Ch 9 Algebra Review L1 Key Algebra Review for Chapter 9: Radicals 2 3 3 3 3 or 3 3 9 3 9 Definition: square root is the inverse of squaring. If x is a number greater than or equal to 0, x x * x x and x 2 and ( x ) 2 x 9 42 4 Operations: Multiplying Radicals 3 * 5 15 Dividing Radicals: 15 Simplest Radical Form: Factor out perfect squares from under the radical sign. 3 Memorize Perfect Squares: Radicals aka Square Roots: Examples: 2 Name ___________________________ 15 5 3 a * b ab “You may multiply radicals.” a b a or b a b a b “You may divide radicals.” Write answers in “simplest radical form”: Factor into perfect squares & remove perfect squares from under the radical. Example 1. Example 2. Simplify Simplify 50 break into factors 25 2 25 2 to find perfect squares take the square root 5 2 write: 5 2 multiplication implied 48 break into factors 4 12 4 4 3 keep going 16 3 find perfect squares take the square root 4 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x2 1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 A. Simplify by taking factors that are perfect squares out from under the radical. You should NOT need a calculator! 1. 2. 6. 49 = 7 196 = 14 80 = 4 5 3. 20 = 2 5 4. 5. 32 = 4 2 98 = 7 2 45 442 49 2 4 5 16 2 7 2 2 5 4 2 7. 700 = 10 7 8. 9. 75 = 5 3 270 = 3 30 8 10 100 7 553 27 10 4225 100 7 25 3 9 35 2 16 5 10 7 5 3 9 30 3 30 4 5 When you calculate with radicals, you should ALWAYS simplify your answers!! S. Stirling Spring 2016 Page 1 of 4 Ch 9 Algebra Review L1 Key Name ___________________________ B. Use the formula a2 b2 c2 and then solve the resulting equation. Write answers in simplest radical form. 1. If b 5 and c 8 , find a. 2. If a 3 and b 4 , find c. a 2 b2 c2 a 2 b2 c2 a 2 52 82 32 42 c 2 a 2 25 64 9 16 c 2 a 2 39 25 c 2 a 39 Example If a 3 and c 7 , find b. a 2 b2 c 2 32 b2 72 9 b2 49 9 b2 49 b2 40 substitute values simplify subtract 9 both sides take the square root both sides now simplify b 40 40 4 10 2 10 c 25 5 3. If b 2 and c 8 , find a. 4. If a 2 and c 9 , find b. 5. If a 4 and b 6 , find c. a 2 b2 c2 a 2 b2 c2 a 2 b2 c2 a 2 2 2 82 22 b 2 92 42 62 c 2 a 2 4 64 4 b 2 81 16 36 c 2 a 2 60 a 60 4 15 2 15 52 c 2 c 2 2 13 2 13 b 2 77 b 77 C. Compute (or evaluate) the expressions. Simplify your answers. Examples: You may multiply & divide radicals! 1. 4 8 2. 3. 3 12 8 * 18 1. 442 2429 33 4 449 94 33 6 4 2 16 9 4 15 find perfect squares 2 15 take square root 4 3 12 4. 2 2 3 18 39 5. 2 3 2 2 9 2 3 2 3 39 4 9 36 3 7. 2 18 3 2 = 2 9 23 2 3 3 S. Stirling Spring 2016 45 6. 3 13 5 8. 5 14 10 7 = 2. 2 2 5 6 5 45 2 2 6 10 Multiply numbers under the radical, leave in factored form. 2 3 2 5 factored 2 5 2 6 organize factors 10 2 2 3 multiply & 9 3 10 2 3 find perfect squares simplify 20 3 3. 6 15 3 5 2 3 since 5 divides into 15 & 3 divides into 6… Page 2 of 4 Ch 9 Algebra Review L1 Key Name ___________________________ D. Use the formula h l 2 and then solve the resulting equation. Write answers in simplest radical form. 1. If h 3 32 , find l. hl 2 2. If l 3 5 , find h. hl 2 3 32 l 2 h3 5 2 3 16 l l 3 4 12 h 3 10 3. If h 30 , find l. 4. If l 2 10 , find h. hl 2 hl 2 h 2 10 2 30 l 2 h 2 20 15 l h 2 45 h4 5 Use h l 2 . Examples 1. If h 5 2 , find l. hl 2 5 2 l 2 substitute values 5 2 l 2 divide both sides by 2 2 simplify 5l 2 2. If l 5 6 , find h. hl 2 h5 6 2 substitute values simplify completely h 5 12 h 5 4 3 5 2 3 10 3 E. Use the formulas h 2s and l s 3 and then solve the resulting equations. Write answers in simplest radical form. 1. If l 2 15 , find h and s. ls 3 2. If s 3 6 , find h and l. Examples Use h 2s and l s 3 . h 2s If h 4 6 , find l and s. h 23 6 2 15 s 3 h6 6 2 5s h 2s l 3 6 3 h 22 5 l 3 2 33 h4 5 l 3 3 2 9 2 3. If h 6 , find l and s. 4. If l 5 6 , find h and s. h 2s 6 2s s 6 2 ls 3 6 l 3 2 18 3 2 l 2 2 ls 3 5 6s 3 5 2s h 2s 4 6 2s start with h = formula substitute values 4 6 2s divide both sides by 2 2 2 simplify 2 6s now you have s, so ls 3 l 2 6 3 substitute values simplify l 2 18 l 2 92 l 2 3 2 6 2 h 2s h 25 2 h 10 2 S. Stirling Spring 2016 Page 3 of 4 Ch 9 Algebra Review L1 Key Name ___________________________ Practice with Radicals Directions: Use the properties given above to operate on and to completely simplify the radical expressions 1. 49 = 7 2. 196 = 14 3. 20 = 2 5 4. 5. 4 8 6. 8 * 18 7. 3 12 8. 2 2 3 18 4 4 2 4 2 64 16 9. 64 8 2 16 4 13. 56 8 7 4 2 2 9 4 3 12 96 2 10. 48 4 4 3 4 3 7 16 14. 7 16 7 4 17. Think! x 2 means x x so how could you find 2 2 3 ? Write 2 3 2 3 then simplify! 33 4 3 26 11. 50 8 18 2 18 9 3 2 18. 5 3 2 3 2 2 9 6 6 36 96 12. 25 25 5 4 2 4 15. 32 = 4 2 2 8 12 4 3 2 3 16. 4 18 3 2 18 4 6 2 3 2 19. 2 5 2 32 3 5 3 5 3 2 52 5 4 9 4 3 12 25 9 25 3 75 4 25 4 5 20 21. 3 2 4 2 22. 3 2 4 2 1 2 2 2 3 20. Think! You can only add (or subtract) like things. So if 3x 4x 7 x , what is 3 54 5 ? 6 2 3 6 7 5 S. Stirling Spring 2016 Page 4 2 of 4
© Copyright 2025 Paperzz