Math 151 Section 3.2 Differentiation Formulas Constant Rule If f is a constant function, f ( x) = c , then f !( x ) = 0 . Power Rule If f ( x ) = x n , where n is any real number, then f !( x ) = nx n"1 . Product Rule If y = f ( x) g ( x) and f !( x) and g !( x) both exist, then y ! = f !( x) g ( x) + f ( x) g !( x) Quotient Rule If y = y! = f ( x) g ( x) and f !( x) and g !( x) both exist, then g ( x) f !( x) " f ( x) g !( x) ( g ( x)) 2 Lots and Lots of Examples: Find the following derivatives. A. y = 5 y = !2 B. y = x10 C. y = 3x 7 D. h( x) = 3+ x 5 y = sin18° Math 151 E. f ( x) = 5x 3 + 2x !1 F. y = 3 x 8 + x G. y = 3x!2 + H. g (t ) = I. y = 1 + 3!1 3 2x t 3 + 5t 2 + 7 t x 4 !1 x2 x Math 151 J. y = ( x 6 + 7)( x 2 + x) K. y = ( x 4 + 3x 2 + 2)( x 2 ! x + 4) L. f ( x) = M. y = 1! x 2 1+ x 2 5 x +2 6 Math 151 #%1! 2x %% N. g ( x) = % $x 2 %% %%& x if x < !1 if !1" x "1 if x >1 #4x 2 + 2x +1 if x <1 % O. k ( x) = % $ % if x "1 % &10x ! 3 Example: Assume that r(t) is a position function for an object. Find the velocity vector(s) at the point (3, 0) for r (t ) = t 2 ! 6t + 8,t 4 ! 26t 2 + 25 . Example: For what value(s) of x is the tangent line of f ( x) = x 3 !5x 2 + 6x ! 30 parallel to y = 6x + 5 ? Math 151 Example: The functions f and g and the corresponding derivatives have values as shown in the table. x f ( x) f !( x) g ( x) g !( x) 0 1 3 5 −3 1 2 9 7 11 2 0 2 10 −5 3 4 8 −1 −4 Use the table to evaluate the following: A. h!(3) for h( x) = ( x 3 + 2) g ( x) B. d !## x 3 $&& & # dx ##" f ( x)&&% x=1
© Copyright 2025 Paperzz