Surface Tension of Asphalt using AFM Appy Beemer, Troy Pauli, and Julie Miller Pavement Performance Prediction Symposium Adhesion and Cohesion in Asphalt Pavements June 23-25, 2005 Cheyenne, WY Overview • • • • • • Definition of terms AFM Background Contact Mechanics Theory Experimental Data Analysis of Data Conclusions Definitions • Surface Tension • Force from the bulk molecules on a surface line of a liquid • Surface Energy • Work or energy required to create a unit of surface area of a solid • Work of Cohesion • Work required to separate a material from itself at an arbitrary boundary • Work of Adhesion • Work required to separate two dissimilar materials at their interface Munson, Bruce R., Donald F. Young, and Theodore H. Okiishi. Fundamentals of Fluid Mechanics, 3rd ed. John Wiley & Sons, Inc. New York: 1998, p 26-28. Importance for asphalt • Asphalt surface tension gives: • Cohesive properties • Adhesive properties • Time and temperature susceptible • Cohesive strength property may need further investigation Making the Measurement • Make an asphalt – toluene solution • Initial solution concentration ~0.167g/mL • Spin cast solution onto a glass microscope slide • Volume deposited to slide - 2.0μL • Spin rate - 600 to 800 rpm Roto-Film™ Solution Spin Casting Device Filmetrics™ Thin-film Measurement System Storing Conditions • • • • Use ~ 1.0 μm films Keep samples in dry box Purge box with nitrogen gas Keep samples at room temperature The Operation of a Scanning Probe Microscope 2 1. Red Laser 2. Quad-Photo Detector 3. Piezo-tube Scanner 4. Micro-Cantilever 1 Z 4 Y X 3 THERMAL STAGE Atomic Force Microscope Quesant Q-Scope™ 250 AFM Force Curve Measurements Bimorph Cantilever Z Sample Y X 600 ΔZ-deflection (nm) 400 200 0 -200 -400 -600 0 500 1000 Z-distance (nm) 1500 2000 600 ΔZ-deflection (nm) 400 200 0 -200 -400 -600 0 500 1000 Z-distance (nm) 1500 2000 600 ΔZ-deflection (nm) 400 200 0 -200 -400 -600 0 500 1000 Z-distance (nm) 1500 2000 600 ΔZ-deflection (nm) 400 200 0 -200 -400 -600 0 500 1000 Z-distance (nm) 1500 2000 600 ΔZ-deflection (nm) 400 200 0 -200 -400 -600 0 500 1000 Z-distance (nm) 1500 2000 600 ΔZ-deflection (nm) 400 200 0 -200 -400 -600 0 500 1000 Z-distance (nm) 1500 2000 600 ΔZ-deflection (nm) 400 200 0 − Fpull − off -200 n πR -400 = W12 -600 0 500 1000 Z-distance (nm) 1500 2000 Deflection to Force Approach Retract -5000 Load Force, nN -5500 -6000 Pull-off Force -6500 -7000 -7500 0.0 0.5 1.0 1.5 Z-position, μm • Detectors measure cantilever deflection • Spring Constant x Deflection = Force • Interested in load and pull-off force 2.0 Zero-Load Curve -4500 Approach Retract -5000 Force, nN -5500 -6000 -6500 -7000 -7500 0.0 0.5 1.0 Z-position, μm 1.5 2.0 Negative-Load Curve -4500 Approach Retract -5000 Force, nN -5500 -6000 -6500 -7000 -7500 0.0 0.5 1.0 Z-position, μm 1.5 2.0 R1 1 R R2 = 1 R1 + 1 ( R2 → ∞ ) → 1 R1 R1 δ aH a R1 δ a = δ2R/3ζ Viscoelastic Material -2.5 -1.5 -0.5 0.5 1.5 2.5 -2000 -4000 -6000 300 -8000 -10000 -12000 Z position, um 250 Height, nm Load Force, nN . 0 200 150 100 50 0 0 5 10 15 Distance, um 20 25 30 Viscoelastic Material 2000 -2.5 -1.5 -0.5 -2000 0.5 1.5 2.5 -4000 300 -6000 -8000 -10000 -12000 -14000 Z Distance, um 250 Height, nm Load Force, nN 0 200 150 100 50 0 0 5 10 15 Distance, um 20 25 30 Contact Mechanics Model of an Interface Hertzian Contact between Rigid Surfaces Shull, K. R., (Nov. 2004), shullgroup.northwestern.edu/pdfpublic/ref054.pdf Phertz 4 E *a 3 = 3R •Frictionless, ideal contact Contact Mechanics Model of an Interface At the JKR and DMT Limits 2⎤ 3R ⎡ ( ) a = P + 3πGR + 6πGRP + 3πGR ⎥ * ⎢ ⎦ 4E ⎣ 3 P → 0 PJKR = PDMT lim ζE * = 3πγ 12 R ζ → δ 2 R /3a = lim ζ → 4δ 2 R / 9 a ζE * = 4πγ 12 R Contact Mechanics Model of an Interface At the JKR and DMT Limits • JKR • Adds load to the model • Does not account for adhesion outside the contact area • Large probe, very soft surface, high surface energy • DMT • Adds friction as well as load to the model • Accounts for adhesion outside the contact area » Wetting • Small probe, hard surface, low surface energy Drift Procedure Surface Tension,γ, dyne/cm . 100 90 80 70 60 50 •Make contact with surface (low force) 40 •Allow several force curve cycles (save each) 30 •Decrease the z scan range (decrease the force) 20 •Save another series of force curves 10 •Repeat until no contact 0 -200 0 200 400 600 800 Load, P, nN 1000 1200 1400 Load-Unload Procedure Surface Tension,γ, dyne/cm . 100 90 80 70 60 •Increase z scan range to contact surface 50 •Save force curve at initial contact •Increase the z scan range (increase the load) 40 •Save force curve 30 •Repeat until at desired load 20 •Decrease the z range (decrease the load) 10 •Save force curve •Repeat until no contact 0 -200 0 200 400 600 800 Load, P, nN 1000 1200 1400 AAB-1 “Set” Surface Tension,γ, dyne/cm . 70 60 50 40 30 20 γ = 46.9 (Avg. 47.9) 10 0 -200 0 200 Load, P, nN 400 AAD-1 “Set” Surface Tension,γ, dyne/cm . 110 100 90 80 70 60 50 40 30 γ = 42.7 (Avg. 45.0) 20 10 0 -100 0 100 200 Load, P, nN 300 400 500 AAF-1 “Set” Surface Tension,γ, dyne/cm . 70 60 50 40 30 20 γ = 48.4 (Avg. 47.9) 10 0 -200 -100 0 100 Load, P, nN 200 300 400 AAM-1 “Set” Surface Tension,γ, dyne/cm . 140 120 100 80 60 40 γ = 50.3 (Avg. 49.9) 20 0 -200 0 200 400 Load, P, nN 600 800 Surface Tension,γ, dyne/cm . Average Surface60Tensions 50 40 30 AAB γ : 47.9 ± 1.2 20 10 0 -125 -100 -75 -50 -25 Load, P, nN 0 25 50 Surface Tension,γ, dyne/cm . Average Surface60Tensions 50 40 30 AAB γ: 47.9 ± 1.2 AAD γ: 45.0 ± 2.6 20 10 0 -125 -100 -75 -50 -25 Load, P, nN 0 25 50 Surface Tension,γ, dyne/cm . Average Surface60Tensions 50 40 30 AAB γ: 47.9 ± 1.2 AAD γ: 45.0 ± 2.6 AAF γ: 47.7 ± 2.2 20 10 0 -125 -100 -75 -50 -25 Load, P, nN 0 25 50 Surface Tension,γ, dyne/cm . Average Surface 60Tensions 50 40 30 AAB γ: 47.9 ± 1.2 AAD γ: 45.0 ± 2.6 AAF γ: 47.7 ± 2.2 AAM γ: 49.9 ± 1.6 20 10 0 -125 -100 -75 -50 -25 Load, P, nN 0 25 50 JKR/DMT JKR DMT JKR/DMT Surface Tension,γ, dyne/cm . JKR DMT 60 50 40 30 AAB 20 AAD AAF 10 AAM 0 -125 -100 -75 -50 -25 Load, P, nN 0 25 50 Average Surface Tensions AAD-1 AAF-1 AAB-1 AAM-1 45.0 47.7 47.9 49.9 ± 2.4 ± 2.2 ± 1.2 ± 1.6 AAD-1 Neat AAD-1 PAV 240 h AAD-1 PAV 480 h AAD-1 PPA & PAV 96 h AAD-1 PPA & PAV 184 h Least Cohesive Most Cohesive 40.9 44.7 43.7 46.2 47.0 ± 1.0 ± 1.3 ± 1.4 ± 0.5 ± 0.7 Least Cohesive Most Cohesive Wc = 2γ Conclusions • Neat asphalt adhesive properties: » Long-range, wetting forces » Short-range, non-wetting forces • Neat asphalt cohesive properties » Least cohesive asphalts (AAD) » Moderately cohesive asphalts (AAB & AAF) » Most cohesive asphalts (AAM) • Modified asphalt cohesive properties » Least cohesive (Neat) » Moderately cohesion (PAV) » Most cohesive (PPA Modified) Future Work • Explore other parameters • • • • Temperature Rate Aging Additives • Adhesion-cohesion balance • Continue to refine experimental procedures ACKNOWLEDGEMENTS FHWA for their Financial Support under Contract No. DTFH6199C-00022 Questions?
© Copyright 2026 Paperzz