Solution #1

Electric Circuits
Fall 2015
Pingqiang Zhou
Solution #1
1. Determine the current flowing through an element if the charge flow is given by (a)
and (b), and find the charge q(t) flowing through a device if the current is (c) and (d).
(a) π‘ž(𝑑) = (8𝑑 2 + 4𝑑 βˆ’ 2) C
(b) π‘ž(𝑑) = 20𝑒 βˆ’4𝑑 cos 50𝑑 πœ‡C
(c) 𝑖(𝑑) = 20 cos(10𝑑 + πœ‹/6) πœ‡A, π‘ž(0) = 2πœ‡C
(d) 𝑖(𝑑) = 10𝑒 βˆ’30𝑑 sin 40𝑑 A, π‘ž(0) = 0
Solution:
(a) 𝑖(𝑑) =
π’…π‘ž(𝑑)
(b) 𝑖(𝑑) =
π’…π‘ž(𝑑)
𝒅𝑑
𝒅𝑑
= (16𝑑 + 4) A
= βˆ’π‘’ βˆ’4𝑑 (80 cos 50𝑑 + 1000 sin 50𝑑) πœ‡A
𝑑
πœ‹
(c) π‘ž(𝑑) = ∫0 20 cos(10𝜏 + πœ‹/6) π‘‘πœ + π‘ž(0) = (2 sin (10𝑑 + 6 ) + 1) πœ‡C
𝒕
1
𝑑
(d) π‘ž(𝑑) = ∫𝟎 πŸπŸŽπ’†βˆ’πŸ‘πŸŽπ‰ 𝐬𝐒𝐧 πŸ’πŸŽπ‰ 𝒅𝝉 + π‘ž(0) = βˆ’ 3 ∫0 sin 40𝜏 𝑑(𝑒 βˆ’30𝜏 ) =
1
βˆ’ 3 𝑒 βˆ’30𝑑 sin 40𝑑 +
4
40
3
4
𝑒 βˆ’30𝑑 cos 40𝑑 + 9 βˆ’
9
𝑑
1
∫0 𝑒 βˆ’30𝜏 cos 40𝜏 π‘‘πœ = (βˆ’ 3 𝑒 βˆ’30𝑑 sin 40𝑑 βˆ’
16
9
𝒕
∫𝟎 πŸπŸŽπ’†βˆ’πŸ‘πŸŽπ‰ 𝐬𝐒𝐧 πŸ’πŸŽπ‰ 𝒅𝝉) C
Then,
𝑑
9
1
4
π‘ž(𝑑) = ∫0 10𝑒 βˆ’30𝜏 sin 40𝜏 π‘‘πœ + 0 = 25 (βˆ’ 3 𝑒 βˆ’30𝑑 sin 40𝑑 βˆ’ 9 𝑒 βˆ’30𝑑 cos 40𝑑 +
4
9
) = (βˆ’π‘’ βˆ’30𝑑 (0.16 cos 40𝑑 + 0.12 sin 40𝑑) + 0.16) C
2. The charge entering a certain element is shown in Fig. 1.
Find the current at:
(a) t = 1 ms
(b) t = 6 ms
(c) t = 10 ms
Fig. 1. For Prob. 2.
Solution:
(a) At t = 1 ms, 𝑖(1) = (
π’…π‘ž(𝑑)
(b) At t = 6 ms, 𝑖(6) = (
π’…π‘ž(𝑑)
𝒅𝑑
𝒅𝑑
(c) At t = 10 ms, 𝑖(10) = (
)𝑑=1 =
30βˆ’0 mC
)𝑑=6 =
0 mC
π’…π‘ž(𝑑)
𝒅𝑑
2βˆ’0 ms
6 ms
)𝑑=10 =
= 15 A
=0A
0βˆ’30 mC
12βˆ’8 ms
= βˆ’7.5 A
Page 1|9
Electric Circuits
Fall 2015
Pingqiang Zhou
3. The current through an element is shown in Fig. 2. Find
the total charge that passed through the element at:
(a) t = 1 s
(b) t = 3 s
(c) t = 5 s
Fig. 2. For Prob. 3.
Solution:
1
1
(a) t = 0 s through t = 1 s, π‘ž = βˆ«π‘‘=0 𝑖(𝑑) 𝑑𝑑 = βˆ«π‘‘=0 10 𝑑𝑑 = 10 C
3
2
3
(b) t = 0 s through t = 3 s, π‘ž = βˆ«π‘‘=0 𝑖(𝑑) 𝑑𝑑 = 10 + βˆ«π‘‘=1 βˆ’5𝑑 + 15 𝑑𝑑 + βˆ«π‘‘=2 5 𝑑𝑑 =
22.5 C
5
4
5
(c) t = 0 s through t = 5 s, π‘ž = βˆ«π‘‘=0 𝑖(𝑑) 𝑑𝑑 = 22.5 + βˆ«π‘‘=3 5 𝑑𝑑 + βˆ«π‘‘=4 βˆ’5𝑑 +
25 𝑑𝑑 = 30 C
In fact, you can also calculate the areas bounded by the curve and the axis.
4. The charge entering the positive terminal of an element is
π‘ž = 5 sin 4πœ‹π‘‘ mC
while the voltage across the element (plus to minus) is
𝑣 = 3 cos 4πœ‹π‘‘ V
(a) Find the power delivered to the element at t = 0.3 s.
(b) Calculate the energy delivered to the element between 0 and 0.6 s.
Solution:
dq
(a) 𝑃(𝑑) = 𝑣𝑖 = 𝑣 ( dt ) = 3 cos 4πœ‹π‘‘ V βˆ— 20πœ‹ cos 4πœ‹π‘‘ mA = 60Ο€cos 2 (4πœ‹π‘‘) mW
At t = 0.3 s, 𝑃(0.3) = 60Ο€cos2 (4πœ‹ βˆ— 0.3) = 123.37 mW
0.6
0.6
(b) W = βˆ«π‘‘=0 60Ο€cos2 (4πœ‹π‘‘) 𝑑𝑑 = 30πœ‹ βˆ«π‘‘=0[1 + cos 8πœ‹π‘‘] 𝑑𝑑 = 30πœ‹ [0.6 +
1
8πœ‹
[sin 4.8πœ‹]] = 58.76 mJ
5. Find the power absorbed by each of the elements in Fig. 3.
Fig. 3. For Prob. 5.
Page 2|9
Electric Circuits
Fall 2015
Pingqiang Zhou
Solution:
𝑝1 = 30 V βˆ— (βˆ’10 A) = βˆ’300 W
𝑝2 = 10 V βˆ— 10 A = 100 W
𝑝3 = 20 V βˆ— 14 A = 280 W
𝑝4 = 8 V βˆ— (βˆ’4 A) = βˆ’32 W
𝑝5 = 12 V βˆ— (βˆ’0.4 βˆ— 10 A) = βˆ’48 W
6. Find π‘‰π‘œ and the power absorbed by each element in the circuit of Fig. 4.
Fig. 4. For Prob. 6.
Solution:
KVL: 12 V + π‘‰π‘œ βˆ’ 30 V = 0 V, or 28 V βˆ’ 5πΌπ‘œ βˆ’ π‘‰π‘œ = 0 V, π‘‰π‘œ = 18 V
𝑝30 π‘£π‘œπ‘™π‘‘ π‘ π‘œπ‘’π‘Ÿπ‘π‘’ = 30 V βˆ— (βˆ’6 A) = βˆ’180 W
𝑝12 π‘£π‘œπ‘™π‘‘ π‘’π‘™π‘’π‘šπ‘’π‘›π‘‘ = 12 V βˆ— 6 A = 72 W
𝑝28 π‘£π‘œπ‘™π‘‘ π‘’π‘™π‘’π‘šπ‘’π‘›π‘‘ π‘€π‘–π‘‘β„Ž 2 π‘Žπ‘šπ‘π‘  π‘“π‘™π‘œπ‘€π‘–π‘›π‘” π‘‘β„Žπ‘Ÿπ‘œπ‘’π‘”β„Ž 𝑖𝑑 = 28 V βˆ— 2 A = 56 W
𝑝28 π‘£π‘œπ‘™π‘‘ π‘’π‘™π‘’π‘šπ‘’π‘›π‘‘ π‘€π‘–π‘‘β„Ž 1 π‘Žπ‘šπ‘π‘  π‘“π‘™π‘œπ‘€π‘–π‘›π‘” π‘‘β„Žπ‘Ÿπ‘œπ‘’π‘”β„Ž 𝑖𝑑 = 28 V βˆ— 1 A = 28 W
𝑝𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑑 π‘ π‘œπ‘’π‘Ÿπ‘π‘’ = 5 βˆ— 2 V βˆ— (βˆ’3 A) = βˆ’30 W
𝑝18 π‘£π‘œπ‘™π‘‘ π‘’π‘™π‘’π‘šπ‘’π‘›π‘‘ = 18 V βˆ— 3 A = 54 W
Or 𝑝18 π‘£π‘œπ‘™π‘‘ π‘’π‘™π‘’π‘šπ‘’π‘›π‘‘ = 180 βˆ’ 72 βˆ’ 56 βˆ’ 28 + 30 = 54 W
7. Fig. 5 shows the power consumption of a
certain household in 1 day. Calculate:
(a) the total energy consumed in kWh,
(b) the average power per hour over the
total 24 hour period.
Fig. 5. For Prob. 7.
Solution:
(a) Energy = Energy = βˆ‘ 𝑝𝑑 = 200 βˆ— 6 + 800 βˆ— 2 + 200 βˆ— 10 + 1200 βˆ— 4 +
Page 3|9
Electric Circuits
Fall 2015
Pingqiang Zhou
200 βˆ— 2 = 10 kWh
(b) Average power = 10 kWh/24 h = 416.7 W
8. In the network graph shown in Fig. 6, determine the number of branches, nodes and
loops.
Fig. 6. For Prob. 8.
Solution:
n = 14; l = 8; b = n + l – 1 = 21
9. Find 𝑖1 , 𝑖2 and 𝑖3 in Fig. 7.
Fig. 7. For Prob. 9.
Solution:
KCL:
𝑖1 = 1 A + 6 A = 7 A, or 𝑖1 = 5 A + 2 A = 7 A
𝑖2 = 6 A βˆ’ 7 A = βˆ’1 A
𝑖3 = 4 A βˆ’ (βˆ’1 A) = 5 A, or 𝑖3 = 7 A βˆ’ 2 A = 5 A
10. In the circuit in Fig. 8, obtain 𝑣1 , 𝑣2 and 𝑣3 .
Page 4|9
Fig. 8. For Prob. 10.
Electric Circuits
Fall 2015
Pingqiang Zhou
Solution:
KVL:
𝑣1 βˆ’ 40 V βˆ’ 50 V + 20 V = 0 V, 𝑣1 = 70 V
𝑣2 βˆ’ 30 V + 20 V = 0 V, 𝑣2 = 10 V
𝑣3 βˆ’ 𝑣1 + 𝑣2 = 0 V, 𝑣3 = 60 V
11. Identify all the nodes, branches, and independent loops in Fig. 9.
Fig. 9. For Prob. 11.
Solution:
n = 8; l = 7; b = n + l – 1 = 14
12. Find π‘‰π‘œ in the circuit in Fig. 10 and the power absorbed by the dependent source.
Fig. 10. For Prob. 12.
Page 5|9
Electric Circuits
Fall 2015
Pingqiang Zhou
Solution:
π‘‰π‘œ = βˆ’(2π‘‰π‘œ + 25) A βˆ— 10 Ξ©, π‘‰π‘œ = βˆ’
250
21
= βˆ’11.905 V
P = (βˆ’11.905 V βˆ’ 10 Ξ© βˆ— (25 A βˆ’ 2 βˆ— 11.905 A)) βˆ— (βˆ’2 βˆ— 11.905 )A = 566.8 W
13. Find the equivalent resistance π‘…π‘Žπ‘ in the circuit of Fig. 11.
Fig. 11. For Prob. 13.
Solution:
5 Ξ© βˆ₯ 20 Ξ© = 4 Ξ©
6Ξ© βˆ₯3Ξ©= 2Ξ©
π‘…π‘Žπ‘ = 10 + 4 + 2 + 8 = 24 Ξ©
14. Calculate πΌπ‘œ in the circuit of Fig. 12.
Fig. 12. For Prob. 14.
Page 6|9
Electric Circuits
Fall 2015
Pingqiang Zhou
Solution:
We convert the T to Ξ”.
π‘…π‘Žπ‘ =
𝑅1 𝑅2 + 𝑅2 𝑅3 + 𝑅1 𝑅3 20 βˆ— 40 + 40 βˆ— 10 + 10 βˆ— 20
=
= 35 Ξ©
𝑅3
40
Similarly, π‘…π‘Žπ‘ =
1400
10
= 140 Ξ©, 𝑅𝑏𝑐 =
1400
20
= 70 Ξ©
π‘…π‘’π‘ž = 35 βˆ₯ (140 βˆ₯ 60 + 70 βˆ₯ 70) = 24.0625 Ξ©
πΌπ‘œ =
24𝑉
π‘…π‘’π‘ž
= 997.4 mA
15. Find π‘…π‘’π‘ž and I in the circuit of Fig.13.
Fig. 13. For Prob. 15.
Solution:
Page 7|9
Electric Circuits
Fall 2015
π‘…π‘Žπ‘ =
6βˆ—12+12βˆ—8+8βˆ—6
𝑅𝑑𝑒 =
4βˆ—2+2βˆ—8+8βˆ—4
12
8
=
=
216
56
8
12
= 18 Ξ©, π‘…π‘Žπ‘ =
= 7 Ξ©, 𝑅𝑒𝑓 =
56
4
216
8
Pingqiang Zhou
= 27 Ξ©, 𝑅𝑏𝑐 = 36 Ξ©
= 14 Ξ©, 𝑅𝑑𝑓 =
56
2
= 28 Ξ©
Combining resistors in parallel,
10 βˆ₯ 28 = 7.368 Ξ©, 36 βˆ₯ 7 = 5.868 Ξ©, 27 βˆ₯ 3 = 2.7 Ξ©
(Correction: the 7.568 𝛺 resistor in the upper figure should be 7.368 𝛺.)
18βˆ—2.7
π‘…π‘Žπ‘› = 18+2.7+5.867 = 1.829 Ξ©, 𝑅𝑏𝑛 =
𝑅𝑐𝑛 =
5.868βˆ—2.7
26.567
18βˆ—5.868
26.567
= 3.977 Ξ©
= 0.5904 Ξ©
π‘…π‘’π‘ž = 4 + 1.829 + (3.977 + 7.368) βˆ₯ (0.5964 + 14) = 12.21 Ξ©
20
𝐼=𝑅
π‘’π‘ž
= 1.64 A
16. Find π‘…π‘Žπ‘ in the eight-way divider shown in Fig. 14. Assume each element is 1 Ξ©.
Page 8|9
Electric Circuits
Fall 2015
Pingqiang Zhou
Solution:
π‘…π‘Žπ‘ = 1 + 1 = 2 Ξ©
17. In a certain application, the circuit in Fig. 15 must be designed to meet these two
criteria:
(a) π‘‰π‘œ /𝑉𝑠 = 0.05 (b) π‘…π‘’π‘ž = 40 kΞ©
If the load resistor 5 kΞ© is fixed, find 𝑅1 and 𝑅2 to meet the criteria.
Fig. 15. For Prob. 17.
Solution:
Let 𝑅1 and 𝑅2 be in kΞ©.
π‘…π‘’π‘ž = 𝑅1 + 𝑅2 βˆ₯ 5 kΞ© = 40 kΞ©
𝑅2 βˆ₯ 5 kΞ©
0.05
=
𝑅1
1 βˆ’ 0.05
β‡’
𝑅1 = 38 kΞ©, 𝑅2 = 10/3 kΞ©
Page 9|9