5 3 4 5 2 + + 1 12 3 2 1 6 4 9 2

Algebra II Pre AP
Name ___________________________
Algebra Review Worksheet
Date ________________Period ______
Simplify each of the following using order of operations. Show work!
1.
5  3  4   5  2 
3


3. 12  3 2  1  6
5.

2
1
2
 4  9

2
62
11   6  4 5
2.
10  32 5
2  68
4.
1
24  2  7  10   42 
10 
6.
64  3  4 5  1  8
2
Insert grouping symbols in each expression in order to make each of the following equations true.
7.
6  5 2  7  2 2 1  3
8.
4c  cd  d  c2  15 when c  4, d  3
9.
cd  5d   2d   4c  21 when c  6, d  3
2
10. 4cx 2  7 x  d  dx 2  cx  3  3x 2  9 x  8 when c  2, d  5
11. 3cx3  8dx 2  10 x 2  2cx d  3x 3  4cx  12 x 3  18x 2  18x when c  3, d  1
Evaluate the following expressions for the given values of the variables. Show all work!
12. 2 x 2  0.5  x  4 x  when x 
1
3
13. 3x 2   4  2 x   6 when x   4
14. 3x 2  5 y 2  4 xy when x  
2
1
, y
3
2
15.
1
3x  y  4
 6 y when x   , y  5
2
2x  y
16.
3x  x  2 y 
when x   3, y  2
4 x2 y  3
17.
4x  2 y 
y 3
3
2
when x 
1
3
, y 
2
5
 y
3
3   y  1
 1 
x

18.
when x   5, y  4

 y 
2x


Simply each of the following expressions.
28c 4d 11
4cd 3
19.

20. 3x 3 y
21.
  2 xy 
2
4 3
5x0 6 x5 y 2 2 xy3


2
6 x 3 y  54  x 2 

3
22. 8 x 3 y  10 x 2  7 x 

23. 3x 2 y x 2 y  6 y 2  7

24.  2 y  5 y  8
25.
 x  4 y   6 x 2  xy  2 y 2 
26.  3x  4    x  5   x  3 x  3
2


27. 52 x  2 
1
3x
 7  x    14 x
2
5
Solve each of the following equations for x . Show all work!
28. x  5  x  2  
1
 3x  1
2
29. 0.3  2 x  3  0.2 x  0.9
30.
x2
 x  6  2x  9
7
31.
3x  2  4 x  1
 x 1
6
32. Explain the difference between evaluating, simplifying and solving.