5.1 Fundamental Identities Name: ___________________ Objectives: Students will be able to use fundamental identities to simplify trigonometric expressions and solve trigonometric equations. Reciprocal Identities: cscθ = 1 sinθ = 1 sinθ cscθ cosθ = 1 secθ = cosθ secθ tanθ 1 1 cotθ = 1 tanθ cotθ Quotient Identities tanθ = sinθ cotθ = cosθ cosθ sinθ Nov 253:23 PM Pythagorean Identities: sin2θ + cos2θ = 1 The other two Pythagorean Identities can be easily derived from the one above. -Divide the above equation by cos2θ: -Divide the above equation by sin2θ: Nov 253:42 PM 1 Cofunction Identities sin(π/2 - θ) = cosθ cos(π/2 - θ) = sinθ tan(π/2 - θ) = cotθ cot(π/2 - θ) = tanθ sec(π/2 - θ) = cscθ csc(π/2 - θ) = secθ Odd-Even Identities sin(-θ) = -sinθ csc(-θ) = -cscθ cos(-θ) = cos(θ) sec(-θ) = sec(θ) tan(-θ) = -tanθ cot(-θ) = -cotθ Nov 253:44 PM Example Evaluate without a calculator. Use the Pythagorean identities rather than reference triangles. Find sinθ and tanθ if cosθ = 0.8 and tanθ < 0. Example Use identities to find the value of the expression. If cot(-θ) = 7.89, find tan(θ - π/2). Nov 253:54 PM 2 Examples Use basic identities to simplify the expressions. 1.) sec(-x)cos(-x) 2.) cotβsinβ 3.) 1 - cos2θ sinθ Nov 253:58 PM 4.) sin3x + sinxcos2x 5.) (secx - 1)(secx + 1) sin2x Nov 254:05 PM 3 6.) cosx - 1 - sinx sinx cosx Nov 254:06 PM 7.) Find all values in [0,2π) that solve cos3x = cotx. sinx Nov 254:06 PM 4 8.) Find all the trigonometric solutions to 2sin2x + sinx = 1 Nov 254:11 PM Assignment: Pages 451-452: #1-73 odd Nov 254:12 PM 5
© Copyright 2026 Paperzz