forests, however, the loss may be as high as 25% of total annual rainfall. There are varied opinions on the hydrological significance of interception, but not in a plant physiological sense. Regarding plant physiologically, intercepted rain is not a loss, as the water on the leaves help to cool the plant, thereby saving an equal amount of groundwater. In view hereof, interception losses should be seen as an alternative and not as additional to transpiration. The monthly effective rainfall is determined as follows, using long-term average rainfall figures: Re = where Re Raver R aver - 20 2 (4.1) = effective rainfall [mm/month] = long-term average monthly rainfall [mm/month] Daily effective rainfall may be determined, amongst others, by the following equation: R e = R - 1,5 Eo where Re R Eo (4.2) = effective rainfall [mm/day] = rainfall [mm/day] = A-pan evaporation [mm/day] Effective rainfall is zero if a negative value is obtained. SAPWAT (Crosby, 1996) may also be consulted for determination of effective rainfall. Crop water relationships and climate 4.3 2.2 Evaporation Water evaporation rate depends on humidity, temperature, radiation, air movement and attitude above sea level. 2.2.1 Evaporation measurement Evaporation is measured by exposing free water to the atmosphere and then determining the loss through evaporation. Therefore evaporation is not really a weather parameter but may be seen as a combination of different influences. The South African Weather Bureau and the Department of Agriculture make use of the American Class A evaporation pan to measure evaporation. The pan is circular, 1,22 m in diameter and 250 mm deep. The water surface height is read off from a scale located diagonally in the water. As with a rain gauge the evaporation pan must be placed away from obstructions and in such a way that sun and wind can move around it freely. Only direct rain must fall in the pan but it must also not be screened off. The pan must never be in the shadow. The Symonds pan is not recommended for measuring evaporation for irrigation. 2.2.1.1 Erection The evaporation pan rests on a framework approximately 200 mm high, which is placed level on the ground. The openings between the lower beams of the framework may be filled up but those between the upper beams must be kept clean to promote ventilation and ease leak detection. Grass and weeds around the pan must be kept short. Figure 4.1: Erection of class A evaporation pan 2.2.1.2 Calibrating the scale A stilling basin which is connected to the main pan by a hole, is provided around the scale. When water is added to the pan, it takes about a minute for the water in the stilling basin to reach the same level, therefore wait a few minutes before taking a reading. 4.4 Irrigation Design Manual Figure 4.2: The class A evaporation pan scale The scale is calibrated as follows: Once the pan has been positioned on the framework, it is filled with water until the metal pointer at H (see Figure 4.2) is just submerged. The right hand side of the scale is then adjusted with the nuts at B until the water surface at G gives a scale reading of 138, and locked in position. Then the pan is filled until the scale reading is approximately 50, this reading being recorded in column 4 (see Table 4.1). This process is repeated whenever the pan is cleaned or moved. Evaporation pan readings may be recorded on a form (see Table 4.1) which makes provision for the date (column 1), rainfall (column 2), water level before regulation (column 3), water level after regulation (column 4) and evaporation (column 5). 2.2.1.3 Reading the scale As with all weather readings, the evaporation is measured at 08:00. The position where the scale cuts the water surface is wetted by finger before reading the scale. The reading at the contact point is then taken. Note that the white lines on the scale indicate EVEN values (e.g. 70, 72, 74, 76, 78) while the blue lines indicate UNEVEN values (e.g. 71, 73, 75, 77, 79). The value to be recorded from the enlarged part of Figure 4.2 is 73. Regularly make sure that the connecting hole between the pan and stilling basis is not blocked. The evaporation for a specific day is determined by subtracting the reading for that day from the value in column 4 from the previous day, dividing the difference by two and adding it to the rainfall for the day. The unit is millimetres. Evaporation pan readings are divided by two to allow for the enlarged scale used in the class A evaporation pan. NB: When the water level is higher than 50 mm due to rain, water is removed until approximately the 50 level and the value recorded in column 4. When the water level is lower than 100 due to evaporation, water is added up to approximately 50 and the value recorded in column 4. Crop water relationships and climate 4.5 Example 4.1: (See Table 4.1) Reading procedure for class A evaporation pan x Day 1: Start with a reading of 50 and record it in column 4. x Day 2: Read the water level, record the value, e.g. 72 in column 3 as well as column 4, determine the A-pan evaporation for day 1 as indicated and record it in column 5. x Day 3: The same as for day 2. x Day 4: Read the water level, record the value, e.g. 112 in column 3 and regulate to ± 50 by adding water. Water level after regulating: In this case it is 48 which is recorded in column 4, the A-pan evaporation is determined as indicated and recorded in column 5. x Day 5: The same as for day 2 and 3. x Day 6: Record the rainfall for day 5 in column 2. Record the water level reading in column 3 and 4, determine the evaporation as indicated and record in column 5. Table 4.1: An example of recording A-pan evaporation reading 1 2 3 4 5 Date Rainfall Water level before regulating [mm] Water level after regulating [mm] Evaporation [mm] 1 Calculations [mm] 50 2 72 72 11 72 - 50 = 11 2 3 97 97 12,5 97 - 72 = 12,5 2 4 112 48* 7,5 112 - 97 = 7,5 2 72 72 12 72 - 48 = 12 2 62 62 7 62 - 72 + 12 = 7 2 5 6 12 * Water added to A-pan 4.6 Irrigation Design Manual 2.2.1.4 Maintenance It is imperative that the pan regularly be cleaned once per month. The following procedure is followed: x Record the scale reading. x Invert the pan and remove all accretions, silt, duckweed, etc. Ensure that the connecting hole between the pan and stilling basin is open. Rinse the whole pan thoroughly. x Inspect the pan, especially the base and seams for possible leakages and rust spots. When rusting becomes severe, the A-pan must be painted with aluminium bituminous paint. x Always clean the openings between the upper beams to ensure good ventilation x Re-erect the pan level as close as possible to the previous position on the frame. Fill with water and calibrate the scale as indicted in 2.2.1.2. x Fill the pan to the starting reading prior to cleaning. 2.3 Radiation All daily, seasonal and cyclic climate changes can be traced back to the energy that reaches the earth in the form of electromagnetic radiation from the sun. Radiation intensity is expressed in terms of watt per square metre [W/m2]. The intensity relates to the rate at which energy is received. At times it may be necessary to indicate a quantity of energy. The unit of energy is the joule [J]. An intensity of 1 W/m2 is equal to 1 J/s per m2. The intensity of full summer sunlight is in the order of 1 000 W/m2. It is often referred to as light intensity when radiation relates to photosynthesis. Light is the radiation to which the human eye is sensitive. Plants, however, do not react to radiation in the same way as the human eye. It is therefore incorrect to compare light, as observed by eye, to photosynthesis. The unit of light intensity is the lux [lu] (1 W/m2 | 680 lx). Radiation measurement is usually done by measuring the temperature relationship which occurs when the sun shines on a blackened surface. Radiometers must be handled with great care. 2.4 Sunshine duration In reality sunshine duration (when the sun shines) should be considered as the period between which the sun just begins to appear above the horizon until it just disappears below the horizon. Weather experts consider sunshine duration as the period of "full" sunshine. According to this definition full sunshine occurs when the sun burns a visible mark on special paper through a glass sphere of specific dimensions. (There are also other so-called sunshine meters, so full sunshine will depend on which one is used.) Electronic sunshine meters are available but not widely used due to high costs. In South Africa, the sunshine duration is measured with the Campbell-Stokes sunshine meter. Crop water relationships and climate 4.7 2.5 Temperature The measuring unit for temperature is Kelvin [K]. In South Africa air temperature is indicated in degrees Celsius [ºC]. It is, however, acceptable to use ºC as the unit for temperature (K = ºC + 273). In measuring temperature, special care must be taken to eliminate the effect of sun radiation or radiation from the earth's surface. Temperature is measured with suitable thermometers in a Stevenson shield. The Stevenson shield is used to house measuring instruments and is designed to shield as many of the sun's rays and reflections from the earth's surface as possible from the instruments, while allowing unrestricted air-flow over them. The purpose is to measure air temperature without the influence of radiation. The Stevenson shield is erected on a metal frame so that the instruments therein are 1,2 m above the ground. The shield must open southwards so that the sun does not shine on the instruments when readings are taken. A Stevenson shield usually contains a maximum, minimum and standard or dry bulb thermometer. The maximum and minimum thermometers are mostly only read twice per day and indicate the highest and lowest temperatures respectively, since the previous readings. The standard thermometer indicates the temperature at the time of reading. At times a continuous record of the temperatures is required, which can be measured with a thermograph. Thermograph readings must always be corrected by comparing them to the maximum and minimum thermometers. Both extremely high and low temperatures can have an adverse effect on a crop. Cooling as well as frost combating can be executed by application of water during critical periods and it will have an influence on the total water requirement of the crop. It may also be necessary to install an additional irrigation system to meet these requirements. Provision for the additional required water must therefore be made during planning, as well as for as the costs it may implicate. See Chapter 11: Planning. 2.6 Water vapour The relationship between the different gases comprising the atmosphere is exceptionally constant, the only exception being water vapour which can change from one minute to the next. The atmosphere is saturated when the maximum water vapour is present. When saturated air is cooled, excess water vapour will condense in the form of clouds, mist, dew or frost. Alternatively the air will become unsaturated with an increase in temperature. Such air can become very "dry" without losing any water vapour, depending on the temperature increase. Relative humidity is usually measured with a hygrograph placed in a Stevenson sun shield, the measuring element being human hair which stretches as it becomes moist. Water vapour can also be measured with two thermometers, the bulb of one being covered with a moist cloth. The dryer it becomes, the quicker water evaporates from the moist cloth, cooling the bulb down (like a canvas water bag). The relative moisture can be obtained from tables (see Table 4.2) by making use of the temperature difference between the dry and wet bulb thermometers. The cloth on the wet bulb thermometer should ideally be moistened with distilled water. A measure of the actual amount of moisture present in the air is the dew point. The dew point is the temperature at which air will be saturated with water vapour provided that it is cooled down at a constant pressure. Dew point is not dependant on temperature like relative humidity and it is also measured in K or ºC. Irrigation Design Manual 95 95 94 94 94 94 94 94 94 94 94 94 94 94 94 93 93 93 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 1 87 87 87 87 87 88 88 88 88 88 88 89 89 89 89 89 89 89 2 80 81 81 81 82 82 82 82 83 83 83 83 83 83 84 84 84 84 3 74 75 75 76 76 76 77 77 77 78 78 78 78 79 79 79 79 80 4 69 69 70 70 70 71 71 72 72 72 73 73 73 74 74 74 75 75 5 63 64 64 65 65 66 66 67 67 68 68 68 69 69 70 70 70 71 6 58 58 59 60 60 61 61 62 62 63 63 64 64 65 65 66 66 66 7 52 53 54 55 55 56 57 57 58 58 59 59 60 60 61 61 62 62 8 47 48 49 50 51 51 52 53 53 54 55 55 56 56 57 57 58 58 9 Difference between wet and dry bulb thermometer reading [ºC] 50 Dry bowl [ºC] 43 44 44 45 46 47 48 48 49 50 51 51 52 52 53 53 54 54 10 38 39 40 41 42 43 44 44 45 46 47 47 48 48 49 50 50 51 11 34 35 36 37 38 39 40 40 41 42 43 43 44 45 45 46 47 47 12 29 30 32 33 34 35 36 37 37 38 39 40 41 41 42 43 43 44 13 25 26 28 29 30 31 32 33 34 35 36 36 37 38 39 39 40 41 14 21 23 24 25 26 27 28 29 30 31 32 33 34 35 35 36 37 37 15 17 19 20 21 23 24 25 26 27 28 29 30 31 31 32 33 34 34 16 Table 4.2: Percentage relative humidity, only applicable for heights from the sea level to 450 m above sea level and wind speeds < 1,5 m/s. 4.8 14 15 17 18 19 20 22 23 24 25 26 27 28 28 29 30 31 32 17 10 12 13 15 16 17 18 20 21 22 23 24 25 26 26 27 28 29 18 93 93 93 93 93 92 92 92 92 92 92 91 91 91 91 90 90 90 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 1 80 81 81 82 82 83 83 83 84 84 84 85 85 85 86 86 86 86 2 71 71 72 73 74 74 75 76 76 77 77 78 78 79 79 79 80 80 3 61 62 64 65 65 66 67 68 69 69 70 71 71 72 72 73 73 74 4 52 54 55 56 58 59 60 61 62 62 63 64 65 65 66 67 67 68 5 44 46 47 49 50 51 52 54 55 56 57 58 59 59 60 61 62 62 6 36 37 39 41 43 44 46 47 48 49 50 51 52 53 54 55 56 57 7 27 30 32 34 35 37 39 40 42 43 44 46 47 48 49 50 51 52 8 20 22 24 27 29 30 32 34 36 37 38 40 41 42 43 44 45 46 9 Difference between wet and dry bulb thermometer reading [ºC] 32 Dry bowl [ºC] Table 4.2: (continued) 12 15 17 20 22 24 26 28 30 31 33 34 36 37 38 39 41 42 10 5 8 10 13 15 18 20 22 24 26 27 29 30 32 33 34 36 37 11 - 1 4 7 9 12 14 16 18 21 22 24 25 27 28 30 31 32 12 - - - - 3 6 8 11 13 15 17 19 21 22 24 25 27 28 13 - - - - - - 3 5 8 10 12 14 16 18 19 21 22 24 14 - - - - - - - - 3 5 7 9 11 13 15 17 18 20 15 - - - - - - - - - - 3 5 7 9 11 13 14 16 16 - - - - - - - - - - - - 3 5 7 9 10 12 17 Crop-water relationships and climate - - - - - - - - - - - - - 1 3 5 7 8 18 4.9 90 89 89 88 88 88 87 87 86 86 85 84 84 83 13 12 11 10 9 8 7 6 5 4 3 2 1 1 14 Dry bowl [ºC] - 68 69 70 72 73 74 75 76 77 77 78 79 79 2 - - 54 56 58 60 61 63 64 65 66 68 69 70 3 Irrigation design manual Table 4.2: (continued) 4.10 - - - 42 45 47 49 51 53 54 56 57 59 60 4 - - - - 32 35 37 40 42 44 46 48 49 51 5 - - - - - 23 26 29 31 34 36 38 40 42 6 - - - - - - 14 18 21 24 26 29 31 33 7 - - - - - - - 7 11 14 17 20 23 25 8 - - - - - - - - 1 5 8 11 14 17 9 - - 3 6 9 10 - - - 2 11 - - - - 12 - - - - 13 - - - - 14 Difference between wet and dry bulb thermometer reading [ºC] - - - - 15 - - - - 16 - - - - 17 - - - - 18 Crop water relationships and climate 4.11 2.7 Wind Wind originates due to differences in air pressure. Air moves from an area of high pressure to one of low pressure. These pressure differences may occur locally or could originate in pressure systems spanning thousands of kilometres. Wind measurement consists of two components, namely direction and speed. At most weather stations only speed is measured by means of an anemometer, which has three circular cups mounted on a vertical axis. The speed with which the cups rotate is proportional to the wind speed. The axis about which the cups rotate is connected to a mechanical counter which is read at a fixed time (always 08:00). The "distance" that the wind has moved during a period of time is measured by determining the difference between two consecutive readings. The "distance" usually describes the wind run and may be interpreted as the average wind speed for the particular period. For most purposes the average wind speed, over a long period as measured with ordinary anemometers, is of little value. The average speed and direction is usually required for a shorter period, like an hour. In many cases, instant peak values are also important. There are various types of wind meters using different techniques to continually measure and register wind speed and velocity. Wind meters are erected so that air movement at a height of 2 m or 10 m is measured. It is important to keep the area of exposure free from obstructions as wind measurement is strongly influenced by local conditions. The recognised unit for wind speed is metres per second [m/s], although it is often indicated in km/hour (1 m/s = 3,6 km/hour). Seafarers use knots, one knot being equal to 0,514 m/s. With certain instruments air movement is measured over long periods of 6 hours or 24 hours, normally referred to as wind run. Wind run is measured in kilometres and is equivalent to the distance travelled by an air particle during the particular period at the average wind speed. Wind direction is given as the compass direction that the wind is blowing from. 2.8 Automatic weather stations The Weather Bureau is in the process of automising its weather station network, the advantage being that the information will be more readily available than with manual stations. For example it will be possible to obtain information from certain stations on the day of measurement and it will also simplify the obtaining of hourly readings. Unfortunately evaporation cannot be measured by commercially available automatic weather stations, however, various equations, e.g. Penman-Monteith, exist whereby evapotranspiration can be determined accurately by making use of radiation, moistness, temperature and wind movement. 4.12 Irrigation Design Manual 3 Crops Crop water requirements depend on the relationship between water absorption and transpiration. 3.1 The role played by water in plants More than half of all living fibre, as well as more than 90% of all plant fibre, consists of water, therefore water is by far the largest plant component. Water influences the metabolism, physiological activity and growth of plants, also functioning as a solvent in plants in which gases, minerals and organic solutions are transported from one part to another. Water plays an important role within the plant, with photosynthesis and many hydrological processes as well as maintaining turgor which is imperative to cell enlargement and produces plant growth. More than 90% of the water absorbed by a plant's roots is released in the atmosphere as water vapour. The process is known as transpiration and is defined as the loss in water to the atmosphere from a growing plant, which is regulated by physical and physiological processes in the plant. Why do plants then lose such large quantities of water through transpiration? The answer lies in the composition of a leaf. The main function of a leaf is photosynthesis, which manufactures food for the entire plant, the required energy being obtained from sunlight. The plant must therefore expose the largest possible transpiration area to sunlight. Sunlight is, however, only one of the requirements of photosynthesis, as the chlorophyll also requires carbon dioxide. Carbon dioxide is normally readily available in the air surrounding the plant, but before it can reach the plant cells by diffusion, it must be dissolved. Carbon dioxide in the air must come into contact with a moist cell surface because the cell walls cannot readily absorb it in a gaseous form. Evaporation occurs wherever water is exposed to air. The evaporation of water from the leaf surface has a two-fold function, namely the absorption of carbon dioxide as described above and plant cooling. Plants have developed a number of special methods to limit evaporation which in turn limits carbon dioxide absorption. Photosynthesis and loss of water through transpiration are therefore firmly bound in the life of green plants. 3.2 Plant roots Plant activity is normally proportional to soil water availability and therefore also the rate of water absorption by the root system. While small quantities of water may be absorbed by external plant components under certain conditions, the root system is usually the organ of absorption for virtually all the water required by upper plant sections. Therefore the root system depth of each crop determines the soil water reservoir size or the total available water in normal and deep soils. The water withdrawal pattern is then determined by the lateral distribution and specific properties of the roots. Absorption of water and food substances takes place through the root hairs. Older root sections suberise and transmit less water and dissolve food substances. Plant roots make contact with water in two ways: x x capillary movement of water to the roots and/or root growth from dry to moist areas. Osmosis is the process by which root hairs absorb water - it is the movement of water through a selectively permeable membrane from a higher water potential to a lower water potential. When roots absorb water, the soil water content reduces at that point, causing an increase in the soil water tension, Crop water relationships and climate 4.13 binding the remaining water. The soil water tension will be at its highest when the soil moisture content has dropped close to wilting point, in other words, the attracting or suction force of the water in the soil is at its highest. However, rapid root growth during active growth periods maintains sufficient water contact even though the soil water profile is decreasing as a whole and no capillary addition occurs. In any case, root growth is more rapid than capillary water movement during active root growth. It may eventually happen that the roots are unable to supply water to the plant fast enough -this is called temporary wilting and if it continues too long, the plant may wilt permanently. 3.2.1 Root systems The nature of the root system which a plant can develop under optimal soil and climatic conditions is predetermined by its genetic code (see Table 4.3 and Figure 4.3). Therefore each plant species has its own characteristic, natural root growth pattern. Some plants have a tap root which tends to penetrate rapidly, deep into the subsurface layers while others have slowly growing roots which develop a shallow, primary system with many lateral, secondary and tertiary roots. The natural lateral root distribution of trees is normally as wide as the drip area of the tree. Table 4.3: Natural root depth Crop Alfalfa Almonds Apricots Avocados Bananas Beans Brassicas Citrus Clover Grapes Green peas Macadamia Mangos Mealies Olives Onions (transplanted) Onions (seed) Pecan nuts Pineapple Potatoes Tomatoes Wheat Natural root depth [mm] 900+ 900+ 500+ 900 500 600 500 900+ 300 900 450 900 600+ 600+ 900 450 600 900 450 350 600 900+ 4.14 Irrigation Design Manual Figure 4.3: Natural root depth and distribution 3.2.2 Factors influencing root development Root penetration is seriously deterred by dense subsurface ground layers and the root depth in many South African soils is limited to the upper 250 mm of the profile by a plough sole. Roots cannot penetrate a hard layer unless cracks occur and find it difficult or impossible to grow from one to another soil layer where the texture differs drastically. A factor limiting root growth may also be a shortage of plant food substances or an underground chemical imbalance. Root growth is limited by a high water profile. Figure 4.4: Root development due to physical and chemical soil limitations Most roots will occur in the wetted area when soil is only partially irrigated, e.g. with drip irrigation. Root depths will also be influenced by irrigation practices, e.g. with a too short cycle length and standing time, most plants will tend to develop a shallow root system to adapt to the shallow wetted depth. Crop water relationships and climate 4.15 3.3 Groundwater withdrawal patterns Figure 4.5: Typical plant water withdrawal pattern With most plants the active roots are mainly concentrated in the upper part of the root zone (see Figure 4.5). Therefore the most rapid water withdrawal occurs in the area of highest root concentration under favourable temperature and aerating conditions. The reduction of groundwater also takes place more rapidly in the upper soil layer as groundwater evaporates directly from it. With the reduction in available water in that part of the root zone, the soil water tension binding the remaining water increases. Plants then withdraw water at a deeper level where it is bound with less energy. 4 Evapotranspiration The combined loss of water from a given surface during a specific time by evaporation from the ground surface and through plant transpiration is known as evapotranspiration. 4.1 General Only a small part of the water which a plant absorbs from the soil is taken up by the plant cells. By far the largest part of the water is released through the stoma to the atmosphere by transpiration. A plant's water consumption varies during the season and with a crop increase, the water requirement also increases to a point. Plant water absorption is also higher with a high groundwater level. ET = E + T where ET = evapotranspiration [mm/period] E = evaporation from ground surface [mm/period] T = transpiration of growing plant [mm/period] (4.3) 4.16 Irrigation Design Manual The estimated evapotranspiration values are very important regarding the following: x x x x x x Determination of amount of irrigation water required for optimal plant growth Planning of irrigation schemes Design of drainage systems Development planning of river systems Determination of dam capacities General catchment area management 4.2 Daily and seasonal evapotranspiration Evapotranspiration is at its highest during the middle of the day and lowest during the night. Seasonal evapotranspiration is used to determine the amount of water required for irrigation during one season. Figure 4.6: Typical seasonal evapotranspiration 4.3 Peak periods of evapotranspiration The peak period is the plant's growth stage with the highest average evapotranspiration. An irrigation system must be designed to supply sufficient water during the plants' peak period of evapotranspiration. This peak consumption period usually occurs when plants start to produce their crops. 4.4 Factors influencing evapotranspiration The rate of groundwater withdrawal by the evapotranspiration process is mainly determined by: x x climate groundwater storage Crop water relationships and climate x x x x x 4.17 irrigation practice soil texture tilling practice type of natural plant or crop being cultivated salinity of soil or irrigation water Of the above, climate is the factor which has the highest influence on evapotranspiration x Radiation energy: Absorption of radiation energy by ground and leaf surfaces and the rate of evapotranspiration are related. x Temperature: The ground surface and leaves are usually warmer than the air during bright sunshine, therefore vapour movement must take place from an area with a higher temperature and vapour pressure to an area with lower temperature and vapour pressure. x Wind: Air movement is an important contributing factor as it continually replaces air layers which would have been nearly saturated by water vapour if they could remain upright, with unsaturated air. The use of mulch also has an effect on evapotranspiration. The mulch may consist of organic material (such as hay) or a permanent green crop (such as clover). In the case of dry material, the mulch can aid in limiting evaporation from the soil and thereby reduce the evapotranspiration. The irrigation requirement is therefore reduced. There is however a danger that the organic material may prevent the crop from absorbing the chemicals applied to the surface. In the case of green mulch, the evapotranspiration will increase as a result of the water utilised by the mulch crop. Provision must therefore be made for the additional irrigation water required during system planning (see Chapter 11: Planning). 4.5 Effect of groundwater levels on crop growth and harvests Most plants absorb water easily at a high minimum water level (low soil water depletion level) provided that sufficient air is present in the soil. As the groundwater level reduces, the plant must use more energy to withdraw water from the soil. Crop damage may occur if the groundwater level drops too low and plants may wilt temporarily or even permanently if the condition continues too long. 4.6 Critical periods Most plants have a critical period during the growth season when a high groundwater level must be maintained for optimal production. If enough water is available for germination as well as the development of a sufficient growth density with yearly crops, the critical period will generally occur during the latter part of the growing season. This is during the period of flowering to fruit ripening. 4.18 Irrigation Design Manual Table 4.4: The critical periods of crops Crop Almonds Avocados Bananas Beans Brassicas Citrus Clover Deciduous fruit Grapes Macadamia Mangos Mealies Olives Onions Peas, green Pecan nuts Pineapple Potatoes Tomatoes Wheat Critical period Blossoming, shoot growth, cell division, fruit growth Flowering, cell division, fruit growth Flowering, cell division, fruit growth Blossoming until fruit growth Remaining 50 days before harvesting Blossoming, cell division, fruit growth Continually Blossoming, shoot growth, cell division, fruit growth Budding, flowering, cell division, fruit growth Flowering, cell division, fruit growth Flowering, cell division, fruit growth Plum forming until beard forming Blossoming, cell division, fruit growth Bulb formation until harvesting Blossoming until fruit growth Flowering, cell division, fruit growth Vegetative growth stage Blossoming until harvesting Flowering until harvesting Ear appearance until ear completion 4.7 Determination of crop-evapotranspiration Determination of crop-evapotranspiration is the first step in project planning and the design of irrigation systems. Various methods are used worldwide to determine crop-evapotranspiration, but only those used in South Africa will be treated in this section. 4.7.1 A-pan evaporation with crop factors This method assumes that, for a given period, crop-evapotranspiration (ETc) is directly proportional to the A-pan evaporation (Eo). The standard method currently in use in South Africa is based on the average monthly A-pan evaporation and crop factors. The place and vicinity where the A-pan is erected is important in obtaining a true reflection of the evaporation. Different crops have different crop factors which vary during the growth season and should be adapted to suit the area as shown in Tables 4.5 to 4.10. Figure 4.7: Direct determination of crop-evapotranspiration by using A-pan evaporation and crop factors Crop water relationships and climate 4.19 The equation to determine crop-evapotranspiration (ETc) directly from A-pan evaporation is as follows: ETc = f E o where ETc f Eo (4.4) = crop-evapotranspiration [mm/period] = crop factor for direct use with A-pan evaporation [fraction] = A-pan evaporation [mm/period] The crop factor may be determined by the following equation: f = kp kc where (4.5) f = crop factor for direct use with A-pan evaporation [fraction] kp = pan coefficient [fraction] kc = crop coefficient [fraction] The crop factors in Tables 4.5 to 4.10 for use with A-pan evaporation was recently adapted to make provision for different climatic zones. 4.7.2 Penman-Monteith method (short grass reference) The alternative method for the calculation of crop-evapotranspiration depends on the use of climate data from weather stations and the amended Penman-Monteith equation. Cropevapotranspiration can be calculated by means of the following equation: ETc = k c ETo (4.6) where ETc = crop-evapotranspiration [mm/period] kc = crop coefficient [fraction] ETo = reference evapotranspiration [mm/period] Figure 4.8: The calculation of crop-evapotranspiration with the aid of a weather station The computer program, SAPWAT, uses crop coefficients for the estimation of cropevapotranspiration for all crops irrigated in South Africa. A list of crop coefficients, as well as reference evapotranspiration for weather stations over the entire country (Tables 4.11 to 4.13) is shown. The climatic data forms part of SAPWAT. The program is available on the Internet on http://sapwat.org.za (please note; no www address) and can be used to examine different irrigation approaches. Training is however essential. The reference evapotranspiration is shown in SAPWAT as average daily values per month for the different weather stations. Figure 4.9 is an example of the screen on SAPWAT where the reference evapotranspiration is shown for a specific weather station (Kakamas). The bottom curve on the graph is the Penman-Monteith reference evapotranspiration (ETo) and the top curve is the A-pan evaporation values at the same station. 4.20 Irrigation Design Manual Figure 4.9: SAPWAT screen with reference evapotranspiration and A-pan evaporation values The crop coefficients can also be determined with the aid of SAPWAT. There are certain parameters from which a selection can be made to determine the coefficients for a specific crop, such as the variety, climatic region and planting date. The crop coefficients shown in Figure 4.10 are based on a weekly irrigation cycle and a 100% wetted area. Figure 4.10: Crop coefficients screen in SAPWAT Crop water relationships and climate 4.21 4.7.3 Relationship between short grass reference evapotranspiration (ETo) and Apan evaporation (Eo) Evapotranspiration for a short grass veld is determined with the aid of lysimeters and the values are brought into relation statistically with meteorological data. The Penman-Monteith equation has proved that it gives accurate evapotranspiration values for short grass under all climatic conditions and the values can then be used for all crops in the surrounding area. Evaporation from a free water level in an A-evaporation pan does not have the same characteristics as transpiration from a living plant. It has an inherent fault when the A-pan evaporation is used for determining crop-evapotranspiration, except if the crop factor (f) is adapted accordingly for the local conditions. Figure 4.11: The relation between ETo and Eo By using reference evapotranspiration from a short grass, it takes seasonal phases of the crop as well as climatic conditions into consideration. With this self-compensating reference values as basis, the crop coefficient (kc) can be used more universally. The crop coefficient also differs from crop to crop and also for the growing season. For any specific weather station, the ETo values are normally lower than the Eo values. In the case of hot, arid regions, the ETo values may even be half of Eo values in January. The ETo:Eo relation is therefore 0,5. The relation varies during the season as well as over the region and a standard conversion factor cannot be used per season. The ETo:Eo relation is numerically equal to the pan coefficient (kp) so that the following equation can be used to convert A-pan evaporation to reference evapotranspiration (ETo): ETo = k p Eo where ETo kp Eo (4.6) = reference evapotranspiration [mm/period] = pan coefficient [fraction] = A-pan evaporation [mm/period] Values are available for ETo (calculated from weather data with the Penman-Monteith equation) as well as Eo and it is now possible to adapt crop factors (f) for use with A-pan evaporation for different climatic zones. It is suggested that planners and designers begin to use the Penman-Monteith method and SAPWAT under the guidance of professionals. Alternatively, A-pan evaporation and amended crop factors (f) as used in Tables 4.5 and 4.10, can be used until they are acquainted with the new procedures for determining crop-evapotranspiration. 4.22 Irrigation Design Manual Example 4.2: Calculate the expected crop-evapotranspiration for table grapes in Kakamas in December with both the Apan and Penman-Monteith methods. Assume that an A-pan evaporation of 12mm/day has been measured. A-pan method: From equation 4.4: ETc = f Eo Eo = 12 u 31 = 372 mm/month f = 0,4 (from Table 4.5) ?ETc = 0,4 u 372 = 148 mm/month Penman-Monteith method: From equation 4.6: ETc = kcETo kc = 0,67 (from Table 4.11) ETo = 9,4 u 31 (from Table 4.13) = 291.4 mm/month ?ETc = 0,67 u 291,4 = 195,2 mm/month The difference between the answers of the two methods must be further investigated to interpret it. The use of local rather than general crop factors and coefficients will probably result in a smaller difference between answers. 0,65 0,75 0,65 0,65 0,8 0,7 0,65 Litchi Macadamia Pecan nuts Bananas Tea Mangos 0,7 Coffee Frost areas Alfalfa 0,7 0,65 Kikuyu Pastures - Avocado Rye grass Pastures 0,50 Intensive 0,6 Early 0,25 0,6 Medium Sub-intensive 0,5 Late Deciduous fruit Wine grapes 0,5 Table grapes Jan 0,55 Description Citrus Perennial crops 0,65 0,7 0,8 0,65 0,65 0,75 0,65 0,65 0,7 0,7 0,50 0,50 0,25 0,60 0,60 0,6 0,6 0,60 Feb 0,65 0,7 0,8 0,65 0,65 0,75 0,65 0,65 0,70 0,7 0,7 0,30 0,20 0,20 0,40 0,50 0,6 0,65 Mar 0,65 0,7 0,8 0,65 0,65 0,75 0,65 0,65 0,50 0,7 0,7 0,20 0,20 0,20 0,20 0,20 0,4 0,70 Apr 0,65 0,7 0,8 0,35 0,65 0,75 0,65 0,65 0,40 - 0,60 0,20 0,20 0,20 0,20 0,20 0,2 0,65 May 0,65 0,7 0,8 0,35 0,65 0,75 0,65 0,65 0,30 - 0,50 0,20 0,20 0,20 0,20 0,20 0,2 0,60 Jun 0,65 0,7 0,8 0,35 0,65 0,75 0,65 0,65 0,30 - 0,50 0,20 0,20 0,20 0,20 0,20 0,12 0,45 Jul 0,65 0,7 0,8 0,65 0,65 0,75 0,65 0,65 0,40 - 1,00 0,20 0,20 0,25 0,20 0,20 0,12 0,45 Aug Months of the year Table 4.5: Estimated design crop factors for perennial crops in the summer rainfall areas – June 1996 0,65 0,7 0,8 0,65 0,65 0,75 0,65 0,65 0,50 0,30 0,7 0,2 0,20 0,30 0,25 0,20 0,12 0,45 Sept 0,65 0,7 0,8 0,65 0,65 0,75 0,65 0,65 0,70 0,60 0,7 0,3 0,25 0,30 0,30 0,25 0,2 0,45 Oct 0,65 0,7 0,8 0,65 0,65 0,75 0,65 0,65 0,80 0,70 0,7 0,4 0,25 0,40 0,30 0,30 0,3 0,45 Nov Crop water relationship and climate 0,65 0,7 0,8 0,65 0,65 0,75 0,65 0,65 0,7 0,7 - 0,50 0,25 0,50 0,40 0,40 0,4 0,5 Dec 4.23 Irrigation Design Manual 1 Oct 15 Dec 15 May 15 Jun 1 Dec 1 Jan 1 Mar 1 Jun 1 Nov 15 Oct 1 Oct Mealies Mealies Wheat Wheat Soya beans Potatoes Potatoes Potatoes Potatoes Tobacco Ground-nuts 1 Nov Area C 15 Apr 30 Apr 30 Apr 31 Jan 15 Feb 15 Mar 15 Oct 15 Jul 30 Apr 15 Apr 30 Nov 15 Sept 15 Apr 15 Feb End of growth season 0,7 0,8 0,85 0,5 0,7 0,7 0,3 0,6 0,75 0,75 Jan 0,8 0,8 0,6 0,4 0,8 0,5 0,7 0,75 0,6 Feb Limpopo, Eastern Transvaal, Lowveld and Northern Natal Loskop, Rust-De Winter and Barberton 1 Nov Area B Area A: Area B: 1 Oct Area A Cotton Planting date Agronomic crops 0,6 0,6 0,5 0,8 0,3 0,8 0,7 0,6 Mar 0,5 0,4 0,3 0,5 0,8 0,5 0,5 Apr 0,7 0,3 May 0,3 0,8 0,3 0,6 Jun 0,5 0,8 0,5 0,7 Jul 0,7 0,8 0,8 Aug Months of the year Table 4.6 : Estimated design crop factors for agronomic crops in the summer rainfall areas – June 1996 4.24 0,8 0,8 0,5 Sept 0,3 0,3 0,3 0,8 0,7 0,4 Oct 0,2 0,3 0,6 0,7 0,6 0,3 0,4 0,6 Nov 0,35 0,5 0,85 0,6 0,75 0,5 0,3 0,4 0,75 Dec Vaalharts, Karoo, Eastern Cape and Transvaal middle veld 0,3 0,4 0,3 0,3 0,3 0,3 Brassicas Cucurbits Peas Onions Tomatoes 0-20 Beans Vegetable crops 0,4 0,4 0,3 0,4 0,6 0,4 20-40 0,7 0,7 0,4 0,6 0,7 0,6 40-60 Portion of growing season [%] Table 4.7: Estimated design crop factors for vegetables in the summer rainfall areas – June 1996 Area C: 0,7 0,7 0,7 0,7 0,7 0,6 60-80 0,7 0,7 0,6 0,7 0,7 0,7 80-100 Crop water relationship and climate 4.25 Irrigation Design Manual 0,55 0,55 0,4 Late Medium Early Deciduous fruit Kikuyu Frost areas Prune Aug Pasture Alfalfa Guavas 0,4 0,55 0,55 0,55 0,5 Early Mixed 0,5 Late Intensive Pasture 0,25 Sub-intensive Wine grapes 0,5 Table grapes Jan 0,4 Description Citrus Perennial crops 0,5 0,55 0,55 0,55 0,5 0,5 0,25 0,35 0,4 0,55 0,6 0,4 Feb 0,4 0,55 0,55 0,55 0,3 0,5 0,2 0,35 0,35 0,55 0,6 0,5 Mar 0,4 0,55 0,55 0,55 0,2 0,3 0,2 0,3 0,3 0,35 0,3 0,5 Apr 0,3 0,55 0,55 0,55 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,4 May 0,3 0,55 0,55 0,55 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,4 Jun 0,3 0,55 0,55 0,55 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,3 Jul Months of the year Table 4.8 Estimated design crop factors for perennial crops in the winter rainfall area – June 1990 4.26 0,2 0,55 0,55 0,55 0,2 0,2 0,2 0,25 0,25 0,25 0,2 0,3 Aug 0,2 0,55 0,55 0,55 0,2 0,2 0,2 0,3 0,3 0,3 0,2 0,4 Sept 0,2 0,55 0,55 0,55 0,3 0,3 0,2 0,4 0,4 0,4 0,3 0,4 Oct 0,3 0,55 0,55 0,55 0,4 0,4 0,25 0,45 0,45 0,45 0,4 0,4 Nov 0,4 0,55 0,55 0,55 0,5 0,5 0,25 0,5 0,5 0,5 0,5 0,4 Dec Planting date 1 Oct 15 May 1 Dec 1 Jan 1 Jun 1 Aug 1 Nov Agronomic crops Mealies Wheat Soya beans Potatoes Potatoes Potatoes Potatoes 31 Jan 30 Nov 31 Sept 31 Mar 15 Apr 15 Sept 15 Feb End of growing season 0,6 0,4 0,6 0,55 Jan 0,7 0,7 0,4 Feb 0,6 0,55 Mar 0,55 Apr 0,25 May 0,4 0,3 Jun 0,7 0,5 Jul 0,4 0,7 0,65 Aug Months of the year Table 4.9: Estimated design crop factors for agronomic crops in the winter rainfall area – June 1990 0,7 0,55 0,4 Sept 0,7 0,3 Oct 0,4 0,55 0,5 Nov Crop water relationship and climate 0,7 0,3 0,55 Dec 4.27 Irrigation Design Manual 0,25 0,3 0,25 0,25 0,25 0,25 Brassicas Cucurbits Peas Onions Tomatoes 0-20 Beans Vegetable crops 0,3 0,3 0,3 0,3 0,5 0,3 20-40 0,5 0,5 0,3 0,4 0,5 0,5 40-60 Portion of growing season[%] Table 4.10: Estimated design crop factors for vegetables in the winter rainfall area – June 1990 4.28 0,55 0,5 0,55 0,4 0,55 0,5 60-80 0,55 0,5 0,5 0,4 0,55 0,55 80-100 Almonds Almonds Apples Apples Apricots Apricots Asparagus Avocado Avocado Bananas Brambles Cherries Cherries Citrus Citrus Coffee Coffee Cut flowers Date palm Date palm Fescue pasture Grapes Grapes Guavas Guavas Litchi Litchi Lucerne Lucerne Macadamia Macadamia Mangoes Mangoes Pastures Pastures Pawpaws Crop Assumptions: Table/middle season Wine/middle season Mature Young Mature Young Semi-dormant Semi-dormant Mature Young Mature Young Summer & Winter Summer/perennial Mature Mature Young Mature/middle season Young/middle season Mature/average production Young/average production Mature Young Mature Young Ratoon Mature/middle season Young/middle season Mature/middle season Young/middle season Mature/middle season Young/middle season Crop options All areas All areas All areas All areas All areas All areas All areas Lowveld Lowveld Lowveld Winter rain/Highveld Highveld Highveld All areas All areas Lowveld Lowveld All areas Karoo/North Cape Karoo/North Cape All areas All areas All areas Winter rainfall Winter rainfall Lowveld Lowveld Areas with frost Areas without frost All areas All areas Lowveld Lowveld All areas All areas Lowveld Climatic region 1. Weekly irrigations 2. Cover: Mature orchards/vineyards = 75% Young orchards/vineyards = 40% Other crops = 100% 3. Wetted area: Orchards/vineyards = 50% Other crops = 100% Table 4.11: Penman-Monteith Crop Factors: Perennials Jan 0,90 0,53 0,98 0,57 0,71 0,44 0,96 0,98 0,57 0,90 1,11 0,74 0,46 0,63 0,38 0,98 0,57 1,15 0,98 0,57 0,80 0,66 0,55 0,90 0,53 0,83 0,50 0,86 0,86 0,90 0,53 0,72 0,45 0,85 0,81 0,94 Feb 0,87 0,51 0,93 0,55 0,59 0,39 0,89 0,88 0,51 0,90 1,03 0,60 0,40 0,63 0,38 0,88 0,51 1,15 0,98 0,57 0,80 0,57 0,55 0,90 0,53 0,78 0,47 0,86 0,86 0,79 0,48 0,67 0,43 0,85 0,81 0,94 Mar 0,64 0,41 0,69 0,43 0,47 0,33 0,56 0,68 0,37 0,84 0,86 0,46 0,34 0,63 0,38 0,68 0,37 1,15 0,98 0,57 0,80 0,45 0,49 0,90 0,53 0,73 0,44 0,78 0,86 0,57 0,38 0,62 0,41 0,85 0,76 0,94 Apr 0,37 0,29 0,42 0,30 0,35 0,25 0,38 0,58 0,31 0,70 0,69 0,32 0,28 0,62 0,39 0,58 0,31 0,90 0,98 0,57 0,80 0,37 0,34 0,65 0,40 0,68 0,42 0,62 0,77 0,35 0,28 0,56 0,39 0,85 0,66 0,67 May 0,24 0,23 0,28 0,23 0,28 0,24 0,38 0,58 0,31 0,56 0,61 0,25 0,24 0,61 0,39 0,58 0,31 0,62 0,79 0,45 0,76 0,26 0,26 0,38 0,25 0,65 0,40 0,47 0,61 0,24 0,23 0,51 0,37 0,85 0,55 0,39 Jun 0,24 0,23 0,28 0,23 0,28 0,24 0,38 0,58 0,31 0,49 0,61 0,25 0,24 0,61 0,39 0,58 0,31 0,62 0,59 0,32 0,72 0,26 0,26 0,38 0,25 0,72 0,44 0,38 0,52 0,24 0,23 0,53 0,37 0,85 0,50 0,39 kc Jul 0,24 0,23 0,28 0,23 0,28 0,24 0,38 0,58 0,31 0,49 0,61 0,25 0,24 0,61 0,39 0,58 0,31 0,62 0,59 0,32 0,72 0,26 0,26 0,38 0,25 0,84 0,50 0,38 0,52 0,24 0,23 0,53 0,37 0,86 0,50 0,39 Aug 0,24 0,23 0,28 0,23 0,28 0,24 0,38 0,58 0,31 0,49 0,61 0,25 0,24 0,62 0,38 0,58 0,31 0,62 0,68 0,38 0,74 0,26 0,26 0,38 0,25 0,91 0,54 0,46 0,57 0,24 0,23 0,78 0,48 0,86 0,50 0,48 Sep 0,56 0,37 0,28 0,23 0,56 0,37 0,38 0,58 0,31 0,49 0,79 0,32 0,27 0,63 0,38 0,58 0,31 0,88 0,88 0,51 0,78 0,34 0,29 0,38 0,25 0,91 0,54 0,62 0,69 0,56 0,37 0,83 0,50 0,86 0,55 0,66 Oct 0,90 0,53 0,50 0,34 0,89 0,53 0,66 0,68 0,37 0,49 1,08 0,73 0,46 0,63 0,38 0,68 0,37 1,15 0,98 0,57 0,80 0,63 0,50 0,41 0,27 0,91 0,54 0,78 0,80 0,90 0,53 0,83 0,50 0,86 0,65 0,85 Crop water relationships and climate Nov 0,90 0,53 0,95 0,55 0,90 0,54 0,96 0,88 0,50 0,69 1,11 0,90 0,53 0,63 0,38 0,88 0,50 1,15 0,98 0,57 0,80 0,67 0,55 0,67 0,39 0,91 0,54 0,86 0,86 0,90 0,53 0,82 0,50 0,86 0,76 0,94 Dec 0,90 0,53 0,98 0,57 0,83 0,50 0,96 0,98 0,57 0,90 1,11 0,87 0,52 0,63 0,38 0,98 0,57 1,15 0,98 0,57 0,80 0,67 0,55 0,87 0,51 0,88 0,52 0,86 0,86 0,90 0,53 0,78 0,48 0,85 0,81 0,94 4.29 Irrigation Design Manual Young Mature/middle season Young/middle season Mature/middle season Young/middle season Mature Young Mature Young Mature/middle season Young/middle season Pawpaws Peaches Peaches Pears Pears Pecan nuts Pecan nuts Pistachio Pistachio Plums Plums Salt bush Strawberries Sugar Sugar Tea Walnuts Walnuts Mature Young Winter harvest Spring harvest Crop options Crop Table 4.11: (continue) 4.30 Lowveld All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas KwaZulu-Natal/Lowveld KwaZulu-Natal/Lowveld Lowveld All areas All areas Climatic region Jan 0,55 0,80 0,49 0,97 0,56 0,82 0,50 0,82 0,49 0,89 0,53 0,31 0,75 1,15 1,15 0,68 0,90 0,53 Feb 0,55 0,66 0,42 0,82 0,49 0,66 0,43 0,80 0,48 0,72 0,45 0,31 0,51 1,15 1,15 0,68 0,90 0,53 Mar 0,55 0,51 0,35 0,60 0,39 0,50 0,36 0,61 0,39 0,55 0,37 0,31 0,38 1,15 1,15 0,68 0,58 0,38 Apr 0,41 0,36 0,28 0,39 0,29 0,34 0,29 0,39 0,29 0,38 0,29 0,31 0,38 1,15 1,15 0,70 0,23 0,23 May 0,26 0,29 0,24 0,28 0,23 0,25 0,25 0,28 0,24 0,29 0,24 0,29 0,38 1,12 1,15 0,72 0,23 0,23 Jun 0,26 0,29 0,24 0,28 0,23 0,25 0,25 0,28 0,24 0,29 0,24 0,26 0,38 0,68 1,15 0,75 0,23 0,23 kc Jul 0,26 0,29 0,24 0,28 0,23 0,25 0,25 0,28 0,24 0,29 0,24 0,26 0,38 0,39 1,15 0,76 0,23 0,23 Aug 0,31 0,31 0,26 0,28 0,23 0,33 0,28 0,28 0,24 0,29 0,24 0,26 0,38 0,51 1,15 0,76 0,23 0,23 Sep 0,40 0,69 0,43 0,31 0,25 0,82 0,49 0,54 0,36 0,37 0,28 0,29 0,50 0,77 1,12 0,76 0,23 0,23 Oct 0,50 0,94 0,55 0,62 0,40 0,90 0,53 0,82 0,49 0,80 0,48 0,31 0,74 1,02 0,67 0,75 0,56 0,37 Nov 0,55 0,94 0,55 0,94 0,55 0,90 0,53 0,82 0,49 0,94 0,55 0,31 0,86 1,15 0,44 0,72 0,90 0,53 Dec 0,55 0,93 0,54 0,98 0,57 0,90 0,53 0,82 0,49 0,94 0,55 0,31 0,86 1,15 0,88 0,70 0,90 0,53 Cotton Cow peas Cucumbers Cucurbits Chicory Chillies Coriander Brussels sprouts Butternut Cabbage Early Canola Carrots Carrots Cauliflower Main Cauliflower Main Cauliflower Main Cauliflower Main Cereals Grazing Spring/Summer Spring Spring/medium grower Spring Spring Spring Spring Spring/Summer Autumn/Winter Spring Summer Autumn Winter Autumn Autumn Spring Spring/Summer Winter Spring Spring/Summer Plant / Crop option Crop Babala Barley Beans Dry Beans Green Beetroot Brinjals Brocolli 1. Weekly irrigations 2. Wetted area = 100% Assumptions: 160 100 105 130 195 110 90 120 110 75 120 100 107 100 90 120 100 190 140 140 100 90 90 140 80 Days Warm areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas Eastern Cape warm All areas All areas All areas All areas All areas All areas All areas All areas All areas Climatic region Table 4.12: Penman-Monteith Crop Factors: Annuals 0,40 0,45 0,45 0,54 0,43 0,39 0,43 0,64 0,52 0,58 0,39 0,44 0,48 0,55 0,53 0,59 0,73 0,48 Mnth 1 0,38 0,64 0,45 0,45 0,46 0,39 0,63 0,63 0,93 0,93 0,75 0,51 0,73 0,96 0,87 0,89 0,93 0,66 0,67 0,67 0,82 0,84 0,80 0,89 0,60 Mnth 2 0,65 0,82 1,02 0,91 0,94 0,66 0,86 1,01 1,06 1,09 0,93 0,76 1,09 0,93 1,07 0,98 0,99 1,10 0,94 0,92 0,99 0,99 0,98 0,99 0,88 1,09 0,81 0,75 0,93 0,90 0,75 0,90 0,98 1,00 0,99 0,99 1,00 0,99 0,90 1,01 0,82 0,72 1,07 0,90 0,90 0,93 0,90 0,80 kc Months from plant Mnth Mnth Mnth Mnth 3 4 5 6 1,05 1,02 0,59 1,12 1,11 0,66 1,14 0,87 1,03 0,98 1,11 1,10 0,65 0,98 0,90 0,50 Mnth 7 Mnth 8 Mnth 9 Crop water relationships and climate Remarks 4.31 Spring Autumn Autumn/Winter Spring/Summer Spring/Summer Autumn/Winter Spring/Summer Autumn Spring Spring/short grower Spring/medium grower Spring/long grower Spring/Summer Parsley Pastures Peas Potatoes Pumpkin Pumpkin Radishes Ryegrass Sorghum Soybeans Soybeans Soybeans Sweet melon Maize Oats Onions Paprika Maize Autumn/Winter Spring/Summer Spring Spring Summer Spring Spring Autumn Spring/medium grower Summer/short grower Winter Autumn transplant Cucurbits Green peppers Ground nuts Hubbard squash Hubbard squash Lentils Lettuce Lettuce Crop Plant / Crop option Irrigation Design Manual Table 4.12 (continue) 4.32 130 140 105 270 170 110 120 125 150 45 250 170 120 120 140 160 130 135 140 110 150 140 130 170 75 100 Days All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas All areas Climatic region 0,44 0,43 0,64 0,49 0,45 0,49 0,29 0,38 0,39 0,72 0,61 0,45 0,43 0,36 0,64 0,58 0,51 0,39 Mnth 1 0,68 0,38 0,39 0,53 0,55 0,42 0,44 0,49 0,97 0,87 0,95 1,13 0,77 0,82 0,89 0,67 0,63 0,86 0,97 0,77 1,04 0,79 0,82 0,60 0,76 0,75 Mnth 2 0,86 0,72 0,61 0,71 0,74 0,79 0,81 0,74 1,14 1,14 0,83 1,00 0,80 1,04 1,00 0,80 1,14 1,14 1,14 0,96 1,15 0,80 1,07 1,01 0,79 0,87 1,03 1,11 0,86 1,00 1,14 1,15 0,80 1,09 1,09 0,88 0,86 1,14 1,12 0,76 0,98 1,14 0,83 0,99 1,00 0,80 0,59 0,70 1,15 0,80 0,66 0,82 1,00 0,93 1,00 0,69 1,15 0,69 0,67 kc Months from plant Mnth Mnth Mnth Mnth 3 4 5 6 0,99 0,93 0,80 1,09 0,77 1,04 1,14 0,79 0,87 0,87 0,72 0,89 0,83 0,69 1,09 1,09 0,98 0,58 0,92 0,95 0,93 1,00 1,15 Mnth 7 1,00 1,15 Mnth 8 0,74 0,73 Mnth 9 Actually a bi-annual plant Remarks Wheat Sweet melon Spinach Squash Sugarbeet Sunflower Sweet potatoes Sweetcorn Tobacco Tomatoes Tomatoes Watermelon Watermelon Wheat Crop Table 12 (continue) Autumn/Winter Autumn Spring Spring Spring/Summer Spring Spring/Summer Spring/Summer Processing Table Early Late Medium/Winter Short/Autumn/ Spring Plant / Crop option 80 120 190 105 240 100 150 90 120 100 160 85 100 125 Days All areas All areas All areas All areas All areas All areas All areas All areas Warmer areas All areas All areas All areas All areas All areas Climatic region 0,57 Mnth 1 0,66 0,39 0,53 0,42 0,40 0,42 0,53 0,41 0,67 0,58 0,65 0,64 0,57 1,06 Mnth 2 0,91 0,51 0,79 0,60 0,92 0,82 0,82 0,84 1,06 0,77 0,98 0,96 0,79 1,04 kc Months from plant Mnth Mnth Mnth Mnth 3 4 5 6 1,00 0,90 0,77 0,98 0,99 0,98 0,89 0,82 0,96 1,15 1,15 1,15 1,14 0,86 1,09 1,09 1,03 0,99 1,09 0,92 1,02 0,85 0,97 1,09 1,09 1,09 0,97 0,98 0,95 1,12 1,06 1,02 1,15 0,95 Mnth 7 1,15 Mnth 8 Mnth 9 Crop water relationships and climate Remarks 4.33 Irrigation Design Manual ADDO OLIFANTPARK ADDO SITRUS NS ADELAIDE PP, ALEXANDER BAY ALICE ALTO AMALIENSTEIN AMATIKULU ATHOLE – AGR AWS BADPLAAS VYGEBOOMD BAMBOESSPRUIT,OTTO BARBERTON KOFFIEKO BARBERTON SENTEEKO BARKLY OOS BATHURST NS. BAVIAANSKLOOF I BAYNESFIELD ESTATE BEAUFORT-WEST BEESTEKRAAL:VAALKO BERGKWAGGA PARK BETHAL BETHAL:WILDEBEESFO BETHLEHEM BETHLEHEM;LOCH LAM BIEN DONNE (NIVV) BIEN DONNE PP BLOEMENDAL,BISHOPS BLOEMFONTEIN BLOODRIVER:REHLING BLOUPUTS BOLO RESERVE BONFOI BOONTJIESKRAAL BRAKSPRUIT AGR. BUCKLANDS BUFFELSFONTEIN BUFFELSKLOOF BUFFELSPOORT II AG BULAND BULTFONTEIN;ARBEID BURGERSFORT MARONE Station Longitude (º) 25,75 25,7 26,28 16,32 26,85 18,85 21,47 31,52 30,58 27,85 30,62 25,97 30,97 30,75 27,6 26,82 24,07 30,33 22,35 27,6 25,47 29,28 29,52 18,97 28,3 18,98 18,98 30,47 26,11 30,53 20,15 27,63 18,78 19,35 26,98 26,72 26,7 21,22 27,48 28,6 26,07 30,33 Latitude (º) -33,45 -33,57 -32,67 -28,34 -32,78 -34,02 -33,48 -20,03 -26,6 -28,87 -25,87 -26,95 -25,75 -25,63 -30,97 -33,52 -33,57 -29,75 -32,21 -25,18 -32,22 -26,27 -26,17 -33,92 -28,17 -33,83 -33,85 -29,53 -29,07 -27,85 -28,5 -32,38 -33,93 -34,2 -26,75 -33,1 -31,37 -33,48 -25,75 -24,42 -28,18 -24,75 Elevation (m) 152 85 600 21 520 225 474 45 1620 1640 1100 1460 777 1300 1799 259 450 914 857 1096 1204 1640 1635 376 1631 138 138 838 1422 1234 442 880 153 128 1402 366 1783 518 1230 1000 1371 915 MAP (mm) 406 360 460 39 570 777 294 1026 937 706 788 546 811 1151 675 683 287 852 222 544 412 754 721 1572 739 822 646 887 552 803 115 724 923 426 654 452 634 323 596 700 506 551 Jan 5,7 5,8 6,2 4,5 5,1 5,7 6,4 4,7 4,2 4,7 5,1 6,3 4,7 4,1 6,0 5,1 7,1 3,9 7,1 4,8 5,7 4,9 5,1 5,0 4,9 6,9 6,3 4,5 6,3 4,7 7,4 5,1 5,6 5,9 6,4 5,6 6,0 5,7 5,4 4,5 6,8 5,0 Feb 5,1 5,2 5,7 4,2 4,6 5,5 5,9 4,5 3,9 4,2 4,8 5,7 4,7 4,0 5,4 4,7 6,3 3,7 6,4 4,5 5,1 4,5 5,0 4,9 4,4 6,5 5,9 4,3 5,6 4,3 6,8 4,5 5,6 5,4 5,8 5,1 5,1 5,2 5,0 4,3 5,8 4,8 Mrch 4,2 4,2 4,6 3,6 3,7 4,0 4,5 4,1 3,4 3,4 4,1 4,8 4,1 3,4 4,3 4,0 5,1 3,2 5,0 3,8 4,0 3,9 4,3 3,7 3,6 5,2 4,8 3,7 4,3 3,8 5,0 4,1 4,3 4,3 4,8 4,1 4,1 3,9 4,3 3,4 4,7 4,3 April 3,2 3,3 3,7 2,9 2,9 2,9 3,1 3,4 2,6 2,5 3,5 4,0 3,3 2,9 3,2 3,4 3,7 2,6 3,8 2,9 2,9 3,2 3,6 2,6 2,7 3,3 3,1 2,9 3,3 3,1 4,3 3,4 3,2 2,9 4,1 3,3 3,1 2,8 3,6 3,2 3,6 3,5 Average daily ET0 (mm/day) May June July Aug 2,5 2,2 2,3 2,9 2,6 2,2 2,3 2,9 3,2 2,9 3,2 3,7 2,2 2,4 2,3 2,7 2,4 2,1 2,4 2,9 2,1 1,6 1,7 2,1 2,2 1,9 2,1 2,7 2,7 2,3 2,5 3,0 1,9 1,5 1,7 2,2 1,8 1,3 1,5 2,2 2,9 2,5 2,8 3,6 3,0 2,7 2,9 3,9 2,9 2,6 2,9 3,6 2,6 2,4 2,4 2,9 2,5 2,1 2,3 3,2 3,1 2,9 3,1 3,3 2,8 2,3 2,5 3,1 2,0 1,7 2,0 2,7 3,1 2,7 2,8 3,5 2,2 1,7 1,9 2,5 2,0 1,6 1,8 2,6 2,5 2,3 2,4 3,2 2,8 2,4 2,6 3,6 1,7 1,3 1,5 1,8 1,9 1,5 1,6 2,3 2,0 1,6 1,7 2,4 1,7 1,3 1,4 2,2 2,1 1,8 2,1 2,9 2,6 2,3 2,5 3,4 2,5 2,4 2,6 3,3 3,1 2,7 2,6 3,8 3,1 3,0 3,2 3,8 2,2 1,8 2,0 2,5 2,0 1,6 1,6 2,0 3,3 2,8 3,1 4,2 2,7 2,4 2,6 3,1 2,5 2,1 2,3 3,2 2,0 2,0 2,1 2,4 2,9 2,5 2,7 3,6 2,4 2,2 2,0 2,4 2,5 2,0 2,3 3,3 2,8 2,4 2,6 3,4 Table 13: Average daily reference evapotranspiration and yearly rainfall data (Source: SAPWAT) 4.34 Sept 3,7 3,8 4,5 3,3 3,7 2,8 3,7 3,5 3,0 3,1 4,6 5,6 4,3 3,5 4,4 3,8 4,3 3,2 4,4 3,5 3,7 4,2 4,8 2,6 3,2 3,3 2,8 3,6 4,4 4,3 4,8 4,4 3,3 2,9 5,8 4,0 4,2 3,2 4,6 3,8 4,6 4,5 Oct 4,5 4,4 4,9 3,8 4,2 3,7 4,6 4,0 3,5 3,8 4,8 6,2 4,4 3,7 4,9 4,1 5,1 3,4 5,4 4,2 4,4 4,7 5,2 3,7 3,9 4,9 4,2 4,1 5,3 4,4 5,7 4,5 4,3 4,1 6,2 4,5 4,8 4,1 5,2 4,9 5,7 5,1 Nov 5,2 5,1 5,6 4,4 4,7 4,3 5,6 4,3 3,8 4,5 4,8 6,6 4,6 3,9 5,5 4,6 6,2 3,7 6,4 4,6 5,2 4,9 5,4 4,5 4,5 6,0 5,2 4,3 6,2 4,7 7,1 4,7 4,8 5,1 6,5 5,0 5,4 5,0 5,5 4,9 6,4 5,3 Dec 5,7 5,7 6,1 4,4 5,1 5,1 6,2 4,6 4,1 4,8 5,0 7,0 4,7 4,0 6,3 5,0 6,8 3,9 7,1 4,6 5,7 5,1 5,2 4,9 4,9 6,4 5,7 4,7 6,6 4,9 8,1 5,0 5,3 5,8 6,7 5,5 6,0 5,5 5,5 5,2 6,9 5,1 CALVINIA CALVINIA - TNK CALVINIA WK. CAPE PADRONE CAPE ST. LUCIA CAPE TOWN CARNARVON PS. CEDARA – AGR CHILTERN DAMWAL CITRUSDAL (NIVV) CITRUSDAL PP CLOCOLAN COBHAM – BOS COLESBERG CONCORDIA CRADOCK PP, DARLING DARNAL DE AAR DE AAR. DE DOORNS (NIWW) DE KEUR DE KEUR (OLD) DE RUST DE TUIN DE TUIN DE VLEI DEELVILLE DENNEHOEK DIE KRANS DOHNE - AGR DOHNE NS II DOHNE NS. DOUGLAS;TRONK. DRIEFONTEIN DRIEPLOTTE - AGR DUIWELSKLOOF:WESTF DUNDEE:RES.STATION DUNGHYE PARK DURBAN EAST LONDON ELANDSHEIGHTS Station Table 13 (continue) Longitude (º) 19,46 19,77 19,77 26,45 32,24 18,32 22 30,28 19,15 18,98 18,98 27,55 29,42 25,1 19,85 25,68 18,38 31,38 24,01 24,02 19,67 19,3 19,3 19,12 20,1 18,98 19,68 19,33 23,85 21,68 27,47 27,47 27,47 23,75 20,4 24,63 30,12 30,32 19,52 30,57 27,52 28,18 Latitude (º) -31,28 -31,47 -31,48 -33,75 -28,3 -33,54 -30,97 -29,53 -34,05 -32,57 -32,55 -28,9 -29,68 -30,7 -33,68 -32,22 -33,38 -29,27 -30,39 -30,65 -33,47 -32,98 -32,97 -34,17 -29,87 -33,13 -33,43 -33,35 -33,87 -33,55 -32,52 -32,52 -32,52 -29,07 -34,38 -29,05 -23,73 -28,17 -34,32 -29,58 -33,02 -30,85 Elevation (m) 981 980 974 168 111 17 1280 1076 309 198 198 1600 1675 1328 937 846 110 85 1243 1243 457 945 945 330 970 80 490 480 640 229 899 899 899 1030 91 1120 750 1219 122 8 125 1830 MAP (mm) 209 206 208 762 1292 506 215 853 879 437 281 686 1240 385 565 341 594 1084 288 320 352 782 685 797 135 546 150 582 1052 232 747 743 740 344 471 433 1049 757 521 1003 860 1120 Jan 7,1 6,0 8,9 4,8 4,6 6,1 9,4 4,3 5,2 7,0 7,2 5,0 4,2 6,7 5,5 7,1 6,7 4,7 7,1 8,0 5,8 6,2 6,2 5,0 9,7 6,5 5,7 6,2 5,0 6,0 5,2 4,7 5,1 7,3 5,5 6,2 4,2 5,3 5,8 4,3 4,5 3,3 Feb 6,6 5,6 8,0 4,5 4,3 5,7 8,0 4,1 4,8 6,3 6,3 4,5 3,9 5,8 5,1 6,2 6,4 4,4 6,4 6,6 5,3 5,5 5,8 4,8 8,7 6,1 4,8 5,9 4,7 5,4 5,0 4,4 4,9 6,0 5,0 5,0 3,9 4,9 5,5 4,3 4,4 3,4 Mrch 5,3 4,4 6,8 3,8 3,8 4,3 6,3 3,5 3,7 4,9 5,0 3,6 3,3 4,5 4,0 5,0 5,1 3,8 4,9 5,2 4,1 4,4 4,6 3,8 6,8 4,6 3,9 4,6 3,9 4,2 4,4 3,9 4,2 4,9 4,1 4,9 3,4 4,3 4,4 3,6 3,7 3,2 April 3,9 3,3 5,0 3,3 3,0 3,0 4,6 3,0 2,5 3,1 3,5 2,7 2,8 3,2 2,9 3,6 3,5 3,0 3,5 3,6 2,8 3,1 3,1 2,8 5,0 3,1 2,7 2,9 3,1 2,8 4,0 3,5 3,7 3,5 3,1 3,2 2,9 3,5 3,1 3,0 3,1 4,5 Average daily ET0 (mm/day) May June July Aug 3,0 2,6 2,6 3,1 2,6 2,1 2,2 2,7 4,0 3,1 3,2 4,1 2,9 2,7 2,8 3,1 2,5 2,1 2,3 2,8 2,1 1,7 1,8 2,4 3,4 2,6 3,0 4,1 2,4 2,0 2,2 3,0 1,8 1,5 1,6 2,0 1,8 1,3 1,4 2,2 2,3 1,2 1,7 2,1 1,9 1,4 1,6 2,3 2,3 2,0 2,3 3,0 2,2 1,7 1,9 2,9 2,2 1,8 1,9 2,3 2,8 2,3 2,5 3,4 2,0 1,4 1,5 2,2 2,3 2,0 2,1 2,7 2,8 2,4 2,6 3,3 2,6 2,1 2,3 3,4 2,0 1,6 1,9 2,4 2,1 1,3 1,4 1,9 2,2 1,7 1,8 2,4 1,8 1,5 1,3 1,7 3,6 2,9 3,1 4,2 1,8 1,3 1,4 2,0 1,9 1,8 1,8 2,2 1,8 1,4 1,4 2,0 2,4 2,1 2,3 2,7 2,1 1,9 2,2 2,6 3,8 3,6 3,5 4,1 3,1 3,0 3,2 3,5 3,5 3,4 3,5 4,0 2,6 2,1 2,3 3,3 2,2 1,8 1,8 2,3 2,7 2,2 2,3 3,6 2,4 2,1 2,3 2,8 2,9 2,7 3,0 3,8 2,2 1,7 1,8 2,2 2,5 2,1 2,2 2,8 3,1 2,8 3,1 3,3 2,8 4,1 3,0 2,8 Sept 3,9 3,6 5,2 3,4 3,3 3,1 5,3 3,4 2,7 3,1 3,0 3,3 3,7 4,2 3,0 4,6 3,2 3,2 4,3 4,7 3,4 2,6 3,2 2,3 5,5 3,0 3,1 3,0 3,4 3,6 4,5 3,9 4,6 4,5 3,2 4,3 3,5 4,8 3,1 3,2 3,4 2,4 Oct 5,2 4,7 6,4 3,8 3,7 4,1 6,9 3,7 3,5 4,6 4,4 4,1 3,8 5,1 3,9 5,4 4,7 3,7 5,4 5,9 4,4 3,4 4,2 3,4 7,1 3,9 4,0 4,2 3,9 4,6 4,7 4,1 4,5 5,7 4,1 4,4 3,8 5,0 4,1 3,8 3,6 3,7 Nov 6,0 5,4 8,0 4,2 4,2 4,9 8,2 4,1 4,5 5,9 5,3 4,8 4,2 6,0 4,8 6,3 6,0 4,2 6,3 7,1 5,2 4,7 5,1 4,2 8,5 5,0 4,8 5,2 4,5 5,4 4,8 4,5 4,9 6,7 4,8 6,0 4,0 5,3 5,1 4,2 4,3 3,0 Crop water relationships and climate Dec 6,8 5,9 8,6 4,7 4,5 5,7 8,8 4,3 5,0 6,6 6,3 5,3 4,3 6,7 5,3 7,0 6,4 4,6 7,0 8,1 5,7 5,6 5,8 4,9 9,4 6,4 5,5 6,0 4,9 6,0 5,4 4,8 5,2 7,1 5,4 6,1 4,1 5,5 5,8 4,1 4,6 2,9 4.35 ELGIN ELGIN (NIVV) ELLIOT VOORLIGTING ELSENBURG ELSENBURG ENDEAVOUR ESTCOURT ESTCRT:TABAMHLOPE EXCELSIOR FENFIELD FICKSBURG;KERSIEPR FLEURBAIX GENL J.C.STEYN GEV GEORGE GERMISTON GOEDEHOOP GRAAFWATER KO-OP GRASRUG GROOT CONSTANTIA GROOT VLAKTE GROOTFONTEIN GROOTFONTEIN XI, GROOTVLAKTE GULLEMBERG H.L.S.AUGSBURG HAZYVIEW BURGERSHA HAZYVIEW, KRANSKOP HAZYVIEW;SABIE SAN HECTRSPRT;LAUGHING HEIDEDAL HELDERFONTEIN (NIV HELDERVUE HERTZOGVILLE;KAREE HILLCREST:SENSAKO HOBHOUSE. HOEDSPRT JONGMANSP HOPETOWN;ALFALFA. IDEAL HILL JAAGBAAN JAMESTOWN JAN KEMPDORP;VAALH JANSENVILLE PP Station Longitude (º) 19,03 19,03 27,85 18,83 18,83 26,37 29,52 29,65 19,45 27 27,85 18,83 25,33 22,25 28,09 18,77 18,6 18,83 18,42 19,62 25,02 25,02 19,62 28,97 18,9 31,08 30,87 31,13 31,58 19,07 18,88 18,72 25,3 30,75 27,13 30,8 24,18 18,88 30,68 26,78 24,83 24,7 Latitude (º) -34,13 -34,13 -31,35 -33,85 -33,85 -33,47 -29,01 -29,03 -32,95 -32,53 -28,87 -33,95 -33,4 -33,58 -26,15 -33,92 -32,17 -33,47 -34,03 -33,32 -31,29 -31,48 -33,33 -23,83 -32,17 -25,12 -28,97 -25,03 -25,6 -32,93 -33,92 -32,82 -28,2 -29,8 -29,52 -24,38 -29,65 -32,8 -29,35 -31,07 -27,95 -32,93 Irrigation Design Manual Table 13 (continue) 4.36 Elevation (m) 305 305 1463 177 177 366 1180 1450 953 1425 1640 85 200 221 1665 235 177 213 107 1155 1263 1270 1160 1100 500 722 1120 530 350 725 179 755 1326 732 1448 610 1143 152 1018 1650 1175 414 MAP (mm) 1215 1116 744 653 596 573 738 930 443 708 710 716 368 776 708 606 288 426 1085 548 377 383 718 561 223 967 849 881 844 1179 791 811 502 817 609 514 311 286 809 574 448 290 Jan 4,8 4,8 4,9 6,2 6,1 4,6 4,8 4,6 6,5 4,4 5,0 5,4 6,8 4,2 4,9 5,3 5,8 6,7 5,1 5,0 5,9 7,2 5,9 5,3 7,0 4,1 4,3 4,4 5,1 4,5 5,8 5,5 7,1 4,1 5,0 5,0 5,3 7,8 3,9 6,6 6,3 7,1 Feb 4,5 4,4 4,4 5,9 5,7 4,3 4,4 4,3 6,1 4,1 4,5 4,9 6,2 3,7 4,5 5,2 5,3 6,5 4,6 4,7 5,3 6,1 5,3 4,9 6,2 4,0 4,1 4,2 4,8 4,2 5,7 5,1 6,1 4,1 4,3 4,9 4,9 7,1 3,7 5,5 5,5 6,3 Mrch 3,6 3,4 3,8 4,6 4,7 3,5 3,7 3,6 4,6 3,3 3,7 3,8 5,0 3,1 3,9 4,3 4,2 5,2 3,7 3,7 4,1 4,9 4,1 4,4 4,9 3,4 3,6 3,7 4,2 3,3 4,4 4,0 4,9 3,5 3,4 4,2 3,9 5,6 3,2 4,5 4,5 4,9 April 2,4 2,3 3,1 3,2 3,5 2,7 3,1 3,0 3,1 2,6 2,8 2,6 4,0 2,4 3,2 3,4 3,0 3,6 2,5 2,4 3,1 3,9 2,8 4,0 3,3 2,8 3,2 2,9 3,5 2,1 2,8 2,8 3,8 2,9 2,5 3,4 2,8 3,7 2,6 3,4 3,4 3,6 Average daily ET0 (mm/day) May June July Aug 1,8 1,4 1,6 2,0 1,8 1,5 1,7 2,0 2,8 2,5 2,7 3,3 2,1 1,7 1,8 2,3 2,2 1,7 2,1 2,4 2,4 2,3 2,4 2,7 2,3 1,8 2,3 2,8 2,5 2,0 2,3 3,0 2,1 1,7 1,8 2,3 2,1 2,0 2,2 2,7 2,0 1,6 1,7 2,5 1,7 1,4 1,4 1,9 3,4 3,0 3,3 3,8 2,0 1,9 2,0 2,3 2,7 2,5 2,6 3,4 2,4 1,8 2,0 2,4 2,1 1,7 1,8 2,3 2,4 1,7 1,7 2,2 1,8 1,7 1,8 2,2 1,6 1,1 1,2 1,8 2,4 2,3 2,2 3,0 3,3 2,6 3,0 3,8 2,1 1,5 1,2 2,0 3,0 2,9 3,1 4,1 2,0 1,6 1,6 2,3 2,2 1,8 1,9 2,4 2,9 2,7 3,0 3,5 2,4 2,0 2,2 2,7 2,9 2,7 3,0 4,0 1,4 1,0 1,1 1,6 1,9 1,6 1,8 2,3 2,0 1,7 1,8 2,2 2,9 2,3 2,6 3,7 2,4 2,1 2,5 3,0 1,7 1,2 1,4 2,0 2,6 2,3 2,4 3,2 1,8 1,3 1,5 2,2 2,3 1,6 1,5 2,2 2,0 1,7 2,0 2,6 2,6 2,2 2,4 3,3 2,4 1,9 2,1 3,1 2,9 2,4 2,7 3,3 Sept 2,6 2,7 4,0 3,0 2,9 3,2 3,9 3,9 3,3 3,4 3,6 2,7 4,6 2,6 4,6 2,9 3,2 3,1 2,9 2,6 3,7 4,9 2,3 5,3 3,4 3,1 4,1 3,4 4,9 2,3 3,1 2,9 5,2 3,5 3,0 4,2 3,2 3,4 3,1 4,5 4,4 4,2 Oct 3,8 3,4 4,2 4,2 4,2 3,7 4,4 4,4 4,6 3,6 4,2 3,8 5,2 3,2 5,0 4,0 4,3 4,6 3,8 3,5 4,6 5,6 3,2 5,7 4,8 3,5 4,0 3,8 4,9 3,4 4,5 4,0 6,1 3,6 3,7 4,6 4,2 5,1 3,4 5,2 5,4 5,0 Nov 4,2 4,2 4,7 5,4 4,8 4,3 4,9 4,5 5,7 4,2 4,7 4,5 5,9 3,8 5,3 4,4 5,1 5,9 4,6 4,3 5,2 6,5 4,2 5,9 5,9 3,8 4,3 4,1 5,1 3,8 5,1 4,7 6,9 4,1 4,6 4,8 5,0 6,5 3,8 5,9 6,2 6,2 Dec 4,2 4,6 5,1 5,9 5,6 4,8 4,9 4,9 6,2 4,4 5,1 5,1 6,7 4,1 5,3 5,1 5,5 6,5 5,0 5,0 5,9 7,1 4,7 5,8 6,5 3,9 4,3 4,2 5,0 4,3 5,5 5,3 7,4 4,2 5,0 4,7 5,6 7,4 4,1 6,7 6,4 6,9 JC STEYNGEV-LANDBO JOHANNESBURG JOLETTE JONASKRAAL JOUBERTINA KAKAMAS KARRINGMELKSRIVIER KEI MOUTH KEIMOES KEIMOES. KESTELL. KIMBERLEY KLAVER KLAWER WYNKELDER KLEIN BOTTELARY KLEIN WATERVAL KLIPFONTEIN KLIPPAN:KOSTER KOKSTAD KOKSTAD - AGR KOMATIPRT;TENBOSCH KOSTER KOOPERASIE. KROONSTAD KURUMAN KURUMAN L.TRICHARD:LEVUBU (S LA MOTTE LA PLAISANTE LANDAU LANGGEWENS (WRS) LANGKLOOF LANGKLOOF (NIVV) LE BONHEUR LETABA LETSITELE LETSITELE:EILAND ( LIDNEY, LITTLE HARMONY, RI LONGDOWN LONGDOWN LORRAINE LOSKOP - PROEFSTAS LUTZVILLE (NIWW) Station Table 13 (continue) Longitude (º) 25,35 28,03 19,55 19,9 23,87 20,62 20,77 28,15 20,97 21 28,7 24,46 18,37 18,63 18,73 19,02 25,73 26,95 29,25 29,42 31,97 26,92 27,14 23,43 23,26 30,28 19,08 19,2 18,97 18,7 23,58 23,58 18,87 30,32 30,67 26 30,32 19,17 19,17 19,05 29,4 18,43 Latitude (º) -33,4 -26,12 -33,5 -34,4 -33,82 -28,77 -34,13 -32,67 -28,7 -28,73 -28,32 -28,48 -31,47 -31,78 -33,9 -33,88 -32,6 -26,05 -30,32 -30,52 -25,4 -25,83 -27,4 -27,47 -27,28 -23,08 -33,88 -33,45 -33,6 -33,28 -33,78 -33,78 -33,83 -23,87 -23,67 -33,67 -29,93 -34,05 -34,05 -32,05 -25,17 -31,6 Elevation (m) 96 1753 370 103 549 720 192 258 762 748 1707 1204 42 68 110 186 735 1561 1305 1372 189 1585 1348 1312 1300 610 206 260 122 177 722 722 260 623 457 200 869 300 340 320 945 31 MAP (mm) 359 718 123 388 504 106 429 774 119 161 709 415 174 216 682 1134 411 608 728 832 564 620 606 356 420 842 852 633 517 415 605 632 841 714 551 551 893 687 819 251 631 144 Jan 5,7 5,1 5,6 6,1 5,4 9,5 5,8 4,8 7,6 7,3 5,3 7,0 6,9 7,0 6,1 6,9 6,3 5,5 4,5 4,4 5,3 5,9 5,8 5,6 6,4 4,9 5,9 6,5 6,7 7,1 4,5 5,3 6,2 4,3 4,7 5,2 3,9 5,4 4,7 7,0 5,3 6,4 Feb 5,2 4,8 5,0 5,7 4,9 8,3 5,4 4,5 6,4 6,6 4,9 6,2 6,6 6,8 5,6 7,2 5,8 5,3 4,0 4,1 5,1 5,4 5,3 5,0 5,8 4,6 5,6 6,1 6,2 7,1 4,1 4,9 6,1 4,1 4,4 4,9 3,8 5,0 4,9 6,6 5,1 6,1 Mrch 4,3 4,0 4,6 4,6 4,0 6,7 4,3 3,8 5,1 5,2 4,1 4,8 5,6 5,7 4,6 5,4 4,6 4,3 3,3 3,4 4,3 4,5 4,3 4,1 4,5 4,0 4,3 4,7 4,8 5,8 3,5 4,0 4,8 3,6 3,8 4,0 3,2 4,0 3,7 5,3 4,3 5,0 April 3,2 3,3 3,3 3,3 2,9 5,0 3,2 3,3 3,8 4,0 3,2 3,7 4,1 4,2 3,4 3,8 3,9 3,7 2,8 2,7 3,5 3,7 3,4 3,0 3,4 3,4 2,9 3,1 3,1 4,2 2,7 3,2 3,5 2,9 3,0 3,5 2,6 2,8 2,7 3,7 3,5 3,8 Average daily ET0 (mm/day) May June July Aug 2,6 2,3 2,5 2,8 2,7 2,5 2,5 3,4 1,9 1,7 1,6 2,7 2,3 1,8 1,8 2,3 2,2 1,8 2,0 2,5 3,6 2,8 3,2 4,2 2,6 2,1 2,1 2,4 3,1 2,8 3,1 3,6 2,8 2,3 2,7 3,4 2,8 2,3 2,6 3,6 2,8 2,6 2,7 3,3 3,0 2,6 2,9 4,0 3,2 2,7 2,7 3,3 3,0 2,2 2,4 3,2 2,3 1,7 1,7 2,2 2,4 1,8 2,0 2,4 3,2 2,7 2,9 3,5 2,8 2,5 2,7 3,6 2,1 1,8 2,1 2,6 2,2 1,8 2,0 2,7 2,8 2,4 2,8 3,7 3,1 2,6 3,0 4,0 2,8 2,6 2,6 3,5 2,3 1,8 1,9 2,6 2,4 2,0 2,3 3,1 2,9 2,6 2,6 3,3 1,8 1,5 1,7 2,2 2,0 1,7 1,8 2,3 1,9 1,4 1,5 2,1 2,8 2,1 2,0 2,5 2,3 1,7 1,9 2,4 2,7 2,4 2,5 2,8 2,2 1,5 1,7 2,1 2,3 1,9 2,0 2,5 2,3 2,0 2,1 2,7 3,2 2,9 3,0 3,3 1,9 1,5 1,7 2,3 2,0 1,7 1,8 2,2 2,1 1,4 1,5 1,7 2,4 1,8 1,9 2,7 2,7 2,3 2,5 3,3 2,8 2,3 2,4 3,0 Sept 3,9 4,5 3,6 3,2 3,3 5,5 3,2 4,0 4,7 4,6 4,4 4,9 4,1 4,3 3,1 3,4 4,4 5,1 3,5 3,4 4,6 5,2 4,7 3,6 4,2 4,2 3,0 3,2 3,1 3,5 2,8 3,4 3,1 3,2 3,6 3,8 2,8 2,9 2,5 3,8 4,5 4,1 Oct 4,5 5,1 4,7 4,5 3,9 7,1 4,1 4,1 6,1 5,7 4,9 5,9 5,1 5,8 4,2 4,6 4,8 5,8 3,8 3,8 5,1 5,9 5,5 4,5 5,2 4,5 4,2 4,5 4,6 5,1 3,9 3,9 4,3 3,8 4,2 4,3 3,2 3,7 3,4 5,2 5,0 5,0 Nov 5,4 5,3 5,1 5,4 4,6 8,5 5,2 4,5 7,2 6,6 5,3 6,8 6,1 6,5 4,8 4,2 5,6 6,0 4,4 4,2 5,3 6,5 5,9 5,3 6,3 4,7 5,0 5,6 5,7 6,2 4,0 4,6 4,8 4,0 4,5 4,6 3,5 4,6 3,8 6,2 5,2 5,8 Crop water relationships and climate Dec 5,8 5,3 5,5 6,0 5,2 9,4 5,9 4,7 7,8 7,4 5,5 7,2 6,8 6,8 5,6 5,7 6,3 6,1 4,6 4,5 5,2 6,3 6,1 4,8 6,5 4,8 5,6 6,2 6,1 6,9 4,5 5,1 5,6 4,2 4,6 5,1 3,8 5,1 4,5 6,8 5,3 6,2 4.37 LYDENBURG LONGTOM LYDENBURG ROSENKRA LYDENBURG;DOORNHOE MACUVILLE - AGR MALELANE PROEFPLA MALELANE VERGELEGE MALELANE;HOECHST.L MALELANE;KAALRUG.T MARA – AGR MARBLE HALL:MOOSRI MARQUARD;SAAIPLAAS MARQUARD;WILDEBEES MAYFIELD, STANGER MEERLUST MELMOTH MERLE I MESSINA MESSINA PROEFPLAAS MHLATI MHLUME MIDDLETON MONTAGU MONTAGU POLISIE MOORREESBURG KO-OP MOREWAG MORGENSTOND MORTIMER I MOUNTAIN VINEYARDS MT. EDGECOMBE NATAL EST., THORNV NCHOSA, MUDEN NELSPRT FRIEDENHEI NELSPRUIT NELSPRUIT:NISSV. NEWCASTLE NGOME:SAPEKOE EST. NIETVOORBIJ NIETVOORBIJ (NIWW) NIVV NKWALINI NOOITGEDACHT NOOITGEDACHT - CER Station Longitude (º) 30,62 30,62 24,88 29,9 31,55 31,5 31,63 31,57 29,57 29,42 27,35 27,33 31,15 18,75 31,24 18,93 30,03 29,92 31,53 31,8 25,83 20,07 20,13 18,68 18,93 20,02 25,67 18,95 31,03 30,4 30,37 30,98 30,58 30,97 29,56 31,45 18,87 18,87 18,85 31,53 18,85 19,33 Latitude (º) -25,13 -24,9 -25,68 -22,27 -25,45 -25,5 -25,63 -25,62 -23,15 -25,02 -28,68 -28,5 -29,2 -34,02 -28,35 -33,87 -22,2 -22,23 -25,47 -26,03 -32,98 -33,47 -33,8 -33,15 -33,68 -33,93 -32,38 -33,88 -29,7 -29,75 -28,97 -25,43 -25,27 -25,45 -27,45 -27,85 -33,9 -33,9 -33,92 -28,72 -34,03 -33,22 Irrigation Design Manual Table 13 (continue) 4.38 Elevation (m) 2118 1525 1644 522 380 369 272 390 894 1065 1510 1450 610 33 770 180 549 700 309 280 549 223 225 158 240 140 840 362 96 860 793 671 665 660 1199 1010 146 146 160 154 343 1040 MAP (mm) 898 614 649 310 569 578 781 845 432 515 636 600 1276 609 806 688 340 319 578 778 353 312 316 421 395 301 318 1320 1017 819 666 754 805 782 917 1424 689 768 685 740 876 845 Jan 4,0 4,3 4,7 5,8 5,3 4,7 5,4 5,1 4,9 4,9 5,4 6,6 4,2 5,9 4,8 5,4 5,9 4,8 5,0 5,0 6,1 6,6 6,5 7,0 6,0 5,9 6,7 6,0 4,4 4,3 5,0 5,0 4,8 4,9 5,3 4,6 6,2 6,1 5,2 4,8 5,3 5,5 Feb 3,7 4,1 4,6 5,5 5,1 4,5 5,1 4,9 4,6 4,6 4,7 5,8 3,9 6,0 4,5 5,1 5,8 4,5 4,8 4,7 5,5 6,1 5,9 6,7 5,6 5,2 6,1 5,8 4,2 4,2 4,6 4,8 4,7 4,7 4,8 4,4 6,2 5,9 4,9 4,6 4,9 5,1 Mrch 3,2 3,4 3,9 5,0 4,5 3,9 4,4 4,2 4,1 3,9 3,8 4,8 3,4 4,3 3,8 3,9 4,9 4,2 3,9 3,9 4,4 4,7 4,6 5,2 4,0 4,2 5,0 4,6 3,6 3,6 3,8 4,2 4,0 4,0 4,2 3,9 4,5 4,5 3,6 3,9 3,9 3,9 April 2,6 2,8 3,4 3,9 3,9 3,1 3,6 3,4 3,3 3,0 2,8 3,6 2,8 3,1 3,2 2,6 4,3 3,3 3,1 3,2 3,4 3,5 3,1 3,6 3,3 3,1 3,8 3,3 2,8 3,0 3,1 3,6 3,5 3,3 3,5 3,4 3,3 3,0 2,3 3,2 2,7 2,7 Average daily ET0 (mm/day) May June July Aug 2,0 1,6 1,7 2,3 2,1 1,7 1,8 2,4 2,6 2,3 2,5 3,2 3,0 2,5 2,7 3,5 3,4 3,3 3,4 4,1 2,4 2,2 2,4 3,0 2,9 2,6 2,8 3,8 2,7 2,5 2,8 3,7 2,6 2,1 2,3 3,0 2,2 1,8 1,9 2,6 2,0 1,5 1,6 2,3 2,7 2,2 2,4 3,3 2,1 1,9 2,1 2,7 2,1 1,8 1,9 2,3 2,6 2,2 2,4 3,3 1,6 1,2 1,3 1,7 3,7 3,3 3,4 4,1 2,5 2,0 2,2 2,8 2,4 2,0 2,2 2,9 2,4 2,0 2,2 3,1 2,7 2,3 2,7 3,2 2,9 2,4 2,5 2,9 2,1 1,6 1,7 2,4 2,3 1,7 1,7 2,3 1,9 1,5 1,4 1,9 2,1 1,8 1,6 2,2 2,9 2,6 3,0 3,7 2,2 1,8 2,0 2,5 2,1 1,8 2,0 2,5 2,3 1,9 2,2 3,0 2,4 2,0 2,3 3,1 3,1 2,8 2,9 3,5 3,0 2,9 3,0 3,6 2,9 2,5 2,6 3,3 2,9 2,7 2,8 3,6 2,9 2,6 2,9 3,5 2,1 1,7 1,9 2,1 1,9 1,6 1,7 2,3 1,4 1,2 1,3 1,7 2,4 2,0 2,2 2,9 2,0 1,9 2,0 2,2 1,8 1,5 1,5 2,0 Sept 3,1 3,2 4,2 4,5 4,7 3,8 4,8 4,5 4,0 3,5 3,6 4,7 3,3 3,0 4,0 2,4 4,9 3,6 3,7 4,0 4,1 3,5 3,5 3,3 2,2 3,0 4,7 3,3 3,0 3,7 3,9 4,3 4,6 4,1 4,7 3,7 3,0 3,2 2,4 3,7 2,9 2,7 Oct 3,4 3,8 4,7 5,4 5,0 4,2 5,1 4,8 4,4 4,1 4,1 5,5 3,7 4,0 4,3 3,6 5,8 4,1 4,2 4,4 4,8 4,6 4,5 5,0 3,8 4,2 5,5 4,6 3,6 4,0 4,3 4,5 4,8 4,3 5,3 3,9 4,2 4,5 3,7 4,2 3,9 3,7 Nov 3,7 4,0 4,6 5,7 5,2 4,5 5,2 5,0 4,7 4,5 4,8 6,1 4,0 4,5 4,7 4,1 6,3 4,6 4,6 4,6 5,5 5,6 5,7 6,1 4,2 5,3 6,3 5,4 4,0 4,3 4,7 4,5 5,0 4,5 5,5 4,2 5,0 5,4 4,6 4,4 4,8 4,5 Dec 3,8 4,2 4,5 5,9 4,9 4,7 5,3 5,1 4,9 4,7 5,3 6,8 4,2 5,4 4,9 5,0 6,1 4,8 4,9 4,9 6,0 6,4 6,4 6,7 5,8 5,8 6,8 5,7 4,3 4,4 5,0 4,7 4,8 4,7 5,6 4,4 5,6 5,8 5,1 4,7 5,0 5,1 NW KOOP MADIBOGO OKIEP ONSEEPKANS. OOS LONDEN - WK OPWAG ORANIA:BEKER LOOPOUDTSHOORN OUTENIQUA (WRS) PADDOCK PATENSIE, PHILADELPHIA POLIS PIETERSBURG PIETRSBRG:UNIV.V/D PIONEER SEED, GREY PK LE ROUXDAM;OUKR PLAATKOP:ALWAL NRT PLOOYSBURG;S.A.P. PMBURG:UKULINGA RES. POFADDER - POL POFFADER PONGOLA PORT ELIZABETH PORTERVILLE KO-OP POSTMASBURG POTCHEFSTROOM AGR; POTCHEFSTROOM;NOYO POWERS COURT PRESTON PARK PRETORIA:N.I.PLANT PRIESKA PRINSKRAAL PROTEM PUNDA MILIA QUEENSTOWN REITZ KO-OP, RHEBOKRANT RICHMOND:SAPEKOE E RICHTERSVELD RIEBEEK-WES RIETBRON RIETBRON - MUN RIETRIVIER,SANDPER Station Table 13 (continue) Longitude (º) 25,2 17,52 19,28 27,83 21,95 24,6 22,12 22,42 30,22 24,83 18,58 29,27 29,67 30,62 24,68 26,88 24,23 30,4 19,38 19,23 31,58 25,36 19,02 23 27,08 27 30,63 25,93 28,33 22,45 20,12 20,08 31,01 26,87 28,43 24,63 30,15 16,9 18,87 23,07 23,15 24,62 Latitude (º) -26,42 -28,36 -28,78 -33,03 -28,88 -29,88 -33,35 -33,92 -30,78 -33,78 -33,67 -23,52 -23,85 -29,03 -29,93 -30,8 -29,02 -29,67 -29,13 -29,08 -27,4 -33,59 -33,02 -28,18 -26,73 -26,78 -29,97 -33,5 -25,73 -29,4 -34,63 -34,27 -22,41 -31,9 -27,8 -34,1 -29,93 -28,13 -33,35 -32,93 -32,9 -29,07 Elevation (m) 1311 927 305 125 884 1140 335 204 503 150 76 1230 1250 1110 1143 1349 1082 775 989 994 308 58 145 1324 1345 1370 631 330 1299 933 15 259 462 1099 1615 160 1200 42 168 820 762 1140 MAP (mm) 427 152 85 768 190 324 254 768 1151 445 467 476 456 826 364 496 377 719 93 98 671 632 522 325 602 578 1018 452 703 232 424 463 590 527 723 842 1182 58 546 222 210 362 Jan 6,3 6,5 5,6 5,0 8,5 7,6 6,1 4,1 3,9 5,5 6,0 5,0 5,4 4,6 6,0 6,2 6,1 4,6 6,1 7,0 4,9 4,6 6,1 6,8 6,0 6,1 3,7 5,9 5,6 6,9 5,2 6,0 5,7 6,0 5,9 5,3 3,8 6,8 6,7 7,3 6,4 6,8 Feb 5,7 6,1 5,3 4,7 7,4 5,9 5,6 3,9 3,6 4,9 5,6 4,8 5,2 4,2 5,3 5,7 5,2 4,4 5,2 6,3 4,6 4,1 5,7 6,2 5,4 5,6 3,5 5,4 5,2 6,4 4,8 5,5 5,1 5,4 5,4 4,9 3,9 6,4 6,4 6,4 5,5 5,9 Mrch 4,9 5,1 4,3 3,9 6,0 4,9 4,4 3,2 3,1 3,9 4,4 4,2 4,4 3,6 4,2 4,3 4,2 3,8 4,1 5,1 3,9 3,3 4,4 4,8 4,6 4,7 3,1 4,5 4,5 5,1 4,0 4,4 4,4 4,3 4,5 4,1 3,5 5,3 5,0 5,2 4,3 4,7 April 3,8 3,4 3,0 3,6 4,5 3,6 3,0 2,6 2,7 3,1 2,9 3,5 3,7 3,0 3,0 3,0 3,0 3,1 2,9 3,5 3,0 2,9 2,9 3,6 3,7 3,9 2,7 3,7 3,6 3,5 2,9 3,2 4,0 3,5 3,5 3,7 2,9 4,3 3,3 3,7 3,0 3,4 Average daily ET0 (mm/day) May June July Aug 3,0 2,5 2,8 3,8 2,4 1,9 2,1 2,7 2,0 1,5 1,6 2,3 3,3 3,0 3,2 3,3 3,3 2,6 2,9 4,1 2,6 2,0 2,3 3,4 2,3 2,1 2,1 2,6 2,3 2,1 2,1 2,3 2,3 2,0 2,2 2,8 2,4 2,1 2,3 2,7 1,7 1,2 1,3 1,8 2,9 2,6 2,7 3,3 3,0 2,6 2,8 3,7 2,3 2,0 2,3 3,1 2,0 1,6 1,8 2,5 2,1 1,8 2,0 2,8 2,1 1,6 1,8 2,5 2,6 2,3 2,5 3,0 2,0 1,5 1,7 2,4 2,5 1,9 2,2 2,9 2,3 1,9 2,1 2,8 2,3 1,9 2,0 2,5 1,8 1,4 1,5 2,0 2,8 2,3 2,6 3,5 3,0 2,6 2,9 4,0 3,2 2,7 3,0 4,1 2,2 2,0 2,2 2,7 2,9 2,6 2,8 3,2 2,9 2,4 2,7 3,6 2,5 1,9 2,2 3,0 2,0 1,6 1,6 2,1 2,3 1,9 1,9 2,3 3,3 2,9 3,1 3,9 3,0 2,7 2,9 3,7 2,8 2,3 2,5 3,4 3,2 2,8 2,9 3,1 2,5 2,6 3,0 3,5 3,0 2,1 2,4 3,1 2,0 1,6 1,6 2,3 2,6 2,3 2,6 3,2 2,0 1,6 1,7 2,5 2,5 1,9 2,1 3,0 Sept 5,2 3,7 3,4 3,5 5,3 4,3 3,2 2,8 3,1 3,5 2,7 4,1 4,8 4,0 3,6 4,3 3,7 3,6 3,4 4,1 3,5 2,9 2,9 4,5 5,5 5,5 2,9 3,9 4,8 4,2 3,0 3,1 4,6 4,6 4,7 3,4 3,9 4,1 3,2 4,3 3,4 4,3 Oct 5,9 4,7 4,5 3,8 6,7 5,4 4,3 3,3 3,1 4,2 4,1 5,2 5,5 4,3 4,6 5,1 4,6 3,9 4,5 5,1 4,1 3,5 4,2 5,6 6,1 6,1 3,2 4,6 5,3 5,2 4,0 4,2 5,6 5,0 5,3 3,9 3,5 5,3 4,7 5,3 4,7 5,2 Nov 6,5 5,9 5,2 4,3 7,8 6,7 5,3 3,8 3,6 4,8 5,2 5,4 5,4 4,7 5,5 5,7 5,6 4,4 5,4 6,3 4,4 4,1 5,2 6,5 6,5 6,2 3,5 5,1 5,5 6,5 4,7 5,1 5,7 5,6 5,6 4,4 4,0 6,1 5,8 6,4 5,7 6,3 Crop water relationships and climate Dec 6,6 6,5 5,7 4,7 8,4 7,6 5,9 4,1 3,8 5,4 5,8 5,2 5,3 4,8 6,2 6,5 6,0 4,6 6,2 7,0 4,8 4,7 6,0 7,1 6,5 6,4 3,7 5,7 5,5 7,2 5,2 5,7 5,9 6,1 6,0 5,0 3,9 6,7 6,3 7,0 6,4 6,7 4.39 RIVERSDAL KO-OP ROBERTSON (NIVV) ROBERTSON PP ROEDTAN ROODEHEUWEL (WRS) ROODEPLAAT - AGR RUSTENBURG - AGR RUSTENHOF SCHWEIZER RENEKE SCOTTBURG:CROCWORL SERJEANTSRIVIER SETTLERS:LANDBOUSK SEVONTEIN, ELANDSK SITRUSBEURS GVB. SOMERSET OOS - HOS SPEKBOOM SPITSKOP,PRIESKA STELLENBOSCHVLEI STERKSTROOM SUGAR MILL, SEZELA SUTHERLAND TAUNG TENBOSCH THABAZIMBI THE GRANGE, UMZIMK TONGAAT TOT - U - DIENS TOWOOMBA TWEESPRUIT; TYGERHOEK (WRS) UGIE UKULINGA RES STN UMTATA UMZIMKULU UNDERCHURCH UPINGTON NS. VAALKRANTZ VAALWATER:ELANDSKL VAN WYKSVLEI VELDRESERWE VENDA:LWAMONDO VENDA:RABALI. Station Longitude (º) 21,27 19,9 19,88 29,08 22,25 28,35 27,3 18,78 25,43 30,77 19,52 28,55 30,13 25,32 25,58 25,87 22,85 23,42 26,52 30,58 20,4 24,73 31,9 27,24 29,97 31,13 19,85 28,33 27,07 19,9 28,27 30,4 28,47 30,43 27,37 21,25 26,05 28,05 21,82 19,45 30,37 30,12 Latitude (º) -34,08 -33,83 -33,83 -24,57 -33,63 -25,58 -25,72 -34,05 -27,18 -30,28 -34,13 -24,95 -29,75 -33,77 -32,73 -33,45 -29,6 -32,25 -31,65 -30,33 -32,23 -27,55 -25,33 -24,37 -30,25 -29,57 -33,68 -24,9 -29,2 -34,13 -31,22 -29,67 -31,35 -30,68 -32,32 -28,45 -33,37 -24,28 -30,35 -33,65 -23,05 -22,87 Irrigation Design Manual Table 13 (continue) 4.40 Elevation (m) 122 156 156 973 301 1164 1157 56 1280 100 366 1050 1375 110 717 259 939 970 1297 160 1456 1097 179 1028 762 72 915 1143 1585 168 1280 775 696 180 850 793 380 1215 962 275 885 1 MAP (mm) 455 294 360 554 249 645 614 696 499 911 557 639 930 492 506 424 236 216 478 1024 229 442 607 671 800 1026 534 635 637 498 927 678 654 1143 496 158 452 614 172 271 897 371 Jan 5,3 5,9 5,3 6,2 6,2 5,8 4,9 5,7 7,0 4,3 5,8 5,2 4,4 5,5 6,1 5,9 8,4 8,9 6,4 4,2 6,2 7,0 5,1 6,3 3,8 4,3 5,5 5,1 6,1 5,8 4,6 3,5 4,7 4,0 5,4 6,9 5,2 4,8 8,4 7,0 5,0 6,4 Feb 4,9 5,3 5,1 6,0 5,8 5,4 4,6 5,6 5,7 4,1 5,4 5,0 4,1 4,9 5,5 5,4 7,0 8,2 5,4 4,2 5,7 5,9 4,7 6,0 3,8 4,2 5,0 4,9 5,2 5,4 4,1 3,8 4,1 3,8 4,9 6,0 4,7 4,5 7,4 6,3 4,7 5,9 Mrch 3,9 4,1 3,7 5,0 4,5 4,6 3,9 4,1 4,9 3,6 4,3 4,0 3,6 4,0 4,4 4,4 5,5 6,5 4,3 3,7 4,5 4,9 3,9 4,9 3,2 3,5 4,0 4,2 4,1 4,3 3,6 3,2 3,6 3,3 4,1 4,7 3,9 3,9 5,7 4,8 4,2 5,2 April 2,8 2,9 2,7 4,0 3,0 3,8 3,0 3,1 4,0 3,0 2,9 3,2 2,9 3,3 3,5 3,5 3,9 5,1 3,2 3,2 3,3 3,9 3,1 4,0 2,5 2,7 2,9 3,3 3,0 3,0 3,0 2,6 3,0 2,5 3,4 3,4 3,1 3,2 4,1 3,3 3,5 4,4 Average daily ET0 (mm/day) May June July Aug 2,1 1,8 1,8 2,3 2,1 1,8 2,0 2,5 1,7 1,8 1,6 2,2 3,1 2,6 2,9 4,0 2,0 1,6 1,7 2,4 3,1 2,6 2,9 3,8 2,4 1,9 2,0 2,7 2,1 1,7 1,7 2,1 3,0 2,3 2,6 3,8 2,6 2,3 2,4 2,9 1,9 1,5 1,5 2,0 2,4 1,9 2,2 3,0 2,3 1,9 2,1 3,0 2,6 2,3 2,4 2,9 2,9 2,5 2,9 3,5 2,7 2,3 2,6 3,0 2,8 2,1 2,3 3,5 4,1 3,6 3,8 4,4 2,4 2,1 2,3 3,1 2,8 2,4 2,6 3,1 2,5 2,0 2,0 2,6 3,0 2,6 2,8 3,8 2,4 1,9 2,1 2,8 3,3 3,0 3,2 4,1 1,7 1,3 1,5 2,0 1,9 1,5 1,6 2,2 2,2 1,8 1,9 2,3 2,6 2,2 2,5 3,2 2,2 1,6 1,8 2,8 2,1 1,6 1,7 2,2 2,4 2,0 2,1 3,1 2,3 2,3 2,0 3,0 2,2 1,8 2,3 2,7 1,9 1,6 1,7 2,1 2,9 2,7 2,8 3,6 2,3 1,8 2,0 2,9 2,6 2,4 2,6 2,9 2,5 2,2 2,4 3,2 2,8 2,1 2,4 3,4 2,3 1,9 2,0 2,5 3,1 2,8 2,7 3,5 3,5 3,0 3,2 4,2 Sept 3,1 3,5 2,6 5,5 3,4 5,0 3,7 3,0 5,3 2,9 2,8 4,2 3,6 3,7 4,2 3,9 4,9 5,8 4,1 3,5 3,3 5,1 3,7 5,2 2,7 2,8 3,0 4,3 4,0 3,2 3,8 3,6 3,4 2,7 4,4 4,0 3,6 4,3 4,6 3,5 4,5 5,5 Oct 4,0 4,3 3,5 6,4 4,5 5,7 4,3 4,0 5,9 3,4 3,9 4,7 3,9 4,3 4,6 4,5 6,1 6,6 4,7 3,9 4,3 5,9 4,3 6,3 3,2 3,5 3,9 5,0 4,8 4,2 4,1 3,6 4,0 3,2 4,6 5,1 4,1 4,9 6,2 4,7 4,9 6,2 Nov 4,7 5,3 4,5 6,5 5,5 5,9 4,7 4,4 6,7 3,8 4,9 5,1 4,2 4,9 5,3 5,1 7,5 7,7 5,6 4,2 5,4 7,0 4,6 6,6 3,6 3,9 4,7 5,2 5,6 5,1 4,3 3,8 4,5 3,7 5,1 6,3 4,7 5,1 7,5 5,9 5,1 6,4 Dec 5,2 5,8 4,7 6,4 6,0 5,9 4,9 5,3 7,1 4,0 5,5 5,1 4,4 5,4 6,0 5,9 8,3 8,8 6,4 4,2 6,1 7,4 5,0 6,7 3,8 4,3 5,3 5,3 6,2 5,7 5,0 0,0 4,5 4,0 5,4 6,9 5,2 4,9 8,2 6,7 5,0 6,2 VENDA:SIGONDE. VENDA:TSHIOMBO VENTERSDORP:STERKS VEREENIGING;RUSOORD. VERGELEGENDRUIF VERGELEGENVRUG VILJOENSKROON;RIET VILJOENSLAAGTE:KOP VILLIERS KO-OP. VILLIERSDORP VREDE EN LUST VREDENBURG KO-OP VRYBURG;ARMOEDSVLAKT VRYBURG;VERGELEGEN WALKERS HOEK,LADYS WATERFALL,UTRECHT WELGEVALLEN II WELKOM;SANDVET. WELTEVREDE WELVERDIEND AN. WEPENER WEPENER WESSELSBRON;CORNEL WESTON COLLEGE, MO WHYTE BANK,ADELAID WILLOWMORE. WINTERBERG LS. WISTARIA WITRIVIER;MALEKUTU WITTEKLIP ZEBEDIELA ZEERUST Station Table 13 (continue) Longitude (º) 30,77 30,5 26,72 28,32 18,92 18,9 26,92 27,45 28,62 19,3 18,95 18 24,63 24,2 29,67 30,25 18,85 26,68 20,62 26,72 27,03 27,02 26,45 30,03 26,23 23,5 26,63 25,05 31,2 21,83 29,27 26,05 Latitude (º) -22,42 -22,8 -26,47 -26,83 -34,1 -34,08 -27,17 -27,23 -27,03 -33,98 -33,85 -32,9 -26,95 -25,78 -28,47 -27,8 -33,93 -28,13 -33,93 -30,72 -29,73 -29,44 -27,7 -29,22 -32,42 -33,28 -32,78 -33,68 -25,2 -34,2 -24,3 -25,33 Elevation (m) 405 650 1375 1450 260 80 1321 1401 1493 366 160 128 1234 1065 1200 1180 116 1295 405 1348 1438 1440 1325 1390 950 840 456 348 676 150 1250 1207 MAP (mm) 363 824 564 562 790 740 596 621 638 697 881 326 437 372 785 704 698 519 362 582 615 626 521 800 599 267 445 514 756 449 577 590 Jan 4,8 5,2 6,1 5,2 5,2 5,3 5,5 6,2 5,1 6,0 6,4 5,8 6,6 6,1 4,6 5,2 5,6 5,1 5,4 7,9 5,4 6,3 6,5 4,1 5,6 6,9 6,5 5,0 4,8 5,0 4,5 5,7 Feb 4,7 4,9 5,5 4,9 5,1 5,1 4,9 5,7 4,7 5,5 5,9 5,6 5,4 5,3 4,2 4,8 5,3 4,6 5,0 6,1 4,4 5,4 5,7 4,0 5,2 6,1 6,0 4,5 4,7 4,5 4,9 5,3 Mrch 4,0 4,3 4,7 4,1 3,7 3,8 4,1 4,7 4,0 4,4 4,9 4,7 4,6 4,6 3,5 4,0 4,1 3,7 3,8 5,0 3,7 4,0 4,6 3,3 4,4 4,8 4,8 3,5 3,9 3,7 4,4 4,4 April 3,3 3,6 3,8 3,2 2,6 2,6 3,2 3,8 3,1 3,1 3,6 3,7 3,6 4,2 2,6 3,2 2,8 2,8 2,5 3,5 2,7 3,2 3,5 2,7 3,8 3,4 4,1 2,7 3,4 3,0 3,8 3,7 Average daily ET0 (mm/day) May June July Aug 2,5 2,1 2,2 2,8 2,9 2,7 2,8 3,5 3,0 2,6 2,9 4,0 2,4 1,9 2,1 3,0 1,8 1,4 1,3 2,2 1,7 1,6 1,6 2,1 2,3 1,9 2,1 3,0 2,8 2,3 2,6 3,7 2,3 1,9 2,1 2,9 2,3 2,0 2,3 2,5 2,3 1,6 1,8 2,1 2,7 2,2 2,2 2,6 2,5 2,0 2,2 3,2 2,7 2,2 2,5 3,6 2,0 1,6 1,8 2,5 2,6 2,3 2,6 3,5 1,9 1,6 1,6 2,1 1,9 1,4 1,6 2,2 1,7 1,2 1,3 1,9 2,6 1,9 2,3 3,3 1,9 1,5 1,7 2,4 2,5 2,2 2,4 3,4 2,6 2,0 2,3 3,5 2,1 1,8 2,0 2,6 3,4 3,4 3,6 3,9 2,4 2,1 2,2 3,0 3,4 2,9 3,2 3,8 2,0 1,8 2,0 2,3 2,6 2,4 2,4 3,3 2,5 2,1 2,2 2,5 3,1 2,7 2,9 3,4 3,1 3,0 3,1 4,0 Sept 3,7 4,6 5,4 4,5 2,7 2,7 4,3 5,0 4,0 3,4 3,3 3,5 4,6 4,6 3,3 4,4 2,9 3,2 2,8 4,6 3,3 4,2 4,7 3,4 4,5 3,9 4,6 3,0 4,3 3,1 4,9 5,2 Oct 4,2 4,9 6,2 5,1 3,6 3,5 5,3 5,8 4,6 4,3 4,6 4,6 5,5 5,4 3,8 4,8 4,3 4,0 3,8 5,7 4,3 5,2 5,7 3,8 4,7 4,9 4,9 3,6 4,8 3,8 5,4 6,0 Nov 4,6 5,2 6,6 5,6 3,7 4,0 5,7 6,1 5,0 5,2 5,0 5,3 6,3 6,1 4,3 5,1 5,0 4,7 4,8 6,8 5,0 5,8 6,3 3,9 5,2 6,1 5,6 4,4 4,9 4,4 5,3 6,2 Crop water relationships and climate Dec 4,9 5,3 6,6 5,4 4,7 5,0 6,1 6,4 5,3 5,8 5,6 5,7 6,6 5,9 4,6 5,4 5,3 5,1 5,3 7,8 5,5 6,2 6,7 4,1 5,4 6,7 6,4 4,8 4,8 4,9 4,9 6,1 4.41 4.42 Irrigation Design Manual 5 References 1. Crosby, C. T. 1996. SAPWAT 1.0 – A computer program for estimating irrigation requirements in Southern Africa. WRC Report No. 379/1/96. 2. Doorenbos, J. and Kassam, A.H. 1979. FAO. Irrigation and Drainage Paper 33. Yield response to water. Rome. 3. Doorenbos, J. and Pruitt, W.O. 1977. FAO. Irrigation and Drainage Paper 24. Guidelines for predicting crop water requirements. Rome. 4. Du Preez, M. 1990. Besproeiing van Vrugtebome: Wat weet ons? S.A. Irrigation vol. 12 no 5. 5. Soil and Irrigation Research Institute. 1985. Beraamde Besproeiingsbehoeftes van Gewasse in SuidAfrika. 6. Piaget, J. and Lategan, M.T. 1986. Inleiding tot Besproeiing Deel I. Stellenbosch. 7. Scheepers, I., Piaget, J., Kotze, W.A.G. and Myburgh, P.A. 1991. Riglyne vir Besproeiingskedulering van Permanente Gewasse in die Winterreëngebied. Elsenburg Agricultural Development Institute. 8. Smith, M. 1992. FAO. Irrigation and Drainage. Paper 46. Cropwat a computer program for irrigation and management. Rome.
© Copyright 2026 Paperzz