Topics in Mathematics 201-BNJ-05 Vincent Carrier Complex Exercises (II) C.3 Polar Form Write in polar form. 1. − 2 3. − 1 + 2. 5 + 5i √ 6. − 2 3 − 2i 5. 7 − 7i √ 4. − 8i 3i 8. − 3 + 4i 7. 6i Write in standard form. 9. 9eπi 10. 4e7πi/6 11. 6e−4πi/3 12. 5ei arctan(4/3) 13. 2e−5πi/4 14. 3ei[arctan(2)+π] Write in standard form. 15. (1 − i)13 18. (1 + i)6 (1 − 16. (−1 + √ 4 3i) 19. √ 8 3i) 17. (−1 − i)−9 √ (− 3 + i)3 20. (−1 − i)5 (−1 + i)6 √ ( 3 + i)7 Use Euler’s identity eix = cos x + i sin x and the fact that ei(x+y) = eix eiy to prove the sine and cosine addition formulas. 21. sin(x + y) = sin x cos y + cos x sin y 22. cos(x + y) = cos x cos y − sin x sin y C.4 Roots Find all complex numbers z (in polar form) that satisfy the following equations. 23. z 3 = 1 24. z = i1/2 26. z 2 = −i 27. z = 11/8 29. z = (−8i)1/3 30. z 2 = −1 + 25. z = (−1)1/6 √ 28. z 4 = −1 − 3i √ 3i 31. z = (−16)1/4 Find all values of the following. 32. i2/3 33. (−1)3/4 34. (−i)3/2 Answers 1. 2eπi+2πki √ 2. 5 2eπi/4+2πki k∈Z 3. 2e2πi/3+2πki √ 5. 7 2e−πi/4+2πki 7. 6eπi/2+2πki 4. 8e3πi/2+2πki k∈Z k∈Z 6. 4e−5πi/6+2πki k∈Z k∈Z k∈Z 8. 5e[arctan(−4/3)+π]i+2πki k∈Z k∈Z 9. − 9 √ 10. − 2 3 − 2i √ 11. − 3 + 3 3i 12. 3 + 4i 13. − √ 3 6 14. − √ − √ i 5 5 15. − 64 + 64i √ 18. 64 3 + 64i 2+ √ 2i √ 16. − 128 − 128 3i 17. − √ 1 3 i 19. − − 32 32 20. 1 + i 1 1 + i 32 32 23. e0 , e2πi/3 , e4πi/3 24. eπi/4 , e5πi/4 25. eπi/6 , eπi/2 , e5πi/6 , e7πi/6 , e3πi/2 , e11πi/6 26. e3πi/4 , e7πi/4 32. eπi/3 , e5πi/3 , eπi 27. 1, eπi/4 , eπi/2 , e3πi/4 , eπi , e5πi/4 , e3πi/2 , e7πi/4 33. eπi/4 , e3πi/4 , e5πi/4 , e7πi/4 28. √ 4 2eπi/3 , √ 4 2e5πi/6 , √ 4 2e4πi/3 , √ 4 29. 2eπi/2 , 2e7πi/6 , 2e11πi/6 30. √ 2eπi/3 , √ 2e4πi/3 31. 2eπi/4 , 2e3πi/4 , 2e5πi/4 , 2e7πi/4 2e11πi/6 34. eπi/4 , e5πi/4
© Copyright 2026 Paperzz