Math 152 ‐ Lecture Notes # 1 ‐ David Maslanka Approximating ln 2 with Riemann Sums _________________________________________________________________________________________________________________________________ To approximate the number ln 2, we consider upper and lower Riemann sums. By definition, 2 ⌠ ⎮ 1 ln 2 = ⎮ dt . ⎮ ⎮ t ⌡ 1 1 In Maple, we define f ( t ) = . t > f:=t->1/t; f := t → 1 t 1 Upon partitioning the interval I = [ 1 , 2 ] into n subintervals, each of length , we may form L ( n ) , the left hand Riemann sum for f over I : n > L:=n->sum(f((1+k/n))/n,k=0..n-1); n−1 L := n → ∑ k=0 ⎛ k⎞ f⎜⎜ 1 + ⎟⎟ ⎝ n⎠ n L ( n ) = A1( n ) + A2( n ) + A3 ( n ) + . . . + An ( n ). Note that L ( 1 ) > L ( 2 ) > L ( 3 ) > . . . > ln 2 since f is decreasing on I . Now we consider the right hand Riemann sum R ( n ) for f on I , assuming a uniform partition as before. > R:=n->sum(f((1+k/n))/n,k=1..n); n R := n → ∑ ⎛ k⎞ f⎜⎜ 1 + ⎟⎟ ⎝ n⎠ k=1 n R ( n ) = a1( n ) + a2 ( n ) + a3( n ) + . . . + an( n ) Note that R ( 1 ) < R ( 2 ) < R ( 3 ) < . . . < ln 2 since f is decreasing on I . _________________________________________________________________________________________ Claim: The value of ln 2 is 0.69 rounded to the hundredths place. _________________________________________________________________________________________ To see this, consider the following computation: > n:=1: > while evalf((L(n)-R(n))>0.003) do > n:=n+1; > end do: > n; 167 Now observe that > L[167]=evalf(L(167));R[167]=evalf(R(167)); L167 = 0.6946464276 R167 = 0.6916524156 and since R ( n ) < ln 2 < L ( n ) for any positive integer n, we are certain that .6916524156 < ln 2 < .6946464276 . Therefore, we conclude that ln 2 = 0.69 accurately rounded to the hundredths place.
© Copyright 2025 Paperzz