Electric Circuits Fall 2015 Pingqiang Zhou Solution #1 1. Determine the current flowing through an element if the charge flow is given by (a) and (b), and find the charge q(t) flowing through a device if the current is (c) and (d). (a) π(π‘) = (8π‘ 2 + 4π‘ β 2) C (b) π(π‘) = 20π β4π‘ cos 50π‘ πC (c) π(π‘) = 20 cos(10π‘ + π/6) πA, π(0) = 2πC (d) π(π‘) = 10π β30π‘ sin 40π‘ A, π(0) = 0 Solution: (a) π(π‘) = π π(π‘) (b) π(π‘) = π π(π‘) π π‘ π π‘ = (16π‘ + 4) A = βπ β4π‘ (80 cos 50π‘ + 1000 sin 50π‘) πA π‘ π (c) π(π‘) = β«0 20 cos(10π + π/6) ππ + π(0) = (2 sin (10π‘ + 6 ) + 1) πC π 1 π‘ (d) π(π‘) = β«π πππβπππ π¬π’π§ πππ π π + π(0) = β 3 β«0 sin 40π π(π β30π ) = 1 β 3 π β30π‘ sin 40π‘ + 4 40 3 4 π β30π‘ cos 40π‘ + 9 β 9 π‘ 1 β«0 π β30π cos 40π ππ = (β 3 π β30π‘ sin 40π‘ β 16 9 π β«π πππβπππ π¬π’π§ πππ π π) C Then, π‘ 9 1 4 π(π‘) = β«0 10π β30π sin 40π ππ + 0 = 25 (β 3 π β30π‘ sin 40π‘ β 9 π β30π‘ cos 40π‘ + 4 9 ) = (βπ β30π‘ (0.16 cos 40π‘ + 0.12 sin 40π‘) + 0.16) C 2. The charge entering a certain element is shown in Fig. 1. Find the current at: (a) t = 1 ms (b) t = 6 ms (c) t = 10 ms Fig. 1. For Prob. 2. Solution: (a) At t = 1 ms, π(1) = ( π π(π‘) (b) At t = 6 ms, π(6) = ( π π(π‘) π π‘ π π‘ (c) At t = 10 ms, π(10) = ( )π‘=1 = 30β0 mC )π‘=6 = 0 mC π π(π‘) π π‘ 2β0 ms 6 ms )π‘=10 = = 15 A =0A 0β30 mC 12β8 ms = β7.5 A Page 1|9 Electric Circuits Fall 2015 Pingqiang Zhou 3. The current through an element is shown in Fig. 2. Find the total charge that passed through the element at: (a) t = 1 s (b) t = 3 s (c) t = 5 s Fig. 2. For Prob. 3. Solution: 1 1 (a) t = 0 s through t = 1 s, π = β«π‘=0 π(π‘) ππ‘ = β«π‘=0 10 ππ‘ = 10 C 3 2 3 (b) t = 0 s through t = 3 s, π = β«π‘=0 π(π‘) ππ‘ = 10 + β«π‘=1 β5π‘ + 15 ππ‘ + β«π‘=2 5 ππ‘ = 22.5 C 5 4 5 (c) t = 0 s through t = 5 s, π = β«π‘=0 π(π‘) ππ‘ = 22.5 + β«π‘=3 5 ππ‘ + β«π‘=4 β5π‘ + 25 ππ‘ = 30 C In fact, you can also calculate the areas bounded by the curve and the axis. 4. The charge entering the positive terminal of an element is π = 5 sin 4ππ‘ mC while the voltage across the element (plus to minus) is π£ = 3 cos 4ππ‘ V (a) Find the power delivered to the element at t = 0.3 s. (b) Calculate the energy delivered to the element between 0 and 0.6 s. Solution: dq (a) π(π‘) = π£π = π£ ( dt ) = 3 cos 4ππ‘ V β 20π cos 4ππ‘ mA = 60Οcos 2 (4ππ‘) mW At t = 0.3 s, π(0.3) = 60Οcos2 (4π β 0.3) = 123.37 mW 0.6 0.6 (b) W = β«π‘=0 60Οcos2 (4ππ‘) ππ‘ = 30π β«π‘=0[1 + cos 8ππ‘] ππ‘ = 30π [0.6 + 1 8π [sin 4.8π]] = 58.76 mJ 5. Find the power absorbed by each of the elements in Fig. 3. Fig. 3. For Prob. 5. Page 2|9 Electric Circuits Fall 2015 Pingqiang Zhou Solution: π1 = 30 V β (β10 A) = β300 W π2 = 10 V β 10 A = 100 W π3 = 20 V β 14 A = 280 W π4 = 8 V β (β4 A) = β32 W π5 = 12 V β (β0.4 β 10 A) = β48 W 6. Find ππ and the power absorbed by each element in the circuit of Fig. 4. Fig. 4. For Prob. 6. Solution: KVL: 12 V + ππ β 30 V = 0 V, or 28 V β 5πΌπ β ππ = 0 V, ππ = 18 V π30 π£πππ‘ π ππ’πππ = 30 V β (β6 A) = β180 W π12 π£πππ‘ πππππππ‘ = 12 V β 6 A = 72 W π28 π£πππ‘ πππππππ‘ π€ππ‘β 2 ππππ ππππ€πππ π‘βπππ’πβ ππ‘ = 28 V β 2 A = 56 W π28 π£πππ‘ πππππππ‘ π€ππ‘β 1 ππππ ππππ€πππ π‘βπππ’πβ ππ‘ = 28 V β 1 A = 28 W ππππππππππ‘ π ππ’πππ = 5 β 2 V β (β3 A) = β30 W π18 π£πππ‘ πππππππ‘ = 18 V β 3 A = 54 W Or π18 π£πππ‘ πππππππ‘ = 180 β 72 β 56 β 28 + 30 = 54 W 7. Fig. 5 shows the power consumption of a certain household in 1 day. Calculate: (a) the total energy consumed in kWh, (b) the average power per hour over the total 24 hour period. Fig. 5. For Prob. 7. Solution: (a) Energy = Energy = β ππ‘ = 200 β 6 + 800 β 2 + 200 β 10 + 1200 β 4 + Page 3|9 Electric Circuits Fall 2015 Pingqiang Zhou 200 β 2 = 10 kWh (b) Average power = 10 kWh/24 h = 416.7 W 8. In the network graph shown in Fig. 6, determine the number of branches, nodes and loops. Fig. 6. For Prob. 8. Solution: n = 14; l = 8; b = n + l β 1 = 21 9. Find π1 , π2 and π3 in Fig. 7. Fig. 7. For Prob. 9. Solution: KCL: π1 = 1 A + 6 A = 7 A, or π1 = 5 A + 2 A = 7 A π2 = 6 A β 7 A = β1 A π3 = 4 A β (β1 A) = 5 A, or π3 = 7 A β 2 A = 5 A 10. In the circuit in Fig. 8, obtain π£1 , π£2 and π£3 . Page 4|9 Fig. 8. For Prob. 10. Electric Circuits Fall 2015 Pingqiang Zhou Solution: KVL: π£1 β 40 V β 50 V + 20 V = 0 V, π£1 = 70 V π£2 β 30 V + 20 V = 0 V, π£2 = 10 V π£3 β π£1 + π£2 = 0 V, π£3 = 60 V 11. Identify all the nodes, branches, and independent loops in Fig. 9. Fig. 9. For Prob. 11. Solution: n = 8; l = 7; b = n + l β 1 = 14 12. Find ππ in the circuit in Fig. 10 and the power absorbed by the dependent source. Fig. 10. For Prob. 12. Page 5|9 Electric Circuits Fall 2015 Pingqiang Zhou Solution: ππ = β(2ππ + 25) A β 10 Ξ©, ππ = β 250 21 = β11.905 V P = (β11.905 V β 10 Ξ© β (25 A β 2 β 11.905 A)) β (β2 β 11.905 )A = 566.8 W 13. Find the equivalent resistance π ππ in the circuit of Fig. 11. Fig. 11. For Prob. 13. Solution: 5 Ξ© β₯ 20 Ξ© = 4 Ξ© 6Ξ© β₯3Ξ©= 2Ξ© π ππ = 10 + 4 + 2 + 8 = 24 Ξ© 14. Calculate πΌπ in the circuit of Fig. 12. Fig. 12. For Prob. 14. Page 6|9 Electric Circuits Fall 2015 Pingqiang Zhou Solution: We convert the T to Ξ. π ππ = π 1 π 2 + π 2 π 3 + π 1 π 3 20 β 40 + 40 β 10 + 10 β 20 = = 35 Ξ© π 3 40 Similarly, π ππ = 1400 10 = 140 Ξ©, π ππ = 1400 20 = 70 Ξ© π ππ = 35 β₯ (140 β₯ 60 + 70 β₯ 70) = 24.0625 Ξ© πΌπ = 24π π ππ = 997.4 mA 15. Find π ππ and I in the circuit of Fig.13. Fig. 13. For Prob. 15. Solution: Page 7|9 Electric Circuits Fall 2015 π ππ = 6β12+12β8+8β6 π ππ = 4β2+2β8+8β4 12 8 = = 216 56 8 12 = 18 Ξ©, π ππ = = 7 Ξ©, π ππ = 56 4 216 8 Pingqiang Zhou = 27 Ξ©, π ππ = 36 Ξ© = 14 Ξ©, π ππ = 56 2 = 28 Ξ© Combining resistors in parallel, 10 β₯ 28 = 7.368 Ξ©, 36 β₯ 7 = 5.868 Ξ©, 27 β₯ 3 = 2.7 Ξ© (Correction: the 7.568 πΊ resistor in the upper figure should be 7.368 πΊ.) 18β2.7 π ππ = 18+2.7+5.867 = 1.829 Ξ©, π ππ = π ππ = 5.868β2.7 26.567 18β5.868 26.567 = 3.977 Ξ© = 0.5904 Ξ© π ππ = 4 + 1.829 + (3.977 + 7.368) β₯ (0.5964 + 14) = 12.21 Ξ© 20 πΌ=π ππ = 1.64 A 16. Find π ππ in the eight-way divider shown in Fig. 14. Assume each element is 1 Ξ©. Page 8|9 Electric Circuits Fall 2015 Pingqiang Zhou Solution: π ππ = 1 + 1 = 2 Ξ© 17. In a certain application, the circuit in Fig. 15 must be designed to meet these two criteria: (a) ππ /ππ = 0.05 (b) π ππ = 40 kΞ© If the load resistor 5 kΞ© is fixed, find π 1 and π 2 to meet the criteria. Fig. 15. For Prob. 17. Solution: Let π 1 and π 2 be in kΞ©. π ππ = π 1 + π 2 β₯ 5 kΞ© = 40 kΞ© π 2 β₯ 5 kΞ© 0.05 = π 1 1 β 0.05 β π 1 = 38 kΞ©, π 2 = 10/3 kΞ© Page 9|9
© Copyright 2026 Paperzz