Surface Tension of Asphalt using AFM

Surface Tension of Asphalt using AFM
Appy Beemer, Troy Pauli, and Julie Miller
Pavement Performance Prediction Symposium
Adhesion and Cohesion in Asphalt Pavements
June 23-25, 2005
Cheyenne, WY
Overview
•
•
•
•
•
•
Definition of terms
AFM Background
Contact Mechanics Theory
Experimental Data
Analysis of Data
Conclusions
Definitions
• Surface Tension
• Force from the bulk molecules on a surface line of a liquid
• Surface Energy
• Work or energy required to create a unit of surface area of a
solid
• Work of Cohesion
• Work required to separate a material from itself at an
arbitrary boundary
• Work of Adhesion
• Work required to separate two dissimilar materials at their
interface
Munson, Bruce R., Donald F. Young, and Theodore H. Okiishi. Fundamentals of Fluid
Mechanics, 3rd ed. John Wiley & Sons, Inc. New York: 1998, p 26-28.
Importance for asphalt
• Asphalt surface tension gives:
• Cohesive properties
• Adhesive properties
• Time and temperature susceptible
• Cohesive strength property may
need further investigation
Making the Measurement
• Make an asphalt – toluene solution
• Initial solution concentration ~0.167g/mL
• Spin cast solution onto a glass microscope
slide
• Volume deposited to slide - 2.0μL
• Spin rate - 600 to 800 rpm
Roto-Film™
Solution Spin
Casting Device
Filmetrics™ Thin-film
Measurement System
Storing Conditions
•
•
•
•
Use ~ 1.0 μm films
Keep samples in dry box
Purge box with nitrogen gas
Keep samples at room temperature
The Operation of a Scanning Probe
Microscope
2
1. Red Laser
2. Quad-Photo Detector
3. Piezo-tube Scanner
4. Micro-Cantilever
1
Z
4
Y
X
3
THERMAL STAGE Atomic Force Microscope
Quesant Q-Scope™ 250
AFM Force Curve Measurements
Bimorph
Cantilever
Z
Sample
Y
X
600
ΔZ-deflection (nm)
400
200
0
-200
-400
-600
0
500
1000
Z-distance (nm)
1500
2000
600
ΔZ-deflection (nm)
400
200
0
-200
-400
-600
0
500
1000
Z-distance (nm)
1500
2000
600
ΔZ-deflection (nm)
400
200
0
-200
-400
-600
0
500
1000
Z-distance (nm)
1500
2000
600
ΔZ-deflection (nm)
400
200
0
-200
-400
-600
0
500
1000
Z-distance (nm)
1500
2000
600
ΔZ-deflection (nm)
400
200
0
-200
-400
-600
0
500
1000
Z-distance (nm)
1500
2000
600
ΔZ-deflection (nm)
400
200
0
-200
-400
-600
0
500
1000
Z-distance (nm)
1500
2000
600
ΔZ-deflection (nm)
400
200
0
− Fpull − off
-200
n πR
-400
= W12
-600
0
500
1000
Z-distance (nm)
1500
2000
Deflection to Force
Approach
Retract
-5000
Load
Force, nN
-5500
-6000
Pull-off Force
-6500
-7000
-7500
0.0
0.5
1.0
1.5
Z-position, μm
• Detectors measure cantilever deflection
• Spring Constant x Deflection = Force
• Interested in load and pull-off force
2.0
Zero-Load Curve
-4500
Approach
Retract
-5000
Force, nN
-5500
-6000
-6500
-7000
-7500
0.0
0.5
1.0
Z-position, μm
1.5
2.0
Negative-Load Curve
-4500
Approach
Retract
-5000
Force, nN
-5500
-6000
-6500
-7000
-7500
0.0
0.5
1.0
Z-position, μm
1.5
2.0
R1
1
R
R2
=
1
R1
+
1
( R2 → ∞ )
→
1
R1
R1
δ
aH
a
R1
δ
a = δ2R/3ζ
Viscoelastic Material
-2.5
-1.5
-0.5
0.5
1.5
2.5
-2000
-4000
-6000
300
-8000
-10000
-12000
Z position, um
250
Height, nm
Load Force, nN .
0
200
150
100
50
0
0
5
10
15
Distance, um
20
25
30
Viscoelastic Material
2000
-2.5
-1.5
-0.5
-2000
0.5
1.5
2.5
-4000
300
-6000
-8000
-10000
-12000
-14000
Z Distance, um
250
Height, nm
Load Force, nN
0
200
150
100
50
0
0
5
10
15
Distance, um
20
25
30
Contact Mechanics Model of an
Interface
Hertzian Contact between Rigid Surfaces
Shull, K. R., (Nov. 2004), shullgroup.northwestern.edu/pdfpublic/ref054.pdf
Phertz
4 E *a 3
=
3R
•Frictionless, ideal contact
Contact Mechanics Model of an
Interface
At the JKR and DMT Limits
2⎤
3R ⎡
(
)
a =
P + 3πGR + 6πGRP + 3πGR ⎥
* ⎢
⎦
4E ⎣
3
P → 0
PJKR =
PDMT
lim ζE * = 3πγ 12 R
ζ → δ 2 R /3a
= lim
ζ → 4δ 2 R / 9 a
ζE * = 4πγ 12 R
Contact Mechanics Model of
an Interface
At the JKR and DMT Limits
• JKR
• Adds load to the model
• Does not account for adhesion outside the contact area
• Large probe, very soft surface, high surface energy
• DMT
• Adds friction as well as load to the model
• Accounts for adhesion outside the contact area
» Wetting
• Small probe, hard surface, low surface energy
Drift Procedure
Surface Tension,γ, dyne/cm .
100
90
80
70
60
50
•Make contact with surface (low force)
40
•Allow several force curve cycles (save each)
30
•Decrease the z scan range (decrease the force)
20
•Save another series of force curves
10
•Repeat until no contact
0
-200
0
200
400
600
800
Load, P, nN
1000
1200
1400
Load-Unload Procedure
Surface Tension,γ, dyne/cm .
100
90
80
70
60
•Increase z scan range to contact surface
50
•Save force curve at initial contact
•Increase the z scan range (increase the load)
40
•Save force curve
30
•Repeat until at desired load
20
•Decrease the z range (decrease the load)
10
•Save force curve
•Repeat until no contact
0
-200
0
200
400
600
800
Load, P, nN
1000
1200
1400
AAB-1 “Set”
Surface Tension,γ, dyne/cm .
70
60
50
40
30
20
γ = 46.9 (Avg. 47.9)
10
0
-200
0
200
Load, P, nN
400
AAD-1 “Set”
Surface Tension,γ, dyne/cm .
110
100
90
80
70
60
50
40
30
γ = 42.7 (Avg. 45.0)
20
10
0
-100
0
100
200
Load, P, nN
300
400
500
AAF-1 “Set”
Surface Tension,γ, dyne/cm .
70
60
50
40
30
20
γ = 48.4 (Avg. 47.9)
10
0
-200
-100
0
100
Load, P, nN
200
300
400
AAM-1 “Set”
Surface Tension,γ, dyne/cm .
140
120
100
80
60
40
γ = 50.3 (Avg. 49.9)
20
0
-200
0
200
400
Load, P, nN
600
800
Surface Tension,γ, dyne/cm .
Average Surface60Tensions
50
40
30
AAB γ : 47.9 ± 1.2
20
10
0
-125
-100
-75
-50
-25
Load, P, nN
0
25
50
Surface Tension,γ, dyne/cm .
Average Surface60Tensions
50
40
30
AAB γ: 47.9 ± 1.2
AAD γ: 45.0 ± 2.6
20
10
0
-125
-100
-75
-50
-25
Load, P, nN
0
25
50
Surface Tension,γ, dyne/cm .
Average Surface60Tensions
50
40
30
AAB γ: 47.9 ± 1.2
AAD γ: 45.0 ± 2.6
AAF γ: 47.7 ± 2.2
20
10
0
-125
-100
-75
-50
-25
Load, P, nN
0
25
50
Surface Tension,γ, dyne/cm .
Average Surface 60Tensions
50
40
30
AAB
γ: 47.9 ± 1.2
AAD
γ: 45.0 ± 2.6
AAF
γ: 47.7 ± 2.2
AAM
γ: 49.9 ± 1.6
20
10
0
-125
-100
-75
-50
-25
Load, P, nN
0
25
50
JKR/DMT
JKR
DMT
JKR/DMT
Surface Tension,γ, dyne/cm .
JKR
DMT
60
50
40
30
AAB
20
AAD
AAF
10
AAM
0
-125
-100
-75
-50
-25
Load, P, nN
0
25
50
Average Surface Tensions
AAD-1
AAF-1
AAB-1
AAM-1
45.0
47.7
47.9
49.9
± 2.4
± 2.2
± 1.2
± 1.6
AAD-1 Neat
AAD-1 PAV 240 h
AAD-1 PAV 480 h
AAD-1 PPA & PAV 96 h
AAD-1 PPA & PAV 184 h
Least Cohesive
Most Cohesive
40.9
44.7
43.7
46.2
47.0
± 1.0
± 1.3
± 1.4
± 0.5
± 0.7
Least Cohesive
Most Cohesive
Wc = 2γ
Conclusions
• Neat asphalt adhesive properties:
» Long-range, wetting forces
» Short-range, non-wetting forces
• Neat asphalt cohesive properties
» Least cohesive asphalts (AAD)
» Moderately cohesive asphalts (AAB & AAF)
» Most cohesive asphalts (AAM)
• Modified asphalt cohesive properties
» Least cohesive (Neat)
» Moderately cohesion (PAV)
» Most cohesive (PPA Modified)
Future Work
• Explore other parameters
•
•
•
•
Temperature
Rate
Aging
Additives
• Adhesion-cohesion balance
• Continue to refine experimental
procedures
ACKNOWLEDGEMENTS
FHWA for their Financial Support under Contract No. DTFH6199C-00022
Questions?