ISSN 2075-9827 http://www.journals.pu.if.ua/index.php/cmp Carpathian Math. Publ. 2014, 6 (1), 32–43 Карпатськi матем. публ. 2014, Т.6, №1, С.32–43 doi:10.15330/cmp.6.1.32-43 Z ATORSKY R.A., S EMENCHUK A.V. CALCULATION ALGORITHM OF RATIONAL ESTIMATIONS OF RECURRENCE PERIODICAL FOURTH ORDER FRACTION Recurrence fourth order fractions are studied. Connection with algebraic fourth order equations is established. Calculation algorithms of rational contractions of such fractions are built. Key words and phrases: periodical recurrence fraction, triangular matrix, parapermanent, paradeterminant, rational approximation. Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine E-mail: [email protected] (Zatorsky R.A.), [email protected] (Semenchuk A.V.) I NTRODUCTION Continued fractions are generalized by quite a few Ukrainian [12, 13] and foreign mathematicians [1]–[11], [14]. The important conditions for generalization of continued fractions are following: – construction of an easy-to-use algebraic object, the form of which would be similar to the form of continued fractions, would make it possible to naturally introduce the notion of their order and to single out the class of periodic objects generalizing periodic continued fractions; – the algorithm for calculating the value of rational contractions of mathematical objects is to be simple in realization and efficient; – by analogy with periodic chain fractions, random periodic algebraic objects of higher orders are to be of the forms of some algebraic irrationalities of higher orders. In [15] it is suggested new generalization of continued fractions — recurrence fractions, which satisfy the above-mentioned conditions. In addition, the connection between singly periodic recurrence fractions of order n and algebraic equations of order n has been established. Recurrence fractions of order three have been studied in [16]. This article focuses on recurrence fractions of order four, proves their connection with corresponding algebraic equations of order four and determines algorithms for constructing rational approximations of order four. УДК 511.14 2010 Mathematics Subject Classification: 11J70. c Zatorsky R.A., Semenchuk A.V., 2014 C ALCULATION ALGORITHM OF RATIONAL ESTIMATIONS OF 1 P ERIODIC RECURRENCE FRACTION OF RECURRENCE FRACTIONS OF ORDER A recurrence fraction of order four takes the form q1 p2 q2 q2 r3 p3 p q3 q3 3 p4 r4 s4 q4 r4 p4 q4 p5 s5 r5 0 q5 r5 p5 q5 .. . . . . . . . . . . . . . . .. p 0 0 . . . rsmm prmm qmm qm .. . . . . . . . . . . . . . . . . . . . . .. 4-TH ORDER 33 4 . (1) ∞ Its rational contractions Pn = Qn q1 p2 q2 r3 p3 s4 r4 0 .. . 0 q2 p3 q3 r4 p4 s5 r5 q3 p4 q4 r5 p5 q4 p5 q5 q5 ... ... ... ... 0 . . . rsnn prnn .. . pn qn qn n satisfy the recurrence equations Pn = qn Pn−1 + pn Pn−2 + rn Pn−3 + sn Pn−4, n = 1, 2, 3, . . . , Q n = q n Q n−1 + pn Q n−2 + r n Q n−3 + s n Q n−4 , n = 2, 3, 4, . . . (2) with the initial conditions P0 = 1, Pi<0 = 0, Q1 = 1, Qi<1 = 0. Definition. The recurrence fraction (1) of order 4, the elements of which satisfy the conditions prk+m = pm , qrk+m = qm , rrk+m = rm , srk+m = sm , m = 1, 2, . . . , k, r = 0, 1, 2, . . . (3) is a periodic recurrence fraction of order 4 with the period k. We shall determine the connections between periodic recurrence fractions of order four and real positive roots of quartic equations. 1. Consider a singly periodic recurrence fraction of order four. Let us decompose the parapermanent of the numerator of the rational contraction 34 Z ATORSKY R.A., S EMENCHUK A.V. Pn = Qn q p q r p s r q p q r p s r 0 .. . 0 0 0 0 q p q r p q p q q ... ... ... ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... ... q p ... q . . . pr . . . rs q p q r p q p q q by the elements of the first column. We get the equality Pn = q+ Qn p Pn −1 Q n −1 + r Pn −1 Q n −2 + s Pn −1 Q n −3 = q+ p Pn −1 Q n −1 + r Pn −1 Q n −1 · Pn −2 Q n −2 + n+1 s Pn −1 Q n −1 · Pn −2 Q n −2 · Pn −3 Q n −3 . (4) Let us take the limit Pn Pn = lim = x, n→∞ Pn−1 n→ ∞ Q n p then the equality (4) is written as x = q + x + xr2 + xs3 , or x4 = qx3 + px2 + rx + s. One of the roots of this equation is s p 2β α + 2y + − 3α + 2y + √ α+2y q , x= + 4 2 lim where 5 y = − α+ 6 s 3 Q − + 2 r Q2 P3 + − 4 27 P 3· r 3 − Q2 + q , Q2 4 + P3 27 3 α = − q2 − p, 8 3q4 pq2 qr α2 α3 αγ β2 q3 qp − − r, γ = − − − − s, P = − − γ, Q = − − − . 8 2 256 16 4 12 108 3 8 It is easy to establish that if q = 4, p = − 6, r = 4, the singly periodic fraction will represent √ the irrationality 4 1 + s. β=− Example 1. If q = 4, p = −6, r = 4, s = 2, then the recurrence fraction is written as 4 −3 4 2 2 − 32 4 −3 1 2 − 23 − 32 4 1 0 − 23 − 23 4 2 1 0 − 23 − 32 4 0 2 .. . . . . . . . . . . . . . . . . . .. . ∞ C ALCULATION ALGORITHM OF RATIONAL ESTIMATIONS OF RECURRENCE FRACTION OF 4-TH ORDER 35 The relevant algebraic equation of order four is of the form √ x4 = 4x3 − 6x2 + 4x + 2. The rational approximations to the maximum modulo root x = 1 + 4 3 ≈ 2, 31607401295249246 of this equation can be found with the help of the linear recurrence relations of order four Pn = 4Pn−1 − 6Pn−2 + 4Pn−3 + 2Pn−4 , P0 = 1, while x = lim PPmm−1 . m→∞ Here are the first 35 rational approximations to this root: u1 = 4, u8 = 1164, u15 = 404736, u22 = 144235520, u29 = 51545829376, u2 = 10, u9 = 2704, u16 = 937104, u23 = 334031360, u30 = 119382376448, u3 = 20, u10 = 6136, u17 = 2165568, u24 = 773463744, u31 = 276492099584, u4 = 38, u11 = 13936, u18 = 5006752, u25 = 1791122688, u32 = 640367841536, u5 = 80, u12 = 32072, u19 = 11591488, u26 = 4148304768, u33 = 1483139933184, u6 = 192, u13 = 74624, u20 = 26861920, u27 = 9608400640, u34 = 3435085834752, u7 = 480, u14 = 174080, u21 = 62256896, u28 = 22255192192, u35 = 7955959305216, while u35 u34 = 7955959305216 3435085834752 ≈ 2.3160874. 2. Consider a doubly periodic recurrence fraction of order four q1 p2 q2 q2 r1 p1 p q1 q1 s1 p2 r2 2 q 2 , r2 p2 q2 p1 s1 r1 0 q 1 r1 p1 q1 p s r 2 2 2 0 0 q 2 r p q 2 2 2 .. ... ... ... ... ... ... . ∞ where qi , pi , ri , si are some rational positive numbers. Let us decompose the parapermanent of the numerator of the rational contraction by the elements of the first column [ q1 ] n q [q ] + p2 [ q 1 ] n − 2 + r 1 [ q 2 ] n − 3 + s 2 [ q 1 ] n − 4 = 1 2 n−1 [ q2 ] n−1 [ q2 ] n−1 (5) r1 s1 p + . = q1 + [ q ] 2 + [ q ] [ q2 ] n −1 [ q1 ] n −2 [ q2 ] n −3 2 n −1 2 n −1 · [[qq1 ]]n−2 · [q ] · [q ] [q ] [q ] [q ] 1 n −2 1 n −2 2 n −3 1 n −2 2 n −3 1 n −4 In this equality, the parapermanent of order i with the upper element q j , j = 1, 2 is denoted [q ] by [q j ]i . Likewise, we decompose the numerator of the fraction [q2 ]n−1 by the elements of the 1 n −2 first column p [ q2 ] n−1 r2 s1 = q2 + [ q ] 1 + [ q ] . (6) + [q ] [ q2 ] n −3 [ q2 ] n −3 [ q1 ] n −4 1 n −2 1 n −2 1 n −2 [ q1 ] n−2 · · · Let us take the limits [ q2 ] n −3 [ q2 ] n −3 [ q1 ] n −4 [ q2 ] n −3 [ q1 ] n −4 [ q2 ] n −5 [ q1 ] m [ q2 ] m = x, lim = y. m → ∞ [ q2 ] m −1 m → ∞ [ q1 ] m − 1 Passing n to infinity in the equalities (5), (6), we get simultaneous equations x = q1 + p2 + r1 + s22 , y xy xy y = q2 + p1 + r2 + s21 , lim x xy x y 36 Z ATORSKY R.A., S EMENCHUK A.V. from which we find that p ( q 2 x + p1 )2 + 4(r 2 x + s 1 ) , 2x and x is the positive root of the equation of order four y= q 2 x + p1 + (q2 p2 r2 + r22 − q22 s2 ) x4 = (q1 q2 p2 r2 + p22 r2 + 2q1 r22 + 2q2 p1 s2 + 2r2 s2 − p1 p2 r2 − q2 r1 r2 − 2r2 s1 − q2 p2 s1 − q1 q22 s2 − q2 p2 s2 ) x3 + (q1 p1 p2 r2 + q1 q2 r1 r2 + 2p2 r1 r2 + p22 s1 + q1 q2 p2 s1 + 4q1 r2 s1 + p21 s2 + 2s1 s2 − q21 r22 − p1 r1 r2 − q2 r1 s1 − p1 p2 s1 − s21 − s22 − 2q1 q2 p1 s2 (7) 2 − 2q1 r2 s2 − p1 p2 s2 − q2 r1 s2 ) x + (q1 p1 p2 s1 + q1 q2 r1 s1 + 2p2 r1 s1 + r12 r2 + q1 p1 r1 r2 + 2q1 s21 − 2q21 r2 s1 − p1 r1 s1 − q1 p21 s2 − 2q1 s1 s2 − p1 r1 s2 ) x + s1 (q21 s1 − q1 p1 r1 − r12 ). Thus, the following theorem is proved. Theorem 1. If qi , pi , ri , si are some rational positive numbers and there are limits [ q1 ] m lim m → ∞ [ q2 ] m −1 = x, [ q2 ] m lim m → ∞ [ q1 ] m − 1 = y, then x is the positive root of the equation (7) of order four. Example 2. If q1 = 3, p1 = 3, r1 = 3, s1 = 3, q2 = 2, p2 = 2, r2 = 2, s2 = 2, then the recurrence fraction is written as 3 2 2 2 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 0 3 3 3 3 2 2 2 0 0 2 2 2 2 .. ... ... ... ... ... ... . and the rational contractions, which approximate the maximum modulo real root v r u 1 1 29 27 u 87 x = + − + 2y + t − 2y + q ≈ 3, 978743113, 2 2 4 4 −29 + 2y 4 where 1 y= 145 + 24 of the fourth order equation q 3 √ −63197 + 972 7226 − p 3 1415 √ −63197 + 972 7226 ! , 4x4 = 8x3 + 23x2 + 27x + 27, are equal to 3 8 36 96 429 = 3, δ2 = = 4, δ3 = = 4, δ4 = = 4, δ5 = ≈ 3, 9722, 1 2 9 24 108 1138 5097 13520 δ6 = ≈ 3, 9790, δ7 = ≈ 3, 97892, δ8 = ≈ 3, 97881, 286 1281 3398 160614 719349 60552 ≈ 3, 978711, δ10 = ≈ 3, 9787455, δ11 = ≈ 3, 9787442, δ9 = 15219 40368 180798 1908070 8545755 22667576 = ≈ 3, 97874328, δ13 = ≈ 3, 97874296, δ14 = ≈ 3, 97874313, 479566 2147853 5697170 269287302 101522250 ≈ 3, 978743118, δ16 = ≈ 3, 9787431129. δ15 = 25516161 67681500 δ1 = δ12 C ALCULATION ALGORITHM OF RATIONAL 2 A LGORITHM ESTIMATIONS OF RECURRENCE FRACTION OF 4-TH ORDER 37 FOR CALCULATING RATIONAL CONTRACTIONS OF PERIODIC RECURRENCE FRACTIONS OF ORDER FOUR Let us construct a new algorithm for calculating rational contractions of periodic recurrence fractions of order four. Let k be the period of a recurrence fraction, and n — the order of the parapermanent of its rational contraction, while n = sk, s = 1, 2, 3, . . . Then the following theorem is true. Theorem 2. The rational contraction Pn Qn δn = of the periodic recurrence fraction (1) of order four, with the period k > 2, the elements of which satisfy the conditions (3), is equal to the value of the expression q 0 + p1 · s −1 Bsk −1 Assk + r2 · s −1 Csk −2 Assk + s2 · s −1 Dsk −3 Assk , (8) s −1 s −1 s −1 where Assk , Bsk −1, Csk −2 and Dsk −3 are defined by the recurrence equalities Assk=s3 ϕk−1 Dks−(s2−1)−3 +(s2 ϕk−2 + r2 ϕk−1 )Cks−(s2−1)−2 +(s1 ϕk−3 + r1 ϕk−2 + p1 ϕk−1 ) Bks−(s2−1)−1 + ϕk Ask−(1s−1) , (9) s−1 s−2 s−2 s−1 s−2 Bsk −1=s3 ψk−2 Dk ( s−1)−3 +(s2 ψk−3 + r2 ψk−2 )Ck ( s−1)−2 +(s1 ψk−4 + r1 ψk−3 + p1 ψk−2 ) Bk ( s−1)−1 + ψk−1 Ak ( s−1) , (10) s−1 s−2 s−2 s−1 s−2 Csk −2=s3 τk−3 Dk ( s−1)−3 +(s2 τk−4 + r2 τk−3 )Ck ( s−1)−2 +(s1 τk−5 + r1 τk−4 + p1 τk−3 ) Bk ( s−1)−1 + τk−2 Ak ( s−1) , (11) s−1 s−2 s−2 s−1 s−2 Dsk −3=s3 ξ k−4 Dk ( s−1)−3 +(s2 ξ k−5 + r2 ξ k−4 )Ck ( s−1)−2 +(s1 ξ k−6 + r1 ξ k−5 + p1 ξ k−4 ) Bk ( s−1)−1 + ξ k−3 Ak ( s−1) , (12) where ϕk = q1 p2 q2 r3 p3 s4 r4 0 .. . 0 0 0 0 q2 p3 q3 r4 p4 s5 r5 q3 p4 q4 r5 p5 q4 p5 q5 q5 ... ... ... ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... . . . q k −3 p . . . q k −2 q k −2 k −2 r p . . . pk−1 q k−1 qk−1 k −1 k −1 pk rk qk . . . rsk p q k k k , k (13) 38 Z ATORSKY R.A., S EMENCHUK A.V. ψk − 1 = τk−2 = ξ k −3 = q2 p3 q3 r4 p4 s5 r5 0 .. . 0 0 0 0 q3 p4 q4 r5 p5 s6 r6 q4 p5 q5 r6 p6 q5 p6 q6 q6 ... ... ... ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... . . . q k −3 p . . . q k −2 q k −2 k −2 r p . . . pk−1 q k−1 qk−1 k −1 k −1 pk rk qk . . . rsk p q k k k 0 .. . 0 0 0 0 q4 p5 q5 r6 p6 s7 r7 q5 p6 q6 r7 p7 q6 p7 q7 q7 ... ... ... ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... . . . q k −3 p . . . q k −2 q k −2 k −2 p r . . . pk−1 q k−1 qk−1 k −1 k −1 pk rk . . . rsk qk p q k k k 0 .. . 0 0 0 0 q5 p6 q6 r7 p7 s8 r8 q6 p7 q7 r8 p8 (14) , (15) , (16) k −1 k −2 q4 p5 q5 r6 p6 s7 r7 , q3 p4 q4 r5 p5 s6 r6 q7 p8 q8 q8 ... ... ... ... 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ... . . . q k −3 p . . . q k −2 q k −2 k −2 p r . . . pk−1 q k−1 qk−1 k −1 k −1 pk rk . . . rsk qk p q k k and if k = 2, 3, 4, we assume that k k −3 ξ <0 = τ<0 = ψ<0 = ϕ<0 = 0, ϕ0 = ψ0 = τ0 = ξ 0 = 1. Proof. If n = sk, then the numerator and the dominator of the n-th rational contraction of the periodic recurrence fraction (1) of order four, with the period of k > 2, the elements of which satisfy the conditions (3), are respectively in the form C ALCULATION ALGORITHM OF RATIONAL ESTIMATIONS OF Psk = Qsk RECURRENCE FRACTION OF 4-TH ORDER q0 p1 q1 r2 p2 s3 r3 q1 p2 q2 r3 p3 s4 r4 q2 p3 q3 r4 p4 39 q3 p 4 0 q4 q4 .. . . . . . . . . . . . . . . .. 0 0 0 0 0 . . . q k −3 p 0 0 0 0 0 . . . q k −2 q k −2 k −2 p r 0 0 0 0 0 . . . pk−1 q k−1 qk−1 k −1 k −1 pk rk 0 0 0 0 0 . . . rsk qk pk qk k p1 s1 r1 0 0 0 0 0 ... 0 r1 p1 q1 q1 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 0 0 0 0 ... 0 0 0 0 0 . . . q k −3 p 0 0 0 0 0 ... 0 0 0 0 0 . . . q k −2 q k −2 k −2 r p 0 0 0 0 0 ... 0 0 0 0 0 . . . pk−1 q k−1 qk−1 k −1 k −1 pk rk qk 0 0 0 0 0 ... 0 0 0 0 0 . . . rsk pk qk k q1 p2 q 2 q2 r 3 p3 p3 q 3 q 3 s r 4 4 p4 q 4 r 4 p4 q 4 p r s 0 r55 p55 q55 q5 .. . . . . . . . . . . . . . . .. 0 0 0 0 0 . . . q k −3 0 0 0 0 0 . . . pk −2 q k −2 q k −2 = p r 0 0 0 0 0 . . . pkk−−11 qkk−−11 qk−1 pk rk 0 0 0 0 0 . . . sk qk rk pk qk p1 s1 r1 0 0 0 0 0 ... 0 r1 p1 q1 q1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 0 0 0 0 0 ... 0 0 0 0 0 . . . q k −3 p 0 0 0 0 0 ... 0 0 0 0 0 . . . q k −2 q k −2 k −2 r p 0 0 0 0 . . . pk−1 q k−1 qk−1 0 0 0 0 0 ... 0 k −1 k −1 p , (17) . rk k 0 0 0 0 0 ... 0 0 0 0 0 . . . rsk qk pk qk k Let us denote the parapermanent, formed from the parapermanent (17) as a result of deleting the first column, by Assk , the parapermanent, formed as a result of deleting the first two s −1 columns, — by Bsk −1, the parapermanent, formed as a result of deleting the first three columns, s −1 — by Csk−2, and the parapermanent, formed as a result of deleting the first four columns, — s −1 by Dsk −3 (in the four cases, the superscript denotes the number of complete periods containing these parapermanents). Let us decompose the parapermanent (17) by the elements of the first column and get the equality 40 Z ATORSKY R.A., S EMENCHUK A.V. s −1 s −1 s −1 Psk = q0 Assk + p1 Bsk −1 + r2 Csk −2 + s3 Dsk −3. (18) Let us decompose the parapermanent Assk by the elements of the inscribed rectangular table T (k + 1), then we get the recurrence (9). In the same way, let us decompose the parapermas −1 s −1 s −1 nents Bsk −1, Csk −2 , and Dsk −3 by the elements of the tables T (k), T (k − 1), i T (k − 2). At that we get the recurrences (10), (11), (12). As Qsk = Assk , considering (18), we conclude that the rational contraction δn = QPnn of the periodic recurrence fraction is equal to s −1 s −1 s −1 s −1 s −1 s −1 Csk Dsk q0 Assk + p1 Bsk Bsk Psk −2 −3 −1 + r2 Csk −2 + s3 Dsk −3 −1 = = q + p + r + s . 0 2 3 1 Qsk Assk Assk Assk Assk Example 3. Let us have a periodic recurrence fraction of order four with the period, where q1 = 1, p2 = 1, r3 = 1, s4 = 1, q2 = 1, p3 = 1, r4 = 1, s5 = 1, q3 = 2, p4 = 2, r5 = 2, s1 = 2, q4 = 1, p5 = 1, r1 = 1, s2 = 1, q5 = 2, p1 = 2, r2 = 2, s3 = 2. This periodic recurrence fraction approximates to the maximum modulo real root r v u 109 1 1 11 u 33 ≈ 1, 969558741906025, x = + − + 2y + t − 2y + q 36 4 2 8 8 −11 + 2y 8 where 1 y= 2 55 1 + 24 9 the equation of order four q 3 √ −2007 + 144 622 − p 3 23 √ −2007 + 144 622 9x4 − 9x3 − 9x2 − 8x − 16 = 0. ! , (19) Let us find the rational contractions (20) of the relevant recurrence fraction first with the help of the recurrences (2), and then by the algorithm of the theorem 2. 1 1 1 1 1 2 2 1 1 2 1 2 1 1 0 2 2 2 2 1 0 0 2 2 1 2 Pn 1 0 0 0 2 1 1 (20) = 2 Qn 1 0 0 0 2 1 2 0 2 1 0 2 1 0 0 0 0 1 2 1 1 0 2 2 0 0 0 0 0 2 2 1 0 2 1 0 0 0 0 0 0 2 2 .. . . . . ... ... ... ... ... ... ... ... ... 0 0 0 0 0 0 0 0 0 0 0 ... 2 By means of the recurrences (2) we shall have: C ALCULATION ALGORITHM OF δ1 = 2 = 2, 1 δ2 = RATIONAL ESTIMATIONS OF RECURRENCE FRACTION OF 6 = 2, 3 δ3 = 12 = 2, 6 δ4 = 35 ≈ 1.9444, 18 δ5 = 4-TH ORDER 41 69 = 1.97142, 35 134 396 768 2269 ≈ 1.97059, δ7 = ≈ 1.970149, δ8 = ≈ 1.9692308, δ9 = ≈ 1.969618, 68 201 390 1152 8670 25614 4469 ≈ 1.9695901, δ11 = ≈ 1.96955929, δ12 = ≈ 1.96955017, δ10 = 2269 4402 13005 146807 289145 49692 ≈ 1.96956005, δ14 = ≈ 1.96955915, δ15 = ≈ 1.96955867, δ13 = 25230 74538 146807 1657236 3215088 560950 ≈ 1.969558653, δ17 = ≈ 1.969558784, δ18 = ≈ 1.969558745, δ16 = 284810 841425 1632390 9498457 18707769 δ19 = ≈ 1.969558739, δ20 = ≈ 1.9695587399, 4822632 9498457 107223678 36293638 ≈ 1.9695587426, δ22 = ≈ 1.969558741948, δ21 = 18427294 54440457 614553083 208017180 ≈ 1.96955874185, δ24 = ≈ 1.96955874189, δ23 = 105616134 312025770 2348209518 1210398397 ≈ 1.969558741926, δ26 = ≈ 1.9695587419051, δ25 = 614553083 1192251578 6937404876 13458775392 δ27 = ≈ 1.9695587419044, δ28 = ≈ 1.969558741906103, 3522314277 6833396286 78313147789 39761773093 ≈ 1.96955874190628, δ30 = ≈ 1.96955874190598. δ29 = 20188163088 39761773093 δ6 = Let us do similar calculations with the help of the algorithm of the theorem 2. We shall calculate ξ −1 , ξ 0 , ξ 1 , ξ 2 , τ0 , τ1 , τ2, τ3 , ψ1 , ψ2, ψ3, ψ4 , ϕ2 , ϕ3, ϕ4 , ϕ5 from the equalities (13), (14), (15), (16): 1 1 1 2 1 1 2 2 = 6, ϕ5 = 12 2 1 = 35, ϕ4 = 21 = 18, ϕ3 = 21 2 1 2 1 1 1 2 2 2 2 2 1 2 2 1 2 12 2 1 2 0 2 2 2 1 2 2 2 1 1 = 12, = 3, ψ4 = ϕ2 = 1 = 24, ψ3 = 2 1 1 2 2 2 1 2 2 2 2 2 2 12 2 1 1 1 2 1 = 6, τ2 = 1 = 3, τ1 = 1, τ0 = 1, = 4, ψ1 = 2, τ3 = 2 2 ψ2 = 2 2 1 1 2 2 2 1 2 ξ2 = = 4, ξ 1 = 2, ξ 0 = 1, ξ −1 = 0. 2 1 Consequently, the recurrences (9), (10), (11), (12) will be written as: s s −2 s −2 s −2 s −1 A5s =18D5s −8 + 30C5s −7 + 33B5s −6 + 35A5s −5 , s −1 s −2 s −2 s −2 s −1 B5s −1 =12D5s −8 + 20C5s −7 + 22B5s −6 + 24A5s −5 , s −1 s −2 s −2 s −2 s −1 C5s −2 =3D5s −8 + 5C5s −7 + 6B5s −6 + 6A5s −5 , s −1 s −2 s −2 s −2 s −1 D5s −3 =2D5s −8 + 4C5s −7 + 4B5s −6 + 4A5s −5 . 42 Z ATORSKY R.A., SEMENCHUK A.V. The s-th approximation to the value of the given recurrence fraction, by the algorithm of the theorem 2 is of the form B s −1 C s −1 D s −1 γs = 1 + 5ss−1 + 5ss−2 + 5ss−3 . A5s A5s A5s 0 0 0 1 Since, D2 = ξ 2 = 4, C3 = τ3 = 6, B4 = ψ4 = 24, A5 = ϕ5 = 35, then γ1 = 4469 289145 69 = 1.97143, γ2 = ≈ 1.9695901, γ3 = ≈ 1.969558672, 35 2269 146807 γ4 = 1210398397 18707769 ≈ 1.9695587399, γ5 = ≈ 1.969558741926, 9498457 614553083 78313147789 ≈ 1.96955874190598. γ6 = 39761773093 Thus, from this example it is clear that the s-th approximation γs , found by means of the algorithm of Theorem 2 coincides with the (5s)-th approximation δ5s , found by the algorithm (2). 3 CONCLUSIONS Therefore, recurrence fractions of order four are natural generalization of chain fractions. Periodic recurrence fractions of order four are connected with corresponding algebraic equations of order four and show irrationalities of order four, while Theorem 2 provides an effective algorithm for constructing rational approximations to these irrationalities. REFERENCES [1] Bernstein L. The Jacobi-Perron algorithm — its theory and application. LNM 207. Springer Verlag, BerlinHeidelberg-New York, 1971. [2] Bruno A.D. Algorithm of the generalizationued continued fraction. Preprint No. 10, Keldysh Inst. Appl. Math., Russian Acad. Sci., Moscow, 2004. (in Russian) [3] Brun V. En generalisation av Kjedebroken. Skrifter utgit av Videnskapsselskapeti Kristiania. I. MatematiskNaturvidenskabelig Klasse No 6, 1919; No 6, 1920. [4] Hermite C. Extraits de lettres de M. Ch. Hermite à M. Jacobi sur différents objects de la théorie des nombres. J. Reine Angew. Math. 1850, 40, 261–277. [5] Jacobi C.G.J. Allgemeine Theorie der Kettenbruchanlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird. J. Reine Angew. Math. 1868, 69, 29–64. [6] Klein F. Über eine geometrische Auffassung der gewöhnlichen Kettenbruchentwicklung. Nachr. Ges. Wiss. Gottingen Math.-Phys. Klasse 1895, 357–359. [7] Dirichlet P.G.L. Verallgemeinerung eines Satzes aus der Lehre von den Kettenbrüchen nebst einigen Anwendungen auf die Theorie der Zahlen. S. B. Preuss. Akad. Wiss. 1842, 93–95. [8] Minkowski H. Généralisation de la théorie des fractions continues. Ann. Sci. Ec. Norm. Supérieure. 1896, 13, 41–60. [9] Perron O. Grundlagen für eine Theorie des Jacobischen Ketten-bruchalgorithmus. Math. Ann. 1907, 64, 1–76. [10] Poincare H. Sur une generalization des fractionés continues. C.R. Acad. Sci. Paris. Ser. 1. 1884, 99, 1014–1016. [11] Pustylnikov L.D. Generalized chain fractions and ergodic theory. Russian Math. Surveys 2003, 58 (1), 109– 159. doi:10.1070/RM2003v058n01ABEH000594 (translation of Uspekhi Mat. Nauk 2003, 58, (1), 113–164. doi:10.4213/rm594 (in Russian)) [12] Siavavko M.S. Integral chain fractions. Naukova Dumka, Kyiv, 1994. (in Ukrainian) C ALCULATION ALGORITHM OF RATIONAL ESTIMATIONS OF RECURRENCE FRACTION OF 4-TH ORDER 43 [13] Skorobogatko V.Ya. Theory of branching fractions and its application in numerical mathematics. Nauka, Moscow, 1983. (in Russian) [14] Voronoy G.F. On one generalization of continued fractions algorithm. Warsaw University Publ. House, Warsaw, 1896. Also: Collected works in 3 volumes. AS USSR Publ. House, Kyiv, 1952, 1, 197–391. (in Russian) [15] Zatorsky R.A. Calculus of Triangular Matrices and Its Applications. Simyk, Ivano-Frankivsk, 2010. (in Ukrainian) [16] Zatorsky R.A., Semenchuk A.V. Periodic recurrence fractions of order three. Carpathian Math. Publ. 2010, 2 (1), 35–46. (in Ukrainian) Received 07.02.2014 Заторський Р.А., Семенчук А.В. Алгоритм обчислення рацiональних наближень перiодичного дробу 4-го порядку // Карпатськi матем. публ. — 2014. — Т.6, №1. — C. 32–43. Вивчаються рекурентнi дроби четвертого порядку, встановлюються їх зв’язки з алгебраїчними рiвняннями четвертого порядку i будуються алгоритми обчислення рацiональних наближень. Ключовi слова i фрази: перiодичний дрiб, трикутна матриця, параперманент, парадетермiнант, рацiональне наближення. Заторский Р.А., Семенчук А.В. Алгоритм вычисления рациональных приближений периодической рекуррентной дроби 4-го порядка // Карпатские матем. публ. — 2014. — Т.6, №1. — C. 32–43. Изучаются рекуррентные дроби четвертого порядка, устанавливаются их связи с алгебраическими уравнениями четвертого порядка и строятся алгоритмы вычисления их рациональных приближений. Ключевые слова и фразы: периодическая рекуррентная дробь, треугольная матрица, параперманент, парадетерминант, рациональное приближение.
© Copyright 2026 Paperzz