Roger Griffith Math 121A hw # 10 Evaluation of Defenite Integrals By Use of Residue Theorem When z0 has a simple pole than we can evaluate the residue by R(z0) = lim (z − z0 ) f (z) z→z0 For problems that have multiple poles we can find the residue by using d m−1 1 f (z) z→z0 (m − 1)! dzm−1 res(z0) = lim where m is the order of the pole Problem #1 Evaluate the integral Z ∞ sin(x) x −∞ dx (Note: You can look at the book on page 690) we can write this as Z the residue at z0 = 0 is ! " sin(x) eiz 1 residue of dx = 2πi · at z0 = 0 x 2 z Res(0) = lim z z→0 eiz = lim eiz = 1 z→0 z Z ∞ sin(x) −∞ x dx = πi taking the imaginary part of both sides we get Z ∞ sin(x) −∞ x dx = π Problem #2 Page 699 of M.L. Boas book. Problems 1,3,6,10,11,12,13,15,17,19,20 (1). Z 2π 0 dθ 13 + 5 sin θ If we let z = eiθ dz = ieiθ dθ = izdθ → dθ = 1 dz iz and also 1 eiθ − e−iθ z − z z2 − 1 = = 2i 2i 2zi thus we substitute into the integral to find sin θ = dz $ =2 # 2 C z(13 + 5 z2 −1 2zi I I 1 dz = 2 2 5z + 26iz − 5 poles z= % I 1 dz = 2 · 2πi · res(−i/5) (5i + z)(i + 5z) −5i −i/5 we do not consider the −5i pole because it is outside the contour integral. The residue is given by Res(−i/5) = lim z + i/5 z→−i/5 1 (5i + z)(i + 5z) i + 5z = 5(z + i/5) thus we find = 1 1 = 24i z→−i/5 5(5i + z) Z 2π π dθ = 13 + 5 sin θ 6 0 (3). lim Z 2π 0 If we let z = eiθ dθ 5 − 4 sin θ dz = ieiθ dθ = izdθ → dθ = dz iz and also 1 eiθ − e−iθ z − z z2 − 1 sin θ = = = 2i 2i 2zi thus we substitute into the integral to find dz $= # C z(5 − 4 z2 −1 2zi I I 1 dz = 2 2z + 5iz − 2 poles z= I % 1 dz = 2πi · res(−i/2) (2i + z)(i + 2z) −5i −i/5 we do not consider the −2i pole because it is outside the contour integral. The residue is given by Res(−i/2) = lim z + i/2 z→−i/2 1 (2i + z)(i + 2z) i + 2z = 2(z + i/2) Res(−i/2) = 1 1 = 3i z→−i/2 2(2i + z) lim 2 thus we find Z 2π 2π dθ = 5 − 4 sin θ 3 0 (6). Z π 0 dθ (2 + cos θ)2 Since this function is even, it can be written as 1 2 Z 2π 0 dθ (2 + cos θ)2 If we let z = eiθ dz = ieiθ dθ = izdθ → dθ = dz iz and also 1 z2 + 1 eiθ + e−iθ z + z = = cos θ = 2 2 2z thus we substitute into the integral to find 1 2i so we find I & C (2 + zdz 1 # $'2 = 2i z2 +1 z 2 & ' ] ] dz = 2 i 2z + z +1 I 2 2 2 2z I z dz (1 + 4z + z2 )2 √ z √ √ = 2πi · res(−2 + 3) C (z + (2 + 3)2 (z + (2 − 3)2 % √ −(2 + 3) √ poles z = −(2 − 3) √ we do not consider the −(2 + 3) pole because it is outside the contour integral. To find the residue we can use we know that 2z √ f (z) = i(z + (2 + 3)2 √ √ 2z 1 3 √ √ Res(−2 + 3) = lim √ − + = 3 2 9i (2 + 3 + z) z→−2+ 3 (2 + 3 + z) I thus we find that the integral is Z π 0 (10). √ 2 3π dθ = (2 + cos θ)2 9 Z ∞ −∞ dx x2 + 4x + 5 From M.Boas, we know that solving this integral is equivalent to solving I C 1 z2 + 4z + 5 dz = 2πi · res(z0) 3 which becomes 1 dz C (z + (2 + i))(z + (2 − i)) % −(2 + i) poles z = −(2 − i) I we do not consider the −2 − i pole because it is outside the contour integral. To find the residue we can use we know that. so we know that the residue is given as res(−2 + i) = lim z − (−2 + i) z→−2+i thus we find 1 1 1 = lim = (z + (2 + i))(z + (2 − i)) z→−2+i (z + (2 + i)) 2i Z ∞ dx −∞ (11). x2 + 4x + 5 Z ∞ = π dx (4x2 + 1)3 0 as before we can solve this integral by solving 1 2 I 1 C which becomes (4z2 + 1)3 1 2 I C dz = 1 · 2πi · res(z0) 2 1 (2z + i)3 (2z − i)3 poles z= % dz i 2 − 2i we do not consider the − 2i pole because it is outside the contour integral. To find the residue we can use we know that 1 f (z) = 2(2z + i)3 24 3 = 2i z→i/2 (1 + 2z)5 res(i/2) = lim thus Z ∞ 0 (12). dx 2 (4x + 1)3 Z ∞ 2 x dx 0 1 = 4 x + 16 2 thus 1 2 = 3π 2 x2 dx 4 −∞ x + 16 Z ∞ 1 x2 dx = · 2πi res(z0) 4 2 −∞ x + 16 Z ∞ 4 with a little work and effort we find 1 2 this becomes 1 z2 dz = 4 2 C z + 16 Z z2 dz 2 2 C (z + 4i)(z − 4i) Z z2 √ √ √ √ dz C (z + 2i i)(z − 2i i)(z + 2 i)(z − 2 i) √ −2i i −2√i √ poles z = 2i i √ 2 i √ √ we will only consider 2i i, 2 i. So we find the residues to be given by 1 2 Z z2 √ √ √ √ (z + 2i i)(z − 2i i)(z + 2 i)(z − 2 i) z→2i i ! " i+1 z2 √ √ √ =− √ = lim√ 8 2 z→2i i (z + 2i i)(z + 2 i)(z − 2 i) 2 √ √ z √ √ √ √ res(2 i) = lim√ z − 2 i (z + 2i i)(z − 2i i)(z + 2 i)(z − 2 i) z→2 i " ! z2 1−i √ √ √ = √ = lim√ 8 2 z→2 i (z + 2i i)(z − 2i i)(z + 2 i) √ res(2i i) = so we find 1 2 √ lim√ z − 2i i √ √ π x2 1 i) + res(2 i)) = √ dx = · 2πi(res(2i 4 2 −∞ x + 16 4 2 Z ∞ (13). Z ∞ 0 x2 dx 1 = 2 2 2 (x + 4)(x + 9) x2 dx 2 2 −∞ (x + 4)(x + 9) Z ∞ this can also be written as 1 2 z2 dz C (z + 2i)(z − 2i)(z + 3i)(z − 3i) Z poles −2i +2i z= −3i +3i and we have poles at −2i, 2i, −3i, 3i, we will consider 2i, 3i. so this becomes 1 2 x2 dx = πi(res(2i) + res(3i)) 2 2 −∞ (x + 4)(x + 9) Z ∞ 5 and we know that z2 z→2i (z + 2i)(z − 2i)(z + 3i)(z − 3i) z2 1 = lim =− z→2i (z + 2i)(z + 3i)(z − 3i) 5i z2 res(3i) = lim z − 3i z→3i (z + 2i)(z − 2i)(z + 3i)(z − 3i) z2 9 = lim = z→3i (z + 2i)(z − 2i)(z + 3i) 30i res(2i) = lim z − 2i so we find (15). 1 2 π x2 dx = πi(res(2i) + res(3i)) = 2 2 10 −∞ (x + 4)(x + 9) Z ∞ Z ∞ cos 2xdx 1 ∞ cos 2xdx 1 = = · 2πi · res(z0) 2 2 −∞ 9x2 + 4 2 0 9x + 4 looking at the real part this can be written as 1 2 Z e2iz dz C (3z + 2i)(3z − 2i) Z we have two poles at − 2i3 , 2i3 we will only consider the 2i 3 , so we find e2iz Res(2i/3) = lim z − 2i/3 9(z + 2i/3)(z − 2i/3) z→2i/3 e2iz e−4/3 = 8i z→2i/3 9(z + 2i/3) = thus we find lim Z ∞ cos 2xdx 0 (17). This can be written as which can be simplyfied to 2 9x + 4 Z ∞ −∞ = π 12e4/3 x sin xdx x2 + 4x + 5 Z ∞ x sin xdx = Im 2 −∞ x + 4x + 5 ,Z zeiz dz z2 + 4z + 5 zeiz dz C (z + (2 + i))(z + (2 − i)) Z 6 - we find two poles at −2 + i, −2 − i, we will only consider −2 + i, so the residue is given as Res(−2 + i) = lim z + 2 − i z→−2+i zeiz z + (2 + i))(z + (2 − i)) zeiz z→−2+i z + 2 + i (i − 2)ei(i−2) (cos 2 − i sin 2)(−2 + i) −2 cos 2 + 2i sin 2 + i cos 2 + sin 2 Res(−2 + i) = = = 2i 2ie 2ie taking only the imaginary part we find cos 2 + 2 sin 2 Res(−2 + i) = 2e thus we find Z ∞ x sin xdx π = (cos 2 + 2 sin 2) 2 e −∞ x + 4x + 5 (19). Z ∞ cos 2xdx 2 2 −∞ (4x + 9) we can take the real part of this which becomes = lim e2iz dz 2 2 −∞ 16(z + 3i/2) (z − 3i/2) Z ∞ we find two poles at −3i/2, 3i/2 we will only condider 3i/2, so the residual is Res(3i/2) = lim − z→3i/2 thus we find e2iz i =− 3i 3 27e3 (z + 2 ) Z ∞ cos 2xdx −∞ (20). (4x2 + 9)2 = π 27e3 Z ∞ cos xdx 2 2 −∞ (1 + 9x ) we can look at the real part and we find eiz 1 dz = 2 81 −∞ [(3z + i)(3z − i)] Z ∞ eiz dz i i −∞ (z + 3 )2 (z − 3 )2 Z ∞ we find two poles at −i/3, i/3 we will only use the i/3, so the residual is given as Res(i/3) = lim − z→i/3 i 2eiz = − 1/3 3 81(z + i/3) 9e so the results is given by Z ∞ 2π cos xdx = 2 2 9e1/3 −∞ (1 + 9x ) 7
© Copyright 2026 Paperzz