SP-18. Methane gas is stored at a pressure of 150 bar and a temperature of -10ºC in a tank with a volume of 10 m3. Calculate the mass of methane in the tank using (a) (b) (c) (d) the ideal gas equation of state the generalized compressibility chart the Van der Waals equation of state (iteration required, use ideal gas EOS solution for first guess) EES Solution: (a) Ideal gas EOS For methane: M CH 4 16.04 kg kmol kJ kJ kmol K 0.5183 kg kg K 16.04 kmol 8.314 RCH 4 kJ 150 100 3 10 m3 p m mIG 1100 kg RT kJ 0.5183 10 273.15 K kg K (b) Generalized compressibility chart For methane: TC ,CH 4 191 K pC ,CH 4 46.4 bar For the tank conditions: TR T 263.15 p 150 1.38, pR 3.23 TC 191 pC 46.4 From the gen comp chart: Z pv p 0.71 RT mRT mGCC kJ 150 100 3 10 m3 p m 1550 kg ZRT kJ 0.71 0.5183 10 273.15 K kg K (c) Van der Waals EOS RT a p 2 v b v for methane: bar m6 kPa m 6 kJ m3 229.3 229.3 kmol 2 kmol 2 kmol 2 m3 b 0.0428 Table A-24 kmol a 2.293 kJ kJ m3 8.314 263.15 K 229.3 kmol K kJ kmol 2 p 150 bar 15, 000 3 m3 m v2 v 0.0428 kmol ? 2188 229.3 15, 000 v 0.0428 v2 From the ideal gas EOS: kg 10 m 16.04 kmol 3 M v n m 1100 kg 0.1458 m3 kmol Set up an iteration table: v RHS 0.1458 10456 0.1000 15321 0.1100 13610 0.1020 14920 0.1015 15017 0.1016 14997 From the Van der Waals EOS: v M m3 0.1016 n m kmol kg 10 m 16.04 kmol 3 mVDW M v m3 0.1016 kmol (d) from EES p_tank = 15000 [kPa] V_tank=10.00 [m^3] T_tank =273.15-10 Ru = 8.314 [kJ/kmol-K] MWCH4= 16.04 [kg/kmol] RCH4=Ru/MWCH4 vCH4=volume(methane,T=T_tank, p=p_tank) massCH4=V_tank/vCH4 From EES: Result: mEES 1572 kg 1579 kg SP-19. (a) One (1.0) kg of ammonia (NH3) is contained in a piston cylinder device. The ammonia is present initially as a saturated liquid at a pressure of 2.0 bars and a temperature of -18.86 ºC. Heat is added to the piston cylinder device and the ammonia undergoes a phase change from a saturated liquid to a saturated vapor. The specific volume of the saturated liquid is 1.507 103 m3 / kg . Assume that the saturated vapor is an ideal gas. The temperature dependence of the ammonia saturation pressure is given by dp 2 Tsat K , psat kPa Tsat Tsat dT sat kPa kPa where 67.745 , 0.1502 2 K K Using the Clapeyron relation, calculate the enthalpy change h2 ? h1 of the ammonia for this constant pressure, constant temperature vaporization process. Compare your answer with the enthalpy of vaporization listed in the ammonia saturation table. Solution Given: Polynomial fit for psat as a function of Tsat . Vaporizaiton process as shown: T1 = -18.86°C, p1=2 bar T2 = -18.86°C, p2=2 bar x1=0.0 x2=1.0 v1 = v1f = 1.507x10-3 m3/kg mNH3 = 1 kg mNH3 = 1 kg Find: hvap Assumptions: (1) Clapeyron equation applies (2) Vapor phase is ideal gas (3) Closed system Basic equations: hg h f dp dT Tsat v g v f sat psat Tsat Tsat2 where 67.745 psat v g RNH3 Tsat Tsat K , psat kPa kPa kPa , 0.1502 2 K K Solution (a) dp 2 Tsat dT sat Tsat 18.86 273.15 254.29 K dp kPa kPa 67.745 2 0.1502 2 254.29 K dT sat K K kPa kJ dp 8.644 8.644 3 dT K m K sat psat v g RNH3 Tsat kJ R kJ kmol K RNH3 0.4882 kg RNH3 kg K 17.03 kmol kJ 0.4882 254.29 K RNH3 Tsat kg K m3 vg 0.6207 kJ psat kg 200 3 m hg h f dp dp hg h f hvap Tsat v g v f dT dT Tsat v g v f sat sat 8.314 hvap 3 kJ 3 m 8.644 3 254.29 K 0.6207 1.507 10 m K kg hvap h fg 1361 kJ kg compared to 1325.51 from Table A-14 (b) Check to make sure that ammonia tables at p = 5.0 bar, T = 80ºC are consistent with Eq. 11.35 from the textbook. From Table A-15, for T 80C pressure (bar) 3.5 4.0 4.5 5.0 5.5 6.0 7.0 entropy (kJ/kg-K) 6.0586 5.9897 5.9285 5.8733 5.8230 5.7768 5.6939 From Table A-15, for p 5 bar temperature (ºC) 30 40 60 80 100 120 140 specifc volume (m3/kg) 0.28103 0.29227 0.31410 0.33535 0.35621 0.37681 0.39722 Specific Entropy (kJ/kg-K) Plotting the data and performing polynomial curve fits we obtain: 6.1 T=80oC 6 5.9 5.8 5.7 s = 6.8165 - 0.003039p + 2.94x10-6p2 - 1.271x10-9p3 5.6 350 400 450 500 550 600 650 700 Pressure (kPa) s 6.8165 0.003039 p 2.94 10-6 p 2 1.271 10-9 p 3 s 0.003039 5.88 106 p 3.813 109 p 2 p T 80C at p 500 kPa s 2 0.003039 5.88 106 500 3.813 109 500 p T 80C s kJ 1 kJ m3 3 3 1.052 10 1.052 10 kg K kPa kg K kJ p T 80C s m3 3 1.052 10 kg K p T 80C 3 Specific Volume (m /kg) 0.4 v = -0.099354+ 0.0014027T 0.38 -7 2 - 4.8654x10 T 0.36 0.34 0.32 0.3 0.28 300 p = 500 kPa 320 340 360 380 400 420 Temperature (K) v 0.099354 0.0014027 T 4.8654 107 T 2 v 0.0014027 9.7308 107 T T p 5bar at T 80C 353.15 K v 0.0014027 9.7308 107 353.15 T p 5bar m3 v 3 1.059 10 kg K T p 5bar For ammonia vapor at T 80C and p 5 bar , s m3 m3 v 3 3 1.059 10 1.052 10 kg K kg K T p p T Eqn. 11.35 holds to within 0.7%. SP-20. Fifty (50) kg of high pressure butane (C4H10, M = 58 kg/kmol) is compressed isothermally in a piston-cylinder container. The initial volume of the container is 0.8 m3, and the final volume is 0.3 m3. Use the van der Waals equation of state to analyze the isothermal compression process. p RT a 2 v b v for butane: (a) (b) (c) (d) a 13.86 bar m6 kmol 2 b 0.1162 m3 kmol Table A-24 Find the pressures of the C4H10 in the tank at the initial and final conditions. Find the change in internal energy for the butane as a result of the isothermal compression. Find the change in enthalpy for the butane. Find the change in entropy for the butane. Solution Given: As shown T1 = 450 K V1 = 0.8 m3 mC4H10 = 50 kg T2 = 450 K V2 = 0.3 m3 Find: (a) (b) (c) (d) p1 , p2 U 2 U1 H 2 H1 S2 S1 Assumptions: (1) Van der Waals gas (2) Quasistatic process (3) Closed system Basic equations: p RT a 2 v b v p v dh c p dT v T du cv dT T dp, p dv T p T v cp c v p ds dT ds v dT dp, dv T T T p T v Solution (a) m 50 kg 0.862 kmol M 58 kg kmol 3 0.8 m m3 v1 0.928 0.862 kmol kmol n kJ 100 3 bar m6 m a 13.86 2 kmol 1 bar 0.3 m3 m3 v2 0.348 0.862 kmol kmol kJ m3 1386 kmol 2 kJ kJ m3 8.314 450 K 1386 kmol K RT1 a kmol 2 p1 2 2 3 v1 b v1 m m3 0.928 0.1162 0.928 kmol kmol p1 4609 1609 3000 kJ 3000 kPa m3 kJ kJ m3 8.314 450 K 1386 kmol K RT2 a kmol 2 p2 2 2 3 3 v2 b v2 m m 0.348 0.348 0.1162 kmol kmol p2 16,140 11, 440 4700 (b) in specific molar units, du cv dT T p T v p dv kJ 4700 kPa m3 p RT a 2, v b v R p T v v b RT RT a a p T 2 2 av 2 p v b v b v v T v 2 1 2 p du u2 u1 T 1 T v 2 v2 p dv av 2 dv av 1 v1 1 1 1 kJ m3 1 1 u2 u1 a 1386 3 2 m m3 kmol v2 v1 0.928 0.348 kmol kmol kJ u2 u1 2490 kmol kJ U 2 U1 n u2 u1 0.862 kmol 2490 2150 kJ kmol (c) h u pv h2 h2 u2 u1 p2 v2 p1 v1 kJ kJ m3 kJ m3 4700 3 0.348 3000 0.928 kmol m kmol m3 kmol kJ 2490 1636 2784 3640 kmol h2 h2 2490 kJ H 2 H1 n h2 h1 0.862 kmol 3640 3140 kJ kmol (d) ds v dT dp T T p cp or ds cv p dT dv T T v Choose second relation because we have already evalvuated the partial derivative 2 1 2 p 2 R v b v2 ds s2 s1 dv dv R ln v b v R ln 2 1 1 1 T v v b v1 b kJ 0.348 0.1162 kJ s2 s1 8.314 ln 10.42 kmol K 0.928 0.1162 kmol K kJ kJ S2 S1 n s2 s1 0.862 kmol 10.42 8.98 kmol K K
© Copyright 2026 Paperzz