G3: Genes|Genomes|Genetics Early Online, published on January 15, 2016 as doi:10.1534/g3.115.025577 TheE2F-DP1transcriptionfactorcomplexregulatescentrioleduplicationinC. elegans JacquelineD.Goeres-Miller1,YanLiu1,ChristopherWilliams1,HaroldE.Smith2,KevinF. O’Connell1,3 1LaboratoryofBiochemistryandGenetics,and2GenomicsCore,NationalInstituteof DiabetesandDigestiveandKidneyDiseases,NationalInstitutesofHealth,Bethesda,MD 20892,USA 3Towhomcorrespondenceshouldbeaddressed. ContactInformation: email:[email protected] phone:301-451-4557 fax:301-402-0240 1 © The Author(s) 2013. Published by the Genetics Society of America. Runningtitle:TranscriptionalControlofCentrioleDuplication. KeyWords:centrioleduplication,C.elegans,transcriptionalregulation,E2F/DP1,SAS-6 2 Abstract Centriolesplaycriticalrolesintheorganizationofmicrotubule-basedstructuresfromthe mitoticspindletocilia,andflagella.Inordertoproperlyexecutetheirvariousfunctions, centriolesaresubjectedtostringentcopynumbercontrol.Centraltothiscontrol mechanismisapreciseduplicationeventthattakesplaceduringSphaseofthecellcycle andinvolvestheassemblyofasingledaughtercentrioleinassociationwitheachmother centriole.Recentstudieshaverevealedthatpost-translationalcontrolofthemaster regulatorPlk4/ZYG-1kinaseanditsdownstreameffectorSAS-6iskeytoensuring productionofasingledaughtercentriole.Incontrast,relativelylittleisknownabouthow centrioleduplicationisregulatedatatranscriptionallevel.Hereweshowthatthe transcriptionfactorcomplexEFL-1-DPL-1bothpositivelyandnegativelycontrolscentriole duplicationintheCaenorhabditiselegansembryo.Specifically,wefindthatdown regulationofEFL-1-DPL-1canrestorecentrioleduplicationinazyg-1hypomorphicmutant andthatsuppressionofthezyg-1mutantphenotypeisaccompaniedbyanincreaseinSAS6proteinlevels.Further,wefindevidencethatEFL-1-DPL-1promotesthetranscriptionof zyg-1andothercentrioleduplicationgenes.Ourresultsprovideevidencethatinasingle tissuetype,EFL-1-DPL-1setsthebalancebetweenpositiveandnegativeregulatorsof centrioleassemblyandthusmaybepartofahomeostaticmechanismthatgoverns centrioleassembly. 3 Introduction: Centriolesarecylindricalmicrotubule-basedorganellesthatdirectformationof centrosomesandcilia(WineyandO'Toole2014).Dividingcellspossessoneortwopairsof centrioleswitheachpaircontaininganewer(daughter)centrioleorientedorthogonallyto anolder(mother)centriole.Inthiscellularcontext,centriolepairsareenvelopedbya proteinaceousmatrixcalledthepericentriolarmaterialorPCM,therebyforming centrosomes,thecell’sprimarymicrotubule-organizingcenter(MTOC).Centrosomes mediateintracellulartransport,establishcellpolarity,andorganizethepolesofthemitotic spindletoaidinthesegregationofchromosomes.Innon-cyclingcells,centriolesshedtheir PCMandmovetotheplasmamembranewherethemothercentrioleservesasabasalbody toorganizeciliaandflagella,structuresimportantforcellmotilityandcellsignaling. Giventhecrucialrolesofcentriolesinbothcyclingandnon-cyclingcells,itisnot surprisingthataberrationsincentriolenumberorstructurehavebeenlinkedtodisease. Anexcessnumberofcentriolesisfoundinmanydifferenttypesoftumorcellswherethey candisruptspindlestructureandchromosomesegregationleadingtoaneuploidy(Ganem etal.2009).Excesscentriolescanalsointerferewithcilia-basedcellsignaling(Mahjoub andStearns2012)andpromotecellmigrationandinvasivebehavior(Godinhoetal.2015). Thusexcesscentriolescanimpactthegrowthofcellsinmultipleways.Beyondcancer, defectsincentriolestructureornumberhavebeenlinkedtoseveralhumandiseases includingautosomalrecessiveprimarymicrocephaly,primordialdwarfismandacollection ofdisorderscalledciliopathies(Chavalietal.2014). 4 Individingcells,centriolenumberismaintainedthroughapreciseduplicationevent inwhicheachmothercentriolegivesrisetooneandonlyonedaughtercentrioleduringS phase(Firat-KaralarandStearns2014).Aseachcentriolepairwillformaspindlepole duringtheensuingMphase,stringentcontrolofcentrioleassemblyhelpsensurespindle bipolarityandthefidelityofcelldivision.Forwardandreversegeneticstudiesinthe nematodeCaenorhabditiseleganshaveledtotheidentificationofasetoffivecorefactors thatarerequiredforcentrioleduplication(O'Connelletal.2001;Kirkhametal.2003; LeidelandGönczy2003;Kempetal.2004;Pelletieretal.2004;Delattreetal.2004; Dammermannetal.2004;Leideletal.2005;Kitagawa,Flückiger,etal.2011;Songetal. 2011).Functionalorthologsofeachofthesefactorshavesincebeenidentifiedinother speciesincludingfliesandhumans,therebyestablishingthebroadevolutionary conservationofthecentrioleduplicationpathway(Leideletal.2005;Habedancketal. 2005;Bettencourt-Diasetal.2005;Bastoetal.2006;Kleylein-Sohnetal.2007;RodriguesMartinsetal.2007;VladarandStearns2007;Zhuetal.2008;Kohlmaieretal.2009; Stevensetal.2010;Arquintetal.2012;Vulprechtetal.2012). CentrioleassemblyisinitiatedbytherecruitmentofPolo-likekinase4(Plk4)tothe siteofcentrioleassembly(Dzhindzhevetal.2010;Cizmeciogluetal.2010;Hatchetal. 2010;Slevinetal.2012;Sonnenetal.2013;Kimetal.2013;Shimanovskayaetal.2014). Invertebrates,thisstepisexecutedthroughadirectphysicalinteractionbetweenPlk4and itscentriolereceptorsSPD-2andCep152.Asimplermechanismoperatesinwormswhere SPD-2issolelyinvolvedinrecruitingthePlk4relativeZYG-1(Delattreetal.2006;Pelletier etal.2006).ZYG-1/Plk4thenrecruitsthecoiled-coildomaincontainingproteinsSAS-6 andSAS-5/Stil.Themoleculardetailsofthisstepappearspecies-specificbutinvolvea 5 directphysicalinteractionbetweenPlk4/ZYG-1andeitherSAS-5orSAS-6andsubsequent phosphorylation(Lettmanetal.2013;Dzhindzhevetal.2014;Arquintetal.2015;Kratzet al.2015;Moyeretal.2015).Attheassemblingcentriole,SAS-6dimersoligomerizetoform thecentriolescaffold,anelegantcartwheelstructureinhumansandfliesorasimpler centraltube-likestructureinworms(Kitagawa,Vakonakis,etal.2011;vanBreugeletal. 2011).Finally,thecoiled-coilcontainingproteinSAS-4isrecruitedtothenascentcentriole andisrequiredfortheassemblyofthemicrotubulesoftheouterwall(Pelletieretal.2006; Dammermannetal.2008;Schmidtetal.2009). Whilemanyofthemoleculardetailsofcentrioleassemblyhavebeenelucidatedby recentstructuralandbiochemicalstudies,manymysteriesregardingtheregulationofthis processremain.Inparticular,itisnotclearhowamothergivesbirthtoasingledaughter centrioleduringeachroundofduplication.Overexpression/over-activationofthecore duplicationfactorsZYG-1/Plk4orSAS-6resultintheproductionofmultipledaughter centrioles(Habedancketal.2005;Peeletal.2007;Kleylein-Sohnetal.2007;Bastoetal. 2008;Petersetal.2010),indicatingthatcarefulregulationofthelevelsand/oractivityof thesefactorsplaysaroleinlimitingthenumberofdaughtersassembledduringeachround ofduplication.Morerecently,anumberofstudieshaveshedlightontheimportanceof post-translationalmechanismsinregulatingcentrioleduplication;boththelevelsof Plk4/ZYG-1andSAS-6arestringentlycontrolledbyregulatedproteolysis(Strnadetal. 2007;Cunha-Ferreiraetal.2009;Rogersetal.2009;Puklowskietal.2011;Peeletal.2012; Čajáneketal.2015). 6 Littleisknownhoweverabouthowcentrioleduplicationiscontrolledatthelevelof transcription.In1999,Meraldiandcolleaguesshowedthattheheterodimeric transcriptionfactorE2F-DPplayedaroleinregulatingthere-duplicationofcentriolesinSphasearrestedCHOcells(Meraldietal.1999).Howevertherelevantgenestargetedby E2Fwerenotidentified.Morerecently,severalisoformsoftheE2Ftranscriptionfactor family(E2F4andE2F5)alongwiththeirbindingpartnerDPandacell-specificco-regulator multicillin,werefoundtodirectlyactivatethetranscriptionofthecorecentriole duplicationfactorsinmulticilliatecellstoupregulatecentriolebiogenesis(Maetal.2014). Infact,activationofthistranscriptionalcomplexwasrequiredformulticilliatecell differentiation.IncontrasttothepositiveroleforE2F4andE2F5inmulticilliatecells,a negativeroleforE2F3wasdemonstratedinmouseembryonicfibroblasts(MEFs). Specifically,inactivationofE2F3,butnototherisoformsofE2F,inMEFsresultedin centrosomeamplification(Saavedraetal.2003).ThesestudiesshowthatE2F-DPmayplay eitherapositiveornegativeroleinregulatingcentrioleduplication,withthenatureofthe roleappearingtodependuponthecelltypeandthespecificisoformofE2F.Here,weshow thatE2F-DPalsoplaysaroleinregulatingcentrioleduplicationinC.elegansembryos. Remarkably,wefindthatE2F-DPplaysbothapositiveandanegativeroleinasinglecell typeandproposethatE2F-DP1controlsthebalanceofpositiveandnegativeregulatorsof centrioleassembly. 7 Results: Mutationofszy-10suppressesembryoniclethalityandrestorescentrioleduplication inthezyg-1(it25)mutant Theszy-10genewasinitiallyidentifiedasageneticsuppressorofthetemperaturesensitivezyg-1(it25)mutant(Kempetal.2007).Atthenon-permissivetemperatureof 24°C,embryoniccentrioleduplicationfailsinthezyg-1(it25)mutant.Asaresult,thepair ofcentriolesderivedfromthespermseparateandestablishesabipolarmitoticspindle duringthefirstembryonicdivision.Theabsenceofcentrioleduplicationduringthefirst cellcycleresultsineachdaughtercellinheritingonlyasinglecentriolewhichgoesonto organizeamonopolarspindleineachblastomereofthetwo-cellembryo(Figure1A).This failureincentrioleduplicationalsoresultsinafullypenetrantembryoniclethalphenotype at24°C.Incontrasttothezyg-1(it25)singlemutant,azyg-1(it25)szy-10(bs21)double mutantisabletoproduceasignificantnumberofviableprogenyat24°C(Figure1B).At theslightlyhighertemperatureof25C,verylittlesuppressionisobservedinthezyg1(it25)szy-10(bs21)doublemutant(Figure1B).Asthezyg-1(it25)mutantissignificantly moreimpairedat25°C,thefailureofsuppressionatthehighertemperatureindicatesthat theszy-10(bs21)mutationdoesnotbypasstherequirementforzyg-1incentriole duplication.Rather,theszy-10(bs21)mutationlikelyeitherelevatestheresidualZYG-1 activityinthemutant,oralternatively,easestherequirementforZYG-1byfacilitating executionofthepathwaydownstreamofZYG-1. Toinvestigatewhetherszy-10suppresseszyg-1embryoniclethalitybyrestoring centrioleduplication,time-lapsemicroscopywasperformedinzyg-1(it25)andzyg-1(it25) 8 szy-10(bs21)mutantsexpressingGFP-labeledSPD-2asamarkerforthecentrosomesand mCherry-labeledhistoneH2BasaproxyfortheDNA.Asexpected,centrioleduplication invariablyfailedinzyg-1(it25)mutantsleadingtomonopolarspindlesatthetwo-cellstage (Figures1Cand1D).However,inthezyg-1(it25)szy-10(bs21)doublemutant,all centrosomessuccessfullyduplicatedtogeneratebipolarspindlesatthetwo-cellstage (Figures1Cand1D).Theseresultsdemonstratethatszy-10(bs21)suppressesembryonic lethalitybyrestoringcentrioleduplicationinthezyg-1(it25)mutant. Todetermineifmutationofmaternalszy-10issufficientforsuppressionofthezyg1(it25)centrioleduplicationdefectorwhetherthereisapaternalcontribution,zyg-1(it25) szy-10(bs21)hermaphroditeswerematedtozyg-1(it25)malesandcentrioleduplication wasanalyzedintheresultingprogeny.Thecentrosomesduplicatedinthreeoutofthree embryos,indicatingthatperturbationofmaternalSZY-10issufficientforsuppressionof zyg-1(it25)(datanotshown).Thus,paternalexpressionofthemutantszy-10genedoesnot appeartocontributetosuppressionofthezyg-1(it25)centrioleduplicationdefect.. Todeterminethemolecularidentityoftheszy-10gene,acombinationoftraditional three-factormappingandwhole-genomesequencingwasemployed.Theszy-10genehad previouslybeenmappedtoaregionbetweendpy-10andunc-4onchromosomeII(Kempet al.2007).Whole-genomesequencingofthezyg-1(it25)szy-10(bs21)doublemutant identifiedjustfourmutationsaffectingsplice-sitesoreffectingnon-synonymousaminoacid changeswithinthisinterval(Figure2AandSupplementaryFigureS1A).Higher resolutionmappingdefinitivelydemonstratedthatthemutationresponsiblefor suppressionofthezyg-1(it25)phenotypewasamutationinthedpl-1gene.Specifically, zyg-1(it25)dpy-10(e128)unc-4(e120)/zyg-1(it25)+szy-10(bs21)+hermaphroditeswere 9 constructedandF1DpynonUncandUncnonDpyrecombinantswereisolated(Figure2A andFigureS1B).Recombinantscontainingthemutantdpl-1alleleexhibitedsuppression ofthezyg-1(it25)embryoniclethality(Figure2B)whilethepresenceoftheother mutationsdidnotcorrelatewithsuppression.Conversely,recombinantsthathadlostthe dpl-1mutationbutretainedtheotherthreemutationsgenesfailedtosuppresszyg-1(it25) (SupplementaryFigureS1B).Takentogether,theseresultsindicatethatmutationofdpl1isnecessaryandsufficientforsuppressionofthezyg-1phenotype.Tofurtherconfirm theidentifyofthegene,weusedmolecularcomplementation;specifically,wefoundthat introductionofadpl-1-gfptransgeneintothezyg-1(it25)szy-10(bs21)strainresultedin lossofsuppression(Figure2C).RNAi-mediateddepletionofthetransgeneusingRNAi directedagainstgfpreversedtheseeffects,ensuringthatthelossofsuppressionwasdueto thepresenceoftheextracopiesofdpl-1ratherthananyothergeneticvariancesintroduced bythetransgenicstrain(Figure2D).Weconcludethatthebs21mutationisanalleleofthe dpl-1geneandhereafterrefertothisgeneasdpl-1. Thecomplementationofdpl-1(bs21)byawild-typedpl-1transgeneindicatedthat dpl-1(bs21)isaloss-of-functionmutation.Consistentwiththisfinding,RNAi-mediated depletionofdpl-1inthezyg-1(it25);gfp-spd-2;mCherry-h2bstrainrestoredcentriole duplication(Figure2EandF).Whilecentrioleduplicationneveroccurredinzyg-1(it25) animalstreatedwithcontrolRNAi,centrosomeduplicationoccurred~80%ofthetimein zyg-1(it25)animalstreatedwithdpl-1RNAi(Figure2F).Theseresultsconfirmedthata lossofDPL-1functionmediatedeitherbymutationorRNAisuppressesthezyg-1(it25) centrioleduplicationdefectandembryoniclethalityandindicatesthatDPL-1isanegative regulatorofcentrioleduplication. 10 InhibitionoftheC.elegansE2F-DP1transcriptionfactorsuppresszyg-1(it25)defects Thedpl-1(DP-like)geneencodesaconservedtranscriptionfactor,whichisrequired fortheG1-to-S-phasecellcycletransitioninhighereukaryotes.DPheterodimerizeswitha memberoftheE2FfamilyoftranscriptionfactorsandinsomecasestheE2F-DP1 heterodimerinteractswiththetumorsuppressorprotein,Retinoblastoma(Rb),toregulate anumberofgenesinvolvedintheG1-Scellcycletransition.InC.elegans,thisfamilyof transcriptionalregulatorsalsocontrolscellcycleprogression(ParkandKrause1999; BoxemandvandenHeuvel2001;Fayetal.2002;BoxemandvandenHeuvel2002); however,amorepredominantrolehasbeenelucidatedinthecontrolofdevelopmentallyregulatedprocessessuchasvulvaldevelopment,oocytematuration,andearly embryogenesis(CeolandHorvitz2001;Pageetal.2001;ChiandReinke2006;Kirienko andFay2007). Todeterminewhetherthesuppressionofzyg-1(it25)centrioleduplicationdefects wasduetoeffectsonthetranscriptionfactoractivitiesofDPL-1,wetestedwhetherlossof itsheterodimerizationpartnerEFL-1wouldalsosuppressthezyg-1(it25)phenotype. Becausenullmutantsofefl-1aresterile,weutilizedtheconditionalpartialloss-of-function alleleefl-1(se1)totestforgeneticinteractionbetweenthesefactors.Theefl-1(se1)mutant exhibitstwotemperature-sensitiveperiods.Shiftingthemutanttothenon-permissive temperatureof26°CpriortotheL4stageresultsinsterility,whileshiftingaftertheL4 stageresultsinmaternal-effectembryoniclethality.Inordertodeterminewhetherlossof efl-1functioncouldsuppresszyg-1(it25),weshiftedgravidadultstothenon-permissive temperatureof25°Candallowedthemtolayeggsfor24hours.Theadultswerethen 11 removedandtheembryosallowedtodevelopfor24hours.Undertheseexperimental conditions,zyg-1(it25)mutantsexhibitedanaverageof92%embryoniclethality,whileefl1(se1)mutantsexhibitedanaverageof31%embryoniclethality(Figure3A).Thezyg1(it25);efl-1(se1)doublemutantsexhibitedanaverageof64%embryoniclethality.This resultindicatesastrongpositiveepistaticinteraction,asfortwonon-interactingmutations thefitnessofthedoublemutantshouldsimplybetheproductofthefitnessvaluesofeach singlemutant(Beltraoetal.2010).Thus,ifzyg-1(it25)andefl-1(se1)werenon-interacting mutations,wewouldexpectthedoublemutanttoexhibitafitnessof0.06(94percent embryoniclethality):0.08(fitnessofzyg-1(it25))x0.69(fitnessofefl-1(se1))=.06. Howeverthefitnessofthedoublemutantwas0.36(36%viabilitywithastandard deviationof8.4%),morethanthreestandarddeviationsabovetheexpectedvalue.We concludethatalossofeithermemberoftheEFL-1-DPL-1transcriptionfactorcomplex suppresseszyg-1(it25)defects,implicatingeitheradirectorindirectrolefor transcriptionalregulationbyEFL-1-DPL-1inthecontrolofcentrioleduplication. FurthercorroboratingarolefortheEFL-1-DPL-1transcriptionalcomplexin regulatingcentrioleduplication,weindependentlyidentifiedanalleleofefl-1asagenetic suppressorofzyg-1(it25).Theszy-11genehadpreviouslybeenmappedtothevicinityof unc-76onlinkagegroupV(Kempetal.2007).Weoutcrossedthezyg-1(it25);szy-11(bs22) linetoaHawaiianpolymorphiclinecarryingthezyg-1(it25)mutationtensuccessivetimes. Whole-genomesequencingofthisHawaiian-ingressedzyg-1(it25);szy-11(bs22)double mutantidentifiedaregionontherightarmofLGVthatlackedHawaiianSNPs.Withinthis region,sixopenreadingframescontainedprotein-codingmutations.(Figure3B).Oneof thesemutationswaslocatedintheefl-1ORFandispredictedtoresultinanon- 12 synonymouscodonchange.Toconfirmthemolecularidentityoftheszy-11(bs22) suppressor,weusedCRISPRtechnologytorevertthemutationinefl-1tothewild-type sequenceandexaminedthesuppressionofzyg-1(it25)embryoniclethality.At24°C,zyg1(it25);szy-11(bs22)hermaphroditesareabletoproduceavariablenumberofviable offspring(Figure3C),However,reversionoftheefl-1mutationinthisstrainresultedinan essentiallycompletelossofsuppressionatthenon-permissivetemperature,confirming thatbs22isanalleleofefl-1.Curiously,introductionoftheefl-1(bs22)mutationintothe originalzyg-1(it25)strainprovidedonlyveryweaksuppressionat24°C(Figure3C). However,suppressionofzyg-1(it25)embryoniclethalitybytheCRISPR-engineeredefl1(bs22)mutationwasevidentatthelessrestrictivetemperatureof23.5°C(Figure3D). Thus,whiletheefl-1(bs22)mutationprovidesmoderatesuppressionofzyg-1(it25), evidentlyothergeneticelementspresentintheoriginalzyg-1(it25);szy-11(bs22)strain alsocontributetosuppression.Nonetheless,theseresultsindicatethatbothDPL-1andits heterodimericpartnerEFL-1negativelyregulatecentrioleduplication. EFL-1-DPL-1directlyregulatestheexpressionofcentrioleduplicationfactors TodeterminethemolecularmechanismbywhichlossoftheEFL-1-DPL-1 transcriptionalcomplexsuppresseslethalityinthezyg-1(it25)strain,weinvestigated whetherthiscomplexdirectlymodulatesthelevelsofzyg-1and/orothercoreduplication factors.Mostofthegenesencodingcoreduplicationfactors,suchasspd-2,zyg-1,sas-5,and sas-6,containconsensusEFL-1-DPL-1bindingsiteswithintheirpromoters(TableS1). Moreover,allofthesepromotersareknowntobeoccupiedbybothEFL-1andDPL-1invivo (Kudronetal.2013).TodeterminewhetherEFL-1-DPL-1directlyregulatestheexpression 13 ofzyg-1,wegeneratedatranscriptionalreporterstrain,inwhichthezyg-1promoterdrives expressionofaGFP-labeledhistoneH2B.Thezyg-13’UTRwasusedtodirectthe translationofthisreporterstrain(Figure4A).Wealsogeneratedaconstructcontaining mutationsinallthreeoftheputativeEFL-1-DPL-1bindingsiteswithinthezyg-1promoter (Figure4A).Single-copyinsertionofthereporterconstructswasachievedusingtheMosImediatedsinglecopyinsertion(MosSCI)methodoftransgenesis(Frøkjær-Jensenetal. 2008),andallowedfordirectcomparisonofzyg-1expressioninthewild-typeandEFL-1DPL-1-bindingmutant.Examinationofseveralindependentstrainsexpressingthewildtypezyg-1reporterrevealedthatzyg-1isproducedthroughoutthegermlineandwithin earlyembryos.Expressionwasdetectedasearlyasthedistalgonad(Figure4B).IfEFL-1DPL-1isanegativeregulatorofzyg-1expression,wewouldexpectthatalossoftheEFL-1DPL-1-bindingsiteswithinthepromoterwouldresultinanincreaseinzyg-1expression. However,wefoundthatmutationoftheseEFL-1-DPL-1bindingsitesresultedina completelossofexpressionofthezyg-1reporter(Figure4B).Thisresultimplicatesa positiveroleforEFL-1-DPL-1intheregulationofzyg-1expressionwithinthegermlineand earlyembryo.Thusourresultisconsistentwithmicroarrayexperimentsshowingthat EFL-1-DPL-1primarilypromotestheexpressionofgeneswithinthegermline(Chiand Reinke2006). TofurtherinvestigatetheroleforEFL-1-DPL-1inregulatingtheexpressionof centrioleduplicationgenes,weusedquantitativereal-timePCRtomeasuretranscript levelsinthewildtypeanddpl-1mutants.Specifically,weexaminedmessagelevelsofthe coreduplicationfactors(spd-2,zyg-1,sas-5,andsas-6)inwild-typeanimalsorinanimals carryingeitheroftwopartialloss-of-functiondpl-1mutations:(dpl-1(bs21)anddpl- 14 1(n3643)).Consistentwithourfindingsusingthezyg-1reporterconstructs,wefoundthat partiallossofdpl-1functionresultedinslighttomoderatedecreasesinthemessagelevels oftheendogenouscentrioleduplicationgenes(Figure4C).Takentogether,theseresults indicatethatEFL-1-DPL-1likelypromotestheexpressionofseveralcorecentriole duplicationfactors.Therefore,suppressionbyloss-of-functionmutationsindpl-1andefl-1 isnotduetoanincreaseintheexpressionofcoreduplicationfactors,butinstead,islikely mediatedindirectlythroughchangesintheexpressionofanas-of-yetunidentifiedfactor(s). LossofEFL-1-DPL-1suppresseszyg-1throughanindirectmechanism AlthoughlossofEFL-1-DPL-1activitydidnotresultinanincreasedlevelofanyof thetranscriptsencodingcentrioleduplicationfactors,wedecidedtoexaminethesteadystateproteinlevelsofthesesamefactorsinanimalscompromisedforEFL-1-DPL-1 function.Specifically,embryonicextractswerepreparedfromwild-type,dpl-1(bs21),or dpl-1(n3643)strainsandquantitativeimmunoblotanalysiswasperformedusing antibodiesspecificforZYG-1,SPD-2,SAS-5orSAS-6.Sampleswerenormalizedagainst tubulin,whichwasusedasaloadingcontrol.Surprisingly,whilesas-6messagelevelswere notincreasedindpl-1mutants,thelevelofSAS-6proteinwasconsistentlyelevated3-4fold (Figures5Aand5B).Incontrast,nosignificantchangesintheproteinlevelsofZYG-1, SPD-2,orSAS-5weredetected(Figures5Aand5B).SAS-6isnormallyrecruitedto nascentcentriolesbyZYG-1duringtheearlyeventsofcentrioleduplication(Delattreetal. 2006;Pelletieretal.2006;Lettmanetal.2013).ItispossiblethatSAS-6recruitmentisless efficientinthezyg-1(it25)mutant,andthatoverexpressionofSAS-6amelioratesthisdefect. 15 Thus,theelevatedlevelofSAS-6inthedpl-1mutantsprovidesapossiblemechanismby whichthelossofdpl-1compensatesforcrippledzyg-1activity. Takentogether,ourdatasuggestthatEFL-1-DPL-1regulatescentrioleduplicationin partbydownregulatingthelevelofSAS-6protein.AsourresultsindicatethatEFL-1-DPL1promotestranscriptionofsas-6andothercomponentsoftheduplicationpathway,the elevatedlevelofSAS-6proteininthedpl-1mutantislikelytheindirecteffectofaltered expressionofsomeyet-to-be-identifiedfactor(s).Invertebrates,SAS-6levelsareregulated bytheanaphasepromotingcomplex/cyclosome(APC/C),anE3ubiquitinligasethat targetsvariouscellcycleproteinsfordestructionbytheproteasome(Strnadetal.2007). Interestingly,Kudronetal.(2013)identifiedseveralAPC/Ccomponentsaspotential targetsofEFL-1-DPL-1.ThusonepossiblemodeltoexplainourresultsisthattheEFL-1DPL-1transcriptionalcomplexnormallypromotesexpressionofoneormoreAPC/C componentsthatinturnleadstodownregulationofSAS-6. ConsistentwitharolefortheAPC/CinregulatingSAS-6,weidentifiedamat-3lossof-functionalleleamongourzyg-1suppressors.Themat-3geneencodestheconserved APCsubunitAPC8/CDC23.Specifically,wefoundthattheszy-13(bs29)mutation,whichwe hadinitiallymappedtochromosomeII(Kempetal.2007),actuallymappedclosetomat-3 onLGIII(Figure6A).Furthermore,thezyg-1(it25);szy-13(bs29)strainpossesseda missensemutationwithinthemat-3openreadingframe;thismutationresultsinasingle aminoacidsubstitution(Arg425Gln)withintheconservedTPRrepeatsofMAT-3.The molecularidentityofmat-3wasconfirmedbycomplementationexperiments.First,we showedthatthemat-3(or180)andszy-13(bs29)mutationsfailedtocomplementeachother forsuppressionofzyg-1(it25)embryoniclethality(Figure6B).Second,wefoundthatthe 16 mat-3(or180)andszy-13(bs29)mutationsalsofailedtocomplementeachotherfor suppressionofthezyg-1(it25)centrioleduplicationdefect.Specifically,wefoundthatboth zyg-1(it25);szy-13(bs29)andzyg-1(it25);szy-13(bs29)+/+mat-3(or180)strainsduplicated centrioles92%ofthetime(n=24eventsperstrain).Weconcludethatbs29isanalleleof mat-3andthatthelossofAPC/Cfunctionpotentlysuppressesthezyg-1(it25)centriole duplicationdefect. GiventhatMAT-3isanessentialcomponentoftheAPC/C,andthattheAPC/Cis knowntodownregulateSAS-6levelsinhumantissueculturecells(Strnadetal.2007),we soughttoinvestigatewhetherMAT-3mightalsoperformasimilarfunctioninworms. Embryonicextractsofzyg-1(it25)andzyg-1(it25);mat-3(bs29)mutantswereanalyzedby quantitativeimmunoblottingusingSAS-6-specificantibodies.Contrarytoourexpectations, wefoundthatthepresenceofthemat-3(bs29)mutationdidnotresultinanincreaseinthe levelofSAS-6,suggestingthatC.elegansembryos,unlikehumansomaticcells,donot downregulateSAS-6viatheAPC/C.OurresultsfurtherindicatethatwhileEFL-1-DPL-1 regulatescentrioleduplicationbypromotingtranscriptionofthecoreduplicationfactors, otherrelevanttranscriptionaltargetsexist. EmbryoslackingEFL-1-DPL-1activitydisplaycelldivisiondefects GiventheroleofEFL-1-DPL-1inmodulatingexpressionofcentrioleduplication factors,wesoughttoinvestigatewhetherlossofEFL-1-DPL-1-mediatedregulation,would affectcentriolebiogenesisorfunction.Notably,mutationofdpl-1(bs21)resultsin50-80% embryoniclethality((Kempetal.2007)anddatanotshown).Todeterminethecauseof embryoniclethality,weexaminedearlydivisioneventsinadpl-1(bs21)strainexpressing 17 gfp-spd-2andmcherry-his-58usingtime-lapsemicroscopy.Outof33embryos, approximatelyone-thirdoftheembryosexhibitedoneormoredefectsduringtheearly embryonicdivisions,rangingfromcentrosome-nucleusattachmentdefectstodelaysinthe timingofdivisionevents.Mostintriguingly,weobservedthegenerationofextra centrosomesintwooftheembryos(SupplementaryFigureS2).Thelackofastronger effectcouldeitherreflectthefactthatdpl-1(bs21)isahypomorphicalleleorthatlossof EFL-1-DPL-1affectsexpressionofbothpositiveandnegativeregulatorsofcentriole duplication.Nevertheless,thepresenceofexcesscentrosomesinthismutantisconsistent withtheproposedroleforofEFL-1-DPL-1inlimitingexpressionofSAS-6. Discussion: Transcriptionalregulationofcentrioleduplicationfactors Overthepastseveralyears,anumberofstudieshaverevealedthatcentriole duplicationisregulatedinlargepartbycontrollinglevelsofthecorecentrioleassembly factors(Strnadetal.2007;Cunha-Ferreiraetal.2009;Rogersetal.2009;Puklowskietal. 2011;Peeletal.2012;Čajáneketal.2015).Whileitisclearthatregulatedproteolysis playsanimportantroleinachievingtheappropriatelevelsoftheseproteins,muchlessis knownabouthowcontrolmightbeexertedattheleveloftranscription.Membersofthe E2Ffamilyoftranscriptionfactorshavebeenimplicatedinthecontrolofcentriole duplicationbuttheexactrole(positiveornegative)differsbetweencelltypesandE2F familymembers(Meraldietal.1999;Saavedraetal.2003;Maetal.2014).Herewe provideevidencethatwithinasinglebiologicalcontext—theC.elegansembryo—the transcriptionalregulatorcomplexE2F-DP1canplaybothpositiveandnegativeroles.Our 18 findingthatpartialloss-of-functionmutationsindpl-1andefl-1suppressthecentriole duplicationdefectandembryoniclethalityofzyg-1(it25)introducedtheintriguing possibilitythatoneormorecentrioleduplicationfactorsmaybecontrolledatthelevelof transcription.Consistentwiththis,fourofthesixgenesencodingcoreduplicationfactors containputativeEFL-1-DPL-1bindingsitesintheirpromoters.Furthermore,thesesites havebeenshowntobeoccupiedbyDPL-1invivo(Kudronetal.2013).Tooursurprise, however,wefoundthatthemRNAlevelsofthesefactorswerenotincreasedineitherof twodpl-1mutants,indicatingthattheyarenotnegativelyregulatedbytheEFL-1-DPL-1 heterodimer.Infact,mutationofdpl-1ledtoareproducibledecreaseinspd-2,zyg-1,sas-5 andsas-6RNAlevels(Figure4C).Thisresultisconsistentwiththefindingsof(Chiand Reinke2006)whofoundthatDPL-1andEFL-1largelyactivatetranscriptionwithinthe germline.Furthermore,ourfindingthatmutationoftheDPL-1-bindingssiteswithinthe zyg-1promoterextinguishesvisibleexpressionofazyg-1promoter-driventransgene (Figure4B)providesadditionalevidencethatEFL-1-DPL-1promotesexpressionof centrioleduplicationgenes.ThisdirectpositiveroleforEFL-1-DPL-1inregulating centrioleduplicationisthereforecounterintuitivewhenconsideringthatlossofdpl-1or efl-1suppressesthezyg-1(it25)centrioleduplicationdefect.Conceptually,theonlyway thisissuecouldbereconciledisifEFL-DPL-1independentlyfunctionstonegatively regulatecentrioleassembly,andthatpartiallossofEFL-1-DPL-1affectsitsnegative regulatoryrolemorethanitspositiveregulatoryrole. EFL-DPL-1negativelyregulatesthelevelofSAS-6 19 AkeyfindingofourstudyisthatwhilelossofEFL-1-DPL-1activityresultsin decreasedmessagelevelsofsas-6andotherduplicationfactors,italsoresultsina significantincreaseinSAS-6proteinlevels.Thisfindingraisestwoquestions:first,how doeslossofEFL-1-DPL-1resultinincreasedexpressionofSAS-6andsecond,howcanthe elevatedlevelofSAS-6explaintheabilityofdpl-1orefl-1mutationstosuppressthezyg1(it25)centrioleduplicationdefect?SinceEFL-1-DPL-1seemstopositivelyregulate transcriptionofsas-6,theincreasedlevelofSAS-6proteinindpl-1mutantscanonlybe explainedbyanindirectmechanism.GiventhatEFL-1-DPL-1predominantlyactivates transcriptionofgenesinthegermline(ChiandReinke2006),themostprobable mechanisminvolvesEFL-1-DPL-1promotingtheexpressionofoneormoregenesthat downregulateexpressionofSAS-6protein.Insuchamodel,thereductioninEFL-1-DPL-1 activitywouldaffectexpressionofthisnegativeregulatormorethantheexpressionofSAS6,thustippingthebalanceinfavorofmoreSAS-6protein. AsourresultsindicatethatEFL-1-DPL-1setsthebalancebetweenpositiveand negativeregulatorsofcentrioleduplication,onecouldenvisionEFL-1-DPL-1aspartofa homeostaticcontrolmechanismthatensurestheproperlevelsofactivatorsandrepressors. Suchamechanismwouldrequirethatthegenesencodingtheactivatorsandrepressors varyintheirsensitivitytoEFL-1-DPL-1.ByadjustingtheactivityofEFL-1-DPL-1,thecell couldvarytherelativelevelsofpositiveandnegativeregulatorstoensureproper executionofcentrioleduplication.ExperimentalmanipulationofDPL-1orEFL-1levelsas reportedintheliteraturecouldalsohavethesameeffect.Thatis,partialdepletionofEFL1-DPL-1mightresultinoverduplication—possiblybyincreasingSAS-6levels,asseenin 20 ourstudy.Incontrast,astrongorcompletelossofEFL-1-DPL-1mightleadtoablockin duplicationasaresultofextinguishingtranscriptionofthecorecentrioleduplicationgenes. Sowhatistheidentityofthenegativeregulator(s)whoseexpressiondependsupon EFL-1-DPL-1function?Toaddressthisquestionwelookedatthetranscriptionaltargetsof EFL-1-DPL-1asdeterminedbymicroarray-basedexpressionprofiling(ChiandReinke 2006)andbygenome-widepromoterbindingprofiles(Kudronetal.2013).Amongall potentialtargetsinthelaterstudy,theAPC/Cgenesemb-27,emb-30,gfi-3/apc-5,andfzy-1 stoodoutasthemostlikelycandidates.TheAPC/CisknowntonegativelyregulateSAS-6 proteinlevelsinhumans(Strnadetal.2007).Perhapsevenmoresuggestive,weidentified aloss-of-functionalleleoftheAPC/Cgenemat-3asasuppressorofzyg-1(it25).Our analysishoweverindicatesthatMAT-3(andtheAPC/C)functionsindependentlyofEFL-1DPL-1toregulatecentriolebiogenesis.FuturestudieswilladdresswhethertheAPC/C playsaroleincontrollingthelevelsofcentrioleduplicationfactorsinwormsasitdoesin humansomaticcells.Alongtheselines,it’sinterestingtonotethatC.elegansSAS-6lacksa KENbox,whichisthemotifinhumanSAS-6recognizedbytheAPC/Cco-activatorprotein Cdh1.IntriguinglyC.elegansSAS-5doeshaveaKENboxandthusthemechanismofAPC/C mediatedcontrolofcentrioleassemblyinwormsmightfunctionthroughthedown regulationofSAS-5ratherthanSAS-6.Additionalworkwillbeneededtoidentifythe relevanttargetsofbothEFL-1-DPL-1andtheAPC/Ccomplexinthecentrioleduplication pathway. Finally,howdoelevatedlevelsofSAS-6provideanexplanationforthesuppression ofthezyg-1(it25)phenotype?Recently,ithasbeendemonstratedthatZYG-1recruitsSAS6tositesofcentrioleassemblythroughadirectphysicalinteraction(Lettmanetal.2013). 21 Thezyg-1(it25)mutationmightinterferewiththisrecruitmentasitresultsinanonsynonymouscodonchange(P442L)withinthesocalledcrypticpolo-box,adomain requiredtotargetZYG-1tocentrioles(Shimanovskayaetal.2014).Thus,theZYG1(P442L)proteinmightbelessabundantatcentriolesthanwild-typeZYG-1,leadingtoless effectiverecruitmentofSAS-6.IncreasingthelevelofSAS-6couldoffsetthereduced efficiencyofthemutantZYG-1leadingtosufficientSAS-6recruitmentandsuccessful centrioleassembly.Whilethisisthemostsimplisticinterpretationofourresults,wehave notyetshownthattheelevatedlevelofSAS-6isresponsibleforsuppressingthecentriole duplicationdefectofzyg-1it25)mutants.Thus,itremainspossiblethatsuppressionarising fromlossofEFL-1-DPL-1activityinvolvesthealteredexpressionofotherrelevantfactors. OverallourworkindicatesthatE2F-DP1playsacomplexroleinregulatingcentriole duplicationandmayservetoestablishanequilibriumwheretherelativelevelsofpositive andnegativeregulatorsensurethefaithfulduplicationofcentrioles.Additionalworkwill beneededtouncoverthemolecularmechanismcontrollingSAS-6proteinlevelsaswellas themechanismsbywhichotherEFL-1-DPL-1targetscontributetotheregulationof centrioleduplication. MaterialsandMethods: Wormmaintenanceandstrains Wormstrainswerecultivatedusingstandardpractices(Brenner1974)at20°Con MYOBplatesseededwithOP50E.coli.Acompletelistofthestrainsusedinthisworkcan befoundinsupplementaryTableS2.Suppressionofthezyg-1(it25)phenotypewas 22 assayedat24°C,or23.5°C,asindicated.Scatterplotsdisplayingsuppressiondatawere generatedusingtheExceltemplatesprovidedbyWeissgerberetal.(2015) TransgenicwormstrainsweremadeusingMos1-mediatedsinglecopyinsertion (MosSCI)transformation(Frøkjaer-Jensen2008).pKO113,thezyg-1transcriptional reporterconstruct,wasgeneratedusingGateway®cloningtechnology(ThermoFisher Scientific,Inc.,WalthamMA)andcontainedthewild-typezyg-1promoter(1082 nucleotidesupstreamofthetranscriptionalstartsite),agfp-his-58fusiongene,andthe zyg-13’UTRclonedintotheMosSCItargetingvectorpCFJ210(Frøkjær-Jensen,2012).An identicalapproachwasusedtoconstructpKO114,exceptthattheQuikchangeIIsitedirectedmutagenesiskit(AgilentTechnologies,Inc.,SantaClara,CA)wasusedtomutate thethreeEFL-1-DPL-1bindingsitesinthezyg-1promoterentryclonepriortoGateway cloning. Mutationidentification Molecularidentificationofsuppressormutationswasaccomplishedbycombining differentmappingstrategieswithwhole-genomesequencing.Thepreparationofgenomic DNA,constructionofsequencinglibraries,andgenerationofsequencedatawere essentiallyasdescribedpreviously(Wangetal.2014).Variantswereidentifiedusinga pipelineofBFAST(Homeretal.2009),SAMTools(Lietal.2009)andANNOVAR(Wanget al.2010).MappingplotsweregeneratedusingR[RCoreDevelopmentTeam,2015]. Candidatesuppressoralleleswerelimitedtohomozygous(minimumthreeindependent reads,≥85%variantcall),nonsynonymousmutations,andfilteredtoremovevariants 23 commontothestrainbackground. Fordpl-1(bs21),thesuppressormutationwasmappedbyclassicalthree-factor mappingbetweendpy-10andunc-4onlinkagegroupII(Kempetal.2007).Thestrain containingbs21(OC204)wassequenced,andcandidatesuppressorsinthedpy-10-unc-4 intervalwereidentified.Format-3(bs29),theoriginalmappositiononlinkagegroupII (Kempetal.2007)wasfoundtobeincorrect(datanotshown).Thepositionofthis suppressorwasreinvestigated,andthree-factormappingwithunc-45anddpy-1revealed thatbs29wastightlylinkedtounc-45ontheleftarmofchromosomeIII.Thestrain containingbs29(OC184)wassequencedtoidentifycandidatesuppressorsinthevicinityof unc-45.Forefl-1(bs22),avariationoftheone-stepmethodforsimultaneousmappingand sequencingwasemployed(Doitsidouetal.2010).Thebs22suppressormutationwas introgressedintotheHawaiianCB4856backgroundbybackcrossingtensuccessivetimes toaHawaiian-introgressedzyg-1(it25)strain.MappingplotsofHawaiianSNPsacrossthe genomerevealed(inadditiontotheintervalflankingzyg-1onchromosomeII)gapson chromosomeI(between2.0-3.0Mb)andchromosomeV(from15.0Mbtotherightend). ThechromosomeIintervalencompassesaknownlocusofgeneticincompatibility(zeel1/peel-1at2.35Mb)betweentheN2wildtypeandHawaiianstrainbackgrounds(Seidelet al.2008)andwasnotpursuedfurther.Candidatesuppressorswereidentifiedinthe chromosomeVinterval. Genomeediting 24 Forgenomeediting,weutilizedco-CRISPRtechnologyessentiallyasdescribed (Arribereetal.2014).Specifically,wedesignedguideRNAs(gRNAs)usingtheCRISPR Designtoolathttp://crispr.mit.edu.gRNAsequenceswereinsertedintotheexpression plasmidpDD162(Dickinson2013)usingtheQ5SiteDirectedMutagenesisKit(New EnglandBiolabs,Inc.,Ipswich,MA).AlloligosusedcanbefoundinTableS3.Allconstructs weresequenceverified.Forrepairtemplates,weusedsinglestrandedoligomers(Paixetal. 2014)synthesizedbyIntegratedDNATechnologies,Inc.(Coralville,IA).Formicroinjection, wepreparedamixtureoftwoefl-1gRNAexpressionplasmidsat50ng/mleach,purified efl-1repairtemplateat30ng/ml,thedpy-10co-conversiongRNAexpressionplasmidat50 ng/ml,andthedpy-10repairtemplateat20ng/ml. Afterinjection,P0hermaphroditesweretransferredtoindividualMYOBplatesat 20°CandallowtoproduceanF1generation.F1progenyexhibitingaRolorDpyphenotype werepickedindividuallytoMYOBplatesandallowedtolayF3eggs.F2adultswerethen pickindividuallytoaPCRtube,lysed,thenscreenedbyPCRfortheloss(wt>mut)orgain (mut>wt)ofanNlaIVrestrictionsiteaffectedbythebs22mutation(underlinedresiduesin theefl-1gRNAsequencesinTableS3). RNAi RNAiexperimentswerecarriedoutbyfeedingwormsE.coliexpressinginducible dsRNAconstructsaspreviouslydescribed(Kamathetal.2003).L4larvaewereseeded ontofreshRNAiplatesandtheeffectsofRNAiweremonitored12-24hoursfromtheL4 stage.TheL4440vector(SourceBioscience,Nottingham,UK)expressingdsRNAagainst smd-1genewasusedasanegativecontrolforallRNAiexperiments. 25 AntibodiesandQuantitativeImmunoblotting Embryoswereisolatedbywashingwormsofffour10-cmplatesandsuspending theminahypochloritesolution(1.65%hypochlorite,1NNaOH)for~5minutes.Once adultwormsweredissolved,embryoswererinsed3timesusingM9buffer,suspendedin ~50μl2xLDSSamplebuffer(LifeTechnologies,Inc.,Carlsbad,CA)andheatedto95°Cfor 5minutes.SampleswereresolvedonNuPageBis-Trisgels(LifeTechnologies,Inc., Carlsbad,CA)andtransferredtonitrocelluloseusingthei-Blottransfersystem (ThermoFisherScientific,Waltham,MA).Blotswereprobedandanalyzedusingthe OdysseyInfra-redImagingSystem(LI-CORBiosciences,Inc.,Lincoln,NE)aspreviously described(Songetal.2011). Thefollowingantibodieswereusedatadilutionof1:500–1:2000:DM1A,analpha- tubulinspecificantibody(Sigma),α-SPD-2(Kempetal.2004),α-ZYG-1(Kempetal.2007), αSAS-4(Songetal.2008).TheSAS-6antibodyisapolyclonalantibodyraisedinguinea pigstoafull-lengthGlutathione-S-Transferase-SAS-6fusionprotein.Theantibodywas producedbyPoconoRabbitFarmandLaboratory,Inc.(Canadensis,PA),andaffinity purifiedagainstafull-lengthMaltose-BindingProtein-SAS-6fusionprotein.Antibodytoa SAS-5derivedpeptide(N-CPAERERRIREKYARRK-C)wasraisedinrabbitsandaffinitypurifiedbyYenZymAntibodiesLLC,(SanFrancisco,CA)IRDyesecondaryantibodies(LICORBiosciences)wereusedat1:15,000andmembraneswereimagedusingtheOdyssey InfraredImagingSystem(LI-CORBiosciences).Bandswerenormalizedtoanalpha-tubulin loadingcontrolandquantitatedusingImage-Jsoftware(NIH,Bethesda,MD).Graphs depicttheaveragenormalizedproteinlevelsfrom3independentexperiments. 26 qRT-PCR ToisolateRNA,L4wormsweretransferredto25°Covernight.Approximately50- 100adultwormsweresuspendedin200μlM9bufferandRNAwasisolatedusingthe ArcturusPicoPure™RNAIsolationKit(ThermoFisherScientific,Inc.,Waltham,MA), accordingtomanufacturer’sinstructions.RNAwastreatedwithDNAaseandthendiluted to20ng/μlusingRNAase-freeddH2O.qRT-PCRreactionsweresetupintriplicateusing 20ngoftemplateRNA,QuantiFast®SYBR®GreenRT-PCRKitfromQiagen(Valencia,CA) and10μMprimers(seeTableS4forprimersequences).Anegativecontrollackingreverse transcriptasewassetupforeachRNAtemplateandanon-templatecontrolwassetupfor eachprimerset.QuantitativeRT-PCRwasperformedonaCFX96Touch™Real-TimePCR DetectionSystem(Bio-RadLaboratories,Inc.,Hercules,CA).Amplificationreactionswere carriedoutusingthefollowingprogram:10minutesat50°C,5minutesat95°Candthen40 cycles[10secondsat95°Cand30secondsat55°C].Ameltingcurvewasdeterminedatthe endofeachPCRruntoverifytheformationofasingleamplicon.AverageCtvalueswere determinedusingCFXManager3.0Softwareandthefoldchangewascalculatedusingthe 2ΔΔCtmethod.Foreachprimerset,theCtvalueswerenormalizedtotba-1RNAlevelsand thencomparedtoawild-typecalibratorsample.TheerrorbarsindicatetheSEMofthe triplicateset. MicroscopyandLiveCellImaging Centrioleduplicationwasmonitoredusing4Dtime-lapsemicroscopyonaNikon spinningdiscconfocalmicroscopeaspreviouslydescribed(Petersetal.2010).Imagesfor 27 comparingtheexpressionofthezyg-1transcriptionalreporterswastakenonthesameday usingthesamecamerasettings. Acknowledgements: WethankValerieReinkeforgenerouslyprovidingtheDPL-1-GFP-expressingC. elegansstrainandAndyGoldenforsomeoftheCRISPRreagents.WealsothankGeraldine SeydouxandAlexPaixforsharingprotocolsforCRISPRtechnology.Somestrainswere providedbytheCGC,whichisfundedbyNIHOfficeofResearchInfrastructurePrograms (P40OD010440).ThisworkwassupportedbytheIntramuralResearchProgramofthe NationalInstitutesofHealthandtheNationalInstituteofDiabetesandDigestiveand KidneyDiseases. LiteratureCited: Arquint,C.,A.-M.Gabryjonczyk,S.Imseng,R.Böhm,E.Saueretal.,2015STILbindingto Polo-box3ofPLK4regulatescentrioleduplication.(J.Pines,Ed.).Elife4:e07888. Arquint,C.,K.F.Sonnen,Y.D.Stierhof,andE.A.Nigg,2012Cell-cycle-regulatedexpression ofSTILcontrolscentriolenumberinhumancells.JournalofCellScience125:1342– 1352. Arribere,J.A.,R.T.Bell,B.X.H.Fu,K.L.Artiles,P.S.Hartmanetal.,2014EfficientmarkerfreerecoveryofcustomgeneticmodificationswithCRISPR/Cas9inCaenorhabditis elegans.Genetics198:837–846. Basto,R.,K.Brunk,T.Vinadogrova,N.Peel,A.Franzetal.,2008CentrosomeAmplification CanInitiateTumorigenesisinFlies.Cell133:1032–1042. Basto,R.,J.Lau,T.Vinogradova,A.Gardiol,C.G.Woodsetal.,2006FlieswithoutCentrioles. 28 Cell125:1375–1386. Beltrao,P.,G.Cagney,andN.J.Krogan,2010QuantitativeGeneticInteractionsReveal BiologicalModularity.Cell141:739–745. Bettencourt-Dias,M.,A.Rodrigues-Martins,L.Carpenter,M.Riparbelli,L.Lehmannetal., 2005SAK/PLK4isrequiredforcentrioleduplicationandflagelladevelopment.Curr. Biol.15:2199–2207. Boxem,M.,andS.vandenHeuvel,2002C.elegansclassBsyntheticmultivulvagenesactin G(1)regulation.CurrentBiology12:906–911. Boxem,M.,andS.vandenHeuvel,2001lin-35Rbandcki-1Cip/Kipcooperatein developmentalregulationofG1progressioninC.elegans.Development128:4349– 4359. Brenner,S.,1974ThegeneticsofCaenorhabditiselegans.Genetics77:71–94. Ceol,C.J.,andH.R.Horvitz,2001dpl-1DPandefl-1E2Factwithlin-35Rbtoantagonize RassignalinginC.elegansvulvaldevelopment.MolecularCell7:461–473. Chavali,P.L.,M.Pütz,andF.Gergely,2014Smallorganelle,bigresponsibility:theroleof centrosomesindevelopmentanddisease.Philos.Trans.R.Soc.Lond.,B,Biol.Sci.369: 20130468–20130468. Chi,W.,andV.Reinke,2006PromotionofoogenesisandembryogenesisintheC.elegans gonadbyEFL-1/DPL-1(E2F)doesnotrequireLIN-35(pRB).Development133:3147– 3157. Cizmecioglu,O.,M.Arnold,R.Bahtz,F.Settele,L.Ehretetal.,2010Cep152actsasascaffold forrecruitmentofPlk4andCPAPtothecentrosome.TheJournalofCellBiology191: 731–739. Cunha-Ferreira,I.,A.Rodrigues-Martins,I.Bento,M.Riparbelli,W.Zhangetal.,2009The SCF/SlimbUbiquitinLigaseLimitsCentrosomeAmplificationthroughDegradationof SAK/PLK4.CurrentBiology19:43–49. Čajánek,L.,T.Glatter,andE.A.Nigg,2015TheE3ubiquitinligaseMib1regulatesPlk4and centriolebiogenesis.JournalofCellScience128:1674–1682. Dammermann,A.,P.S.Maddox,A.Desai,andK.Oegema,2008SAS-4isrecruitedtoa dynamicstructureinnewlyformingcentriolesthatisstabilizedbythe-tubulinmediatedadditionofcentriolarmicrotubules.TheJournalofCellBiology180:771–785. Dammermann,A.,T.Müller-Reichert,L.Pelletier,B.Habermann,A.Desaietal.,2004 CentrioleAssemblyRequiresBothCentriolarandPericentriolarMaterialProteins. DevelopmentalCell7:815–829. 29 Delattre,M.,C.Canard,andP.Gönczy,2006SequentialProteinRecruitmentinC.elegans CentrioleFormation.CurrentBiology16:1844–1849. Delattre,M.,S.Leidel,K.Wani,K.Baumer,J.Bamatetal.,2004CentriolarSAS-5isrequired forcentrosomeduplicationinC.elegans.NatureCellBiology6:656–664. Doitsidou,M.,R.J.Poole,S.Sarin,H.Bigelow,andO.Hobert,2010C.elegansMutant IdentificationwithaOne-StepWhole-Genome-SequencingandSNPMappingStrategy (A.C.Hart,Ed.).PLoSONE5:e15435–7. Dzhindzhev,N.S.,G.Tzolovsky,Z.Lipinszki,S.Schneider,R.Lattaoetal.,2014Plk4 PhosphorylatesAna2toTriggerSas6RecruitmentandProcentrioleFormation.Current Biology24:2526–2532. Dzhindzhev,N.S.,Q.D.Yu,K.Weiskopf,G.Tzolovsky,I.Cunha-Ferreiraetal.,2010 Asterlessisascaffoldfortheonsetofcentrioleassembly.Nature467:714–718. Fay,D.S.,S.Keenan,andM.Han,2002fzr-1andlin-35/Rbfunctionredundantlytocontrol cellproliferationinC.elegansasrevealedbyanonbiasedsyntheticscreen.Genes& Development16:503–517. Firat-Karalar,E.N.,andT.Stearns,2014Thecentrioleduplicationcycle.Philosophical TransactionsoftheRoyalSocietyB:BiologicalSciences369:20130460–20130460. Frøkjær-Jensen,C.,M.WayneDavis,C.E.Hopkins,B.J.Newman,J.M.Thummeletal.,2008 Single-copyinsertionoftransgenesinCaenorhabditiselegans.NatGenet40:1375– 1383. Ganem,N.J.,S.A.Godinho,andD.Pellman,2009Amechanismlinkingextracentrosomesto chromosomalinstability.Nature460:278–282. Godinho,S.A.,R.Picone,M.Burute,R.Dagher,Y.Suetal.,2015Oncogene-likeinductionof cellularinvasionfromcentrosomeamplification.Nature510:167–171. Habedanck,R.,Y.-D.Stierhof,C.J.Wilkinson,andE.A.Nigg,2005ThePolokinasePlk4 functionsincentrioleduplication.NatureCellBiology7:1140–1146. Hatch,E.M.,A.Kulukian,A.J.Holland,D.W.Cleveland,andT.Stearns,2010Cep152 interactswithPlk4andisrequiredforcentrioleduplication.TheJournalofCellBiology 191:721–729. Homer,N.,B.Merriman,andS.F.Nelson,2009BFAST:analignmenttoolforlargescale genomeresequencing.(C.Creighton,Ed.).PLoSONE4:e7767. Kamath,R.S.,A.G.Fraser,Y.Dong,G.Poulin,R.Durbinetal.,2003Systematicfunctional analysisoftheCaenorhabditiselegansgenomeusingRNAi.Nature421:231–237. Kemp,C.A.,K.R.Kopish,P.Zipperlen,J.Ahringer,andK.F.O'Connell,2004Centrosome 30 maturationandduplicationinC.elegansrequirethecoiled-coilproteinSPD-2. DevelopmentalCell6:511–523. Kemp,C.A.,M.H.Song,M.K.Addepalli,G.Hunter,andK.F.O'Connell,2007Suppressorsof zyg-1defineregulatorsofcentrosomeduplicationandnuclearassociationin Caenorhabditiselegans.Genetics176:95–113. Kim,T.-S.,J.-E.Park,A.Shukla,S.Choi,R.N.Muruganetal.,2013Hierarchicalrecruitment ofPlk4andregulationofcentriolebiogenesisbytwocentrosomalscaffolds,Cep192 andCep152.Proc.Natl.Acad.Sci.U.S.A.110:E4849–57. Kirienko,N.V.,andD.S.Fay,2007TranscriptomeprofilingoftheC.elegansRbortholog revealsdiversedevelopmentalroles.DevelopmentalBiology305:674–684. Kirkham,M.,T.Müller-Reichert,K.Oegema,S.Grill,andA.A.Hyman,2003SAS-4isaC. eleganscentriolarproteinthatcontrolscentrosomesize.Cell112:575–587. Kitagawa,D.,I.Flückiger,J.Polanowska,D.Keller,J.Rebouletal.,2011PP2APhosphatase ActsuponSAS-5toEnsureCentrioleFormationinC. elegansEmbryos. DevelopmentalCell20:550–562. Kitagawa,D.,I.Vakonakis,N.Olieric,M.Hilbert,D.Kelleretal.,2011Structuralbasisofthe 9-foldsymmetryofcentrioles.Cell144:364–375. Kleylein-Sohn,J.,J.Westendorf,M.LeClech,R.Habedanck,Y.-D.Stierhofetal.,2007Plk4inducedcentriolebiogenesisinhumancells.DevelopmentalCell13:190–202. Kohlmaier,G.,J.Lončarek,X.Meng,B.F.McEwen,M.M.Mogensenetal.,2009OverlyLong CentriolesandDefectiveCellDivisionuponExcessoftheSAS-4-RelatedProteinCPAP. CurrentBiology19:1012–1018. Kratz,A.-S.,F.Bärenz,K.T.Richter,andI.Hoffmann,2015Plk4-dependentphosphorylation ofSTILisrequiredforcentrioleduplication.BiolOpen1–8. Kudron,M.,W.Niu,Z.Lu,G.Wang,M.Gersteinetal.,2013Tissue-specificdirecttargetsof CaenorhabditiselegansRb/E2Fdictatedistinctsomaticandgermlineprograms. GenomeBiology14:R5. Leidel,S.,andP.Gönczy,2003SAS-4isessentialforcentrosomeduplicationinCelegans andisrecruitedtodaughtercentriolesoncepercellcycle.DevelopmentalCell4:431– 439. Leidel,S.,M.Delattre,L.Cerutti,K.Baumer,andP.Gönczy,2005SAS-6definesaprotein familyrequiredforcentrosomeduplicationinC.elegansandinhumancells.NatureCell Biology7:115–125. Lettman,M.M.,Y.L.Wong,V.Viscardi,S.Niessen,S.-H.Chenetal.,2013DirectBindingof 31 SAS-6toZYG-1RecruitsSAS-6totheMotherCentrioleforCartwheelAssembly. DevelopmentalCell25:284–298. Li,H.,B.Handsaker,A.Wysoker,T.Fennell,J.Ruanetal.,2009TheSequence Alignment/MapformatandSAMtools.Bioinformatics25:2078–2079. Ma,L.,I.Quigley,H.Omran,andC.Kintner,2014Multicilindrivescentriolebiogenesisvia E2fproteins.Genes&Development28:1461–1471. Mahjoub,M.R.,andT.Stearns,2012SupernumeraryCentrosomesNucleateExtraCiliaand CompromisePrimaryCiliumSignaling.CurrentBiology22:1628–1634. Meraldi,P.,J.Lukas,A.M.Fry,J.Bartek,andE.A.Nigg,1999Centrosomeduplicationin mammaliansomaticcellsrequiresE2FandCdk2-cyclinA.NatureCellBiology1:88–93. Moyer,T.C.,K.M.Clutario,B.G.Lambrus,V.Daggubati,andA.J.Holland,2015Bindingof STILtoPlk4activateskinaseactivitytopromotecentrioleassembly.TheJournalofCell Biology209:863–878. O'Connell,K.F.,C.Caron,K.R.Kopish,D.D.Hurd,K.J.Kemphuesetal.,2001TheC.elegans zyg-1geneencodesaregulatorofcentrosomeduplicationwithdistinctmaternaland paternalrolesintheembryo.Cell105:547–558. Page,B.D.,S.Guedes,D.Waring,andJ.R.Priess,2001TheC.elegansE2F-andDP-related proteinsarerequiredforembryonicasymmetryandnegativelyregulateRas/MAPK signaling.MolecularCell7:451–460. Paix,A.,Y.Wang,H.E.Smith,C.-Y.S.Lee,D.Calidasetal.,2014Scalableandversatile genomeeditingusinglinearDNAswithmicrohomologytoCas9SitesinCaenorhabditis elegans.Genetics198:1347–1356. Park,M.,andM.W.Krause,1999RegulationofpostembryonicG(1)cellcycleprogression inCaenorhabditiselegansbyacyclinD/CDK-likecomplex.Development126:4849– 4860. Peel,N.,M.Dougherty,J.Goeres,Y.Liu,andK.F.O'Connell,2012TheC.elegansF-box proteinsLIN-23andSEL-10antagonizecentrosomeduplicationbyregulatingZYG-1 levels.JournalofCellScience125:3535–3544. Peel,N.,N.R.Stevens,R.Basto,andJ.W.Raff,2007OverexpressingCentriole-Replication ProteinsInVivoInducesCentrioleOverduplicationandDeNovoFormation.Current Biology17:834–843. Pelletier,L.,E.O'Toole,A.Schwager,A.A.Hyman,andT.Müller-Reichert,2006Centriole assemblyinCaenorhabditiselegans.Nature444:619–623. Pelletier,L.,N.Özlü,E.Hannak,C.Cowan,B.Habermannetal.,2004TheCaenorhabditis 32 elegansCentrosomalProteinSPD-2IsRequiredforbothPericentriolarMaterial RecruitmentandCentrioleDuplication.CurrentBiology14:863–873. Peters,N.,D.E.Perez,M.H.Song,Y.Liu,T.Müller-Reichertetal.,2010Controlofmitotic andmeioticcentrioleduplicationbythePlk4-relatedkinaseZYG-1.JournalofCell Science123:795–805. Puklowski,A.,Y.Homsi,D.Keller,M.May,S.Chauhanetal.,2011TheSCF--FBXW5E3ubiquitinligaseisregulatedbyPLK4andtargetsHsSAS-6tocontrolcentrosome duplication.NatureCellBiology13:1–7. Rodrigues-Martins,A.,M.Bettencourt-Dias,M.Riparbelli,C.Ferreira,I.Ferreiraetal.,2007 DSAS-6OrganizesaTube-likeCentriolePrecursor,andItsAbsenceSuggestsModularity inCentrioleAssembly.CurrentBiology17:1465–1472. Rogers,G.C.,N.M.Rusan,D.M.Roberts,M.Peifer,andS.L.Rogers,2009TheSCFSlimb ubiquitinligaseregulatesPlk4/Saklevelstoblockcentriolereduplication.TheJournal ofCellBiology184:225–239. Saavedra,H.I.,B.Maiti,C.Timmers,R.Altura,Y.Tokuyamaetal.,2003InactivationofE2F3 resultsincentrosomeamplification.CancerCell3:333–346. Schmidt,T.I.,J.Kleylein-Sohn,J.Westendorf,M.LeClech,S.B.Lavoieetal.,2009Controlof CentrioleLengthbyCPAPandCP110.CurrentBiology19:1005–1011. Seidel,H.S.,M.V.Rockman,andL.Kruglyak,2008WidespreadgeneticincompatibilityinC. elegansmaintainedbybalancingselection.Science319:589–594. Shimanovskaya,E.,V.Viscardi,J.Lesigang,M.M.Lettman,R.Qiaoetal.,2014Structureof theC. elegansZYG-1CrypticPoloBoxSuggestsaConservedMechanismfor CentriolarDockingofPlk4Kinases.Structure/FoldingandDesign22:1090–1104. Slevin,L.K.,J.Nye,D.C.Pinkerton,D.W.Buster,G.C.Rogersetal.,2012TheStructureof thePlk4CrypticPoloBoxRevealsTwoTandemPoloBoxesRequiredforCentriole Duplication.Structure/FoldingandDesign20:1905–1917. Song,M.H.,L.Aravind,T.Müller-Reichert,andK.F.O'Connell,2008Theconservedprotein SZY-20opposesthePlk4-relatedkinaseZYG-1tolimitcentrosomesize.Developmental Cell15:901–912. Song,M.H.,Y.Liu,D.E.Anderson,W.J.Jahng,andK.F.O'Connell,2011Protein phosphatase2A-SUR-6/B55regulatescentrioleduplicationinC.elegansbycontrolling thelevelsofcentrioleassemblyfactors.DevelopmentalCell20:563–571. Sonnen,K.F.,A.M.Gabryjonczyk,E.Anselm,Y.D.Stierhof,andE.A.Nigg,2013Human Cep192andCep152cooperateinPlk4recruitmentandcentrioleduplication.Journalof CellScience126:3223–3233. 33 Stevens,N.R.,J.Dobbelaere,K.Brunk,A.Franz,andJ.W.Raff,2010DrosophilaAna2isa conservedcentrioleduplicationfactor.TheJournalofCellBiology188:313–323. Strnad,P.,S.Leidel,T.Vinogradova,U.Euteneuer,A.Khodjakovetal.,2007Regulated HsSAS-6levelsensureformationofasingleprocentriolepercentrioleduringthe centrosomeduplicationcycle.DevelopmentalCell13:203–213. vanBreugel,M.,M.Hirono,A.Andreeva,H.-A.Yanagisawa,S.Yamaguchietal.,2011 StructuresofSAS-6suggestitsorganizationincentrioles.Science331:1196–1199. Vladar,E.K.,andT.Stearns,2007Molecularcharacterizationofcentrioleassemblyin ciliatedepithelialcells.TheJournalofCellBiology178:31–42. Vulprecht,J.,A.David,A.Tibelius,A.Castiel,G.Konotopetal.,2012STILisrequiredfor centrioleduplicationinhumancells.JournalofCellScience125:1353–1362. Wang,K.,M.Li,andH.Hakonarson,2010ANNOVAR:functionalannotationofgenetic variantsfromhigh-throughputsequencingdata.NucleicAcidsResearch38:e164–e164. Wang,Y.,J.T.Wang,D.Rasoloson,M.L.Stitzel,K.F.O'Connelletal.,2014Identificationof suppressorsofmbk-2/DYRKbywhole-genomesequencing.G3(Bethesda)4:231–241. Weissgerber,T.L.,N.M.Milic,S.J.Winham,andV.D.Garovic,2015BeyondBarandLine Graphs:TimeforaNewDataPresentationParadigm.PlosBiol13:e1002128–10. Winey,M.,andE.O'Toole,2014Centriolestructure.Philos.Trans.R.Soc.Lond.,B,Biol.Sci. 369:20130457–20130457. Zhu,F.,S.Lawo,A.Bird,D.Pinchev,A.Ralphetal.,2008TheMammalianSPD-2Ortholog Cep192RegulatesCentrosomeBiogenesis.CurrentBiology18:136–141. 34 Figure1.szy-10(bs21)suppressesembryoniclethalityandcentrioleduplicationdefectsof thezyg-1(it25)mutant.(A)Inwild-typeembryos,sperm-derivedcentriolesduplicate duringthefirstcellcycleresultingintheformationofbipolarspindlesatthetwo-cellstage. Inzyg-1(it25)mutants,thesperm-derivedcentriolesfailtoduplicate,leadingtomonopolar spindlesatthetwo-cellstage.(B)zyg-1(it25)orzyg-1(it25)szy-10(bs21)mutantswere shiftedtothenon-permissivetemperature(24Cor25C)attheL4larvalstageand embryoniclethalityoftheirself-progenywasquantified.(C)zyg-1(it25);mcherry-his58; gfp-spd-2orzyg-1(it25)szy-10(bs21);mcherry-his58;gfp-spd-2animalswereshiftedtothe non-permissivetemperatureof24CattheL4larvalstageandallowedtogrowfor24hours. Centrioleduplicationintheirembryoswasmonitoredusingtime-lapsemicroscopy. 35 Representativeimagesofcontrolzyg-1(it25)orzyg-1(it25)szy-10(bs21)embryosatthe two-cellstageareshown.(D)Quantificationofcentrioleduplicationinzyg-1(it25); mcherry-his58;gfp-spd-2orzyg-1(it25)szy-10(bs21);mcherry-his58;gfp-spd-2reporter strains. 36 Figure2.Thebs21mutationisanalleleofthedpl-1gene.(A)Schematicofrecombination mappingoftheszy-10(bs21)mutation.(B)Embryoniclethalityofthezyg-1(it25)dpy10(e128)orrecombinantscontainingmutationsinoneormoreoftheszy-10candidate geneswasquantifiedatthenon-permissivetemperatureof24C.(C)Agfp-dpl-1transgene complementsdpl-1(bs21)-mediatedsuppressionofthezyg-1(it25)embryoniclethal phenotype.Thegraphplotstheembryoniclethalityat24°Cofzyg-1(it25)controlanimals 37 andzyg-1(it25)dpl-1(bs21)animalswithandwithoutadpl-1-gfptransgene.(D)zyg1(it25)dpl-1(bs21);dpl-1-gfpanimalsweretreatedwithcontrolorgfpRNAiandembryonic lethalitywastestedat24°C.(E)zyg-1(it25);mcherry-his58;gfp-spd-2L4animalswere treatedwithcontrolRNAiordpl-1RNAifor24hoursandthefrequencyofcentriole duplicationwasmonitoredbytime-lapsemicroscopy.Representativeimagesoftwo-cell embryostreatedwithcontrolRNAi(left)ordpl-1RNAi(right)areshown.(F) Quantificationofcentrioleduplicationeventsinzyg-1(it25);mcherry-his58;gfp-spd-2 animalstreatedwithcontrolordpl-1RNAi. 38 Figure3.Mutationofefl-1suppresseszyg-1(it25)embryoniclethality.(A)zyg-1(it25),zyg1(it25)efl-1(se1),andefl-1(se1)wereshiftedto25°Casgravidadults.Shownarethelevels ofembryoniclethalityfortheensuing24hours.(B)szy-11(bs22)wasmappedinthe vicinityofunc-76ontherightarmofLGV.Shownaretheidentitiesandmappositionsof linkedmutationsresultinginnon-synonymouscodonchanges.(C)szy-11(bs22)-mediated suppressionofzyg-1(it25)requirestheefl-1mutation.Theefl-1mutationwasrevertedto thewild-typesequenceinthezyg-1(it25);szy-11(bs22)strainusingCRISPRtechnologyand suppressionofzyg-1(it25)embryoniclethalitywasquantitated.Additionally,theefl-1 mutation(G716A)wasintroducedintothezyg-1(it25)mutantandsuppressionof 39 embryoniclethalitywasmeasuredat24°C.(D)Quantitationofembryoniclethalityofzyg1(it25)orzyg-1(it25);CRISPRefl-1(G716A)at23.5°C. 40 Figure4.RegulationoftranscriptionofcentrioleduplicationfactorsbyEFL-1-DPL-1.(A) Schematicofthewild-typezyg-1transcriptionalreporter(top)andthecorresponding versionwiththethreeEFL-1-DPL-1-bindingsitesmutated(bottom).MutationsintheEFL1-DPL-1-bindingsitesarepicturedintheboxatright.(B)Representativeimagesofthe germlinesoftransgenicanimalsexpressingthewild-typezyg-1transcriptionalreporter (top)oranimalsexpressingthetriplemutantbindingsitereporter(bottom).(C)Relative levelsofcentrioleduplicationtranscriptsinwild-typeanddpl-1mutantanimals.RNAwas isolatedfromwild-type,dpl-1(n3643),ordpl-1(bs21)adultsandquantitativereal-timePCR 41 wasusedtoanalyzeRNAlevels.Valuessignificantlydifferentfromcontrolswere determinedusingaStudent’st-testandareindicatedwithone(p<0.05)ortwo(p<0.01) asterisks. 42 43 Figure5.SAS-6levelsareincreasedindpl-1mutants.(A-D)Immunoblotanalysisof extractsmadefromwild-type,dpl-1(bs21),ordpl-1(n3643)embryos.Shownare representativeblotsprobedfor(A)ZYG-1.(B)SAS-6(C)SAS-5,and(D)SPD-2.Ineach case,alpha-tubulinwasusedasaloadingcontrol.ThespecificitiesoftheZYG-1,SAS-5,and SPD-2antibodiesaredemonstratedbytheabsenceofabandinextractsdepletedofthat specificfactorbyRNAi.ThespecificityoftheSAS-6antibodyisshowninFigure6. Asterisksdenotenon-specificbands.(E)Relativelevelsofeachfactorinthewildtypeand thetwodpl-1mutants.Signalswerenormalizedtotheloadingcontrolandplottedrelative tothewildtype.Eachmeasurementisfromtwoormoreindependentexperiments. 44 Figure6.LossofAPC/Cactivitysuppresseszyg-1(it25).(A)szy-13(bs29)wasmapped relativetounc-45anddpy-1ontheleftarmofLGIII(mapattop).Wholegenome sequencingofthisstrainrevealedjusttwogenesinthevicinitywithnon-synonymous codonchanges(tableatbottom).(B)Themolecularidentityofszy-13(bs29)wasconfirmed throughcomplementationanalysis.Suppressionofzyg-1(it25)embryoniclethalitywas measuredinszy-13(bs29)homozygotes;szy-13(bs29)heterozygotes,orinszy 45 13(bs29)/mat-3(or180)trans-heterozygotesat24°C.(C)Immunoblotanalysisof embryonicextractsobtainedfromzyg-1(it25),orzyg-1(it25);szy-13(bs29)mutantsusinga SAS-6-specificantibody.Alpha-tubulin(TBA-1/2)wasusedasaloadingcontrol.SAS-6 signalwasnormalizedforloadingandrelativelevelswerequantitated.Asteriskdenotesa non-specificband. 46
© Copyright 2026 Paperzz