In[1]:= H*note: to simplifynotations all periodic functions of x are expected to have a period of 2 Pi, as Ch. 11.1 by KR. If a function has a period "2L" as in his later sections, one can always switch to a new variable xnew =Pi xL and get the original periodicity*L In[2]:= H*first define colors for future graphics*L In[3]:= red = RGBColor@1, 0, 0D; green = RGBColor@0, 1, 0D; blue = RGBColor@0, 0, 1D; black = RGBColor@0, 0, 0D; In[4]:= fapp@x_, nmax_D := a0 + Sum@a@nD Cos@n xD + b@nD Sin@n xD, 8n, nmax<D In[5]:= H*Note, unlike formal expression which have infinityfor the upper limit, we have a finite nmax, so that an approximationto the original function f is considered - "trigonometric polynomials" HKR. 11.6L. However, accuracy can be made arbitrary high with increase of nmax. *L In[6]:= Clear@a0, a, bD; In[7]:= a0 := In[8]:= a@n_D := Ù-Π f@xD â x Π 2Π Ù-Π f@xD Cos@n xD â x Π Π Ù-Π f@xD Sin@n xD â x Π In[9]:= b@n_D := Π In[10]:= H*above are Euler formulas; ";" represents the condition "If" *L In[11]:= H*Example 1*L In[12]:= In[13]:= Clear@ f D; f @x_D := If@Hx > -Pi && x < 0L, -1, 1D In[14]:= In[15]:= Plot@ f @xD, 8x, -Pi, Pi<D 1.0 0.5 Out[15]= -3 -2 -1 1 -0.5 -1.0 In[16]:= a0 Out[16]= 0 In[17]:= a@nD Out[17]= 0 2 3 2 688_fourier.nb In[18]:= b@nD 2 - 2 Cos@n ΠD Out[18]= In[19]:= nΠ Table@8n, b@nD<, 8n, 5<D TableForm Out[19]//TableForm= 1 Π4 2 0 3 4 3Π 4 0 5 In[20]:= 4 5Π f3 = fapp@x, 3D 4 Sin@xD In[21]:= 4 Sin@3 xD + Out[20]= Π 3Π f5 = fapp@x, 5D 4 Sin@xD 4 Sin@3 xD + Out[21]= Π 4 Sin@5 xD + 3Π 5Π In[22]:= f15 = fapp@x, 15D; In[23]:= Plot@8 f @xD, f3, f5, f15<, 8x, -Pi, Pi<, PlotStyle ® 8black, red, green, blue<D 1.0 0.5 Out[23]= -3 -2 -1 1 2 3 -0.5 -1.0 In[24]:= H*note: the sum approaches 0 at + or - Pi - this is an example of Theorem 2, p. 484 in KR.*L 688_fourier.nb In[25]:= Plot@8f3, f5, f15<, 8x, -10, 10<, PlotStyle ® 8red, green, blue<D 1.0 0.5 Out[25]= -10 -5 5 10 -0.5 -1.0 In[26]:= H*Note: apprixomationsextend the function periodically, regardless if the original f@xD was defined only on @-Pi,PiD or was indeed periodic and defined for all x *L In[27]:= FullSimplify@b@nD, n Î IntegersD Out[27]= - In[28]:= FullSimplify@%, Hn 2L Î IntegersD H*n even*L Out[28]= 0 In[29]:= FullSimplify@b@nD, HHn + 1L 2L Î IntegersDH*n odd*L 2 I-1 + H-1Ln M nΠ 4 Out[29]= nΠ In[30]:= H*note: we had a@nD=0 since f@xD is an odd function; alternatively for an even function all b@nD would be zero - see 11.3 in KR.*L In[31]:= H*ORTHOGONALITY*L In[32]:= Clear@ f , m, nD; In[33]:= 8a@nD, b@nD< Ù-Π Cos@n xD f@xD â x Π Out[33]= : In[34]:= f @x_D = Cos@m xD; Π Ù-Π f@xD Sin@n xD â x Π , Π > In[35]:= In[36]:= In[37]:= a@nD Out[37]= H2 m Cos@n ΠD Sin@m ΠD - 2 n Cos@m ΠD Sin@n ΠDL IIm2 - n2 M ΠM In[38]:= Limit@%, m ® nD Out[38]= 1+ Sin@2 n ΠD 2nΠ 3 4 688_fourier.nb In[39]:= FullSimplify@%, n Î Integers D Out[39]= 1 In[40]:= FullSimplify@a@nD, n Î Integers && m Î Integers D Out[40]= 0 In[41]:= H*i.e. cosHm xL and cosHn xL are orthogonal for m ¹ n *L In[42]:= FullSimplify@b@nD, n Î Integers && m Î Integers D Out[42]= 0 In[43]:= H*i.e. cosHm xL and sinHn xL are orthogonal for all m,n*L In[44]:= Clear@ f , m, nD; In[45]:= f @x_D = Sin@m xD; In[46]:= b@nD Out[46]= H2 n Cos@n ΠD Sin@m ΠD - 2 m Cos@m ΠD Sin@n ΠDL IIm2 - n2 M ΠM In[47]:= Limit@%, m ® nD Out[47]= 1- In[48]:= FullSimplify@%, n Î Integers D Out[48]= 1 In[49]:= FullSimplify@b@nD, n Î Integers && m Î Integers D Out[49]= 0 In[50]:= H*i.e. sinHm xL and sinHn xL are orthogonal for m ¹ n *L Sin@2 n ΠD In[51]:= 2nΠ H*COMPLEX FOURIER - 11.4 in KR.*L In[52]:= i = I H*to have more familiarnotations*L; In[53]:= int := Integrate@ð, 8x, -Pi, Pi<D & In[54]:= H*Orthogonality:*L In[55]:= int@Exp@i n xD Exp@-i m xDD 2 Sin@Hm - nL ΠD Out[55]= m-n In[56]:= Limit@%, m ® nD Out[56]= 2Π 688_fourier.nb In[57]:= FullSimplify@%%, n Î Integers && m Î IntegersD Out[57]= 0 In[58]:= H*i.e. the exponentials with different m and n are orthogonal. Note that in the integral of 2 functions one is taken as complex conjugate*L In[59]:= Clear@ f , cD; c@n_D := int@ f @xD Exp@-i n xDD H2 PiL In[60]:= fcomp@x_, nmax_D := Sum@c@nD Exp@i n xD, 8n, -nmax, nmax<D In[61]:= Clear@ f D; f @x_D := If@Hx > -Pi && x < 0L, -1, 1DH*old example*L In[62]:= c@nD ä H-1 + Cos@n ΠDL Out[62]= nΠ In[63]:= c@nD Exp@i n xD + c@-nD Exp@-i n xD Out[63]= - In[64]:= FullSimplify@%, n Î IntegersD ä ã-ä n x H-1 + Cos@n ΠDL + ä ãä n x H-1 + Cos@n ΠDL nΠ nΠ ä I-1 + H-1Ln M ã-ä n x I-1 + ã2 ä n x M Out[64]= nΠ In[65]:= FullSimplify@%, n 2 Î IntegersD Out[65]= 0 In[66]:= FullSimplify@%%, Hn + 1L 2 Î IntegersD 4 Sin@n xD Out[66]= nΠ In[67]:= H*i.e. return to the original real-value series*L In[68]:= H*example 1 from p. 498 in KR.*L In[69]:= Clear@ f D; f @x_D = Exp@xD; In[70]:= c@nD ä Sinh@Π - ä n ΠD Out[70]= In[71]:= Hä + nL Π FullSimplify@%, n Î IntegersD ä H-1Ln Sinh@ΠD Out[71]= Hä + nL Π In[72]:= H*which is equivalent to KR.*L In[73]:= f2 = fcomp@x, 2D -ã-Π + ãΠ Out[73]= 2Π I 12 - ä2 M ã-ä x Sinh@ΠD Π - I 12 + ä2 M ãä x Sinh@ΠD Π + I 15 - 2ä M 5 ã-2 ä x Sinh@ΠD + Π I 15 + 2ä M 5 ã2 ä x Sinh@ΠD Π 5 6 688_fourier.nb In[74]:= FullSimplify@%, x Î RealsD 1 Out[74]= 5Π H5 + 2 Cos@2 xD + 5 Sin@xD - Cos@xD H5 + 8 Sin@xDLL Sinh@ΠD In[75]:= H*i.e a trigonometric polynomial*L In[76]:= f8 = fcomp@x, 8D; f32 = fcomp@x, 32D; In[77]:= Plot@8 f @xD, f2, f8, f32<, 8x, -Pi, Pi<, PlotStyle ® 8black, red, green, blue<D 20 15 Out[77]= 10 5 -3 -2 -1 1 2 3 In[78]:= In[79]:= Plot@8f2, f32<, 8x, -3 Pi, 3 Pi<, PlotStyle ® 8red, blue<, PlotRange ® 80, E ^Pi<D 20 15 Out[79]= 10 5 -5 In[80]:= 0 5 H*again, note that the function is periodicallyextended*L In[81]:= H*FOURIER INTEGRAL*L 688_fourier.nb In[82]:= ? *Fourier* System` Fourier FourierCosTransform FourierDCT FourierDST FourierParameters FourierSinTransform FourierTransform InverseFourier InverseFourierCosTransform InverseFourierSinTransform InverseFourierTransform In[83]:= H* Ù-¥ f HtL eiΩt ât*- FourierTransform*L ¥ 1 2Π In[84]:= H* Π Ù0 f HtL cosHΩtLât*- FourierCosTransform; *L In[85]:= H* Π Ù0 f HtL sinHΩtLât - FourierSinTransform; *L In[86]:= H*similarlyfor inverse see also p. 519 in KR*L In[87]:= 2 2 ¥ ¥ H*Example 1, p.515 a=k=1*L In[88]:= Clear@ f D; f @x_D = H1 + Sign@1 - xDL 2; In[89]:= Plot@ f @xD, 8x, 0, 2<D 1.0 0.8 0.6 Out[89]= 0.4 0.2 0.5 1.0 1.5 2.0 7 8 688_fourier.nb In[90]:= FourierCosTransform@ f @xD, x, omD FullSimplify Π2 Sin@omD Out[90]= om In[91]:= H*some difficultyfor Mathematica since a discontinuousf@xD; however DiracDelta's cancel and get the following:*L 2 Π Sin@omD In[92]:= fcos = In[93]:= fsin = FourierSinTransform@ f @xD, x, omD ; om 4 - 4 Cos@omD Out[93]= 2Π 2 om In[94]:= Plot@8fcos, fsin<, 8om, -12, 12<, PlotStyle ® 8red, blue<D 0.8 0.6 0.4 0.2 Out[94]= -10 -5 5 10 -0.2 -0.4 -0.6 In[95]:= fexp = FourierTransform@ f @xD, x, omD Out[95]= - ä ãä om Π + om 2Π DiracDelta@omD 2 In[96]:= H*again, DiracDelta is an artifact*L In[97]:= InverseFourierTransform@fexp, om, xDH*ok*L 1 Out[97]= 2 H1 - Sign@-1 + xDL In[98]:= H*Example 2*L In[99]:= FourierCosTransform@E ^-x, x, omD Π2 Out[99]= In[100]:= 1 + om2 FourierSinTransform@E ^-x, x, omD om Out[100]= In[101]:= Π2 1 + om2 H*Fourier Transform of Derivatives - theorem 1 on p.516 and example 3 on p.517*L 688_fourier.nb In[102]:= Out[102]= In[103]:= Out[103]= In[104]:= Out[104]= In[105]:= Clear@ f D; f @x_D = E ^-x ã-x FourierCosTransform@D@ f @xD, xD, x, omD - om * FourierSinTransform@ f @xD, x, omD + Sqrt@2D f @0D Sqrt@PiD Simplify 0 FourierSinTransform@D@ f @xD, xD, x, omD + om * FourierCosTransform@ f @xD, x, omD Simplify 0 Clear@ f D; f @x_D = Exp@-x ^2D 2 Out[105]= ã-x In[106]:= In[107]:= FourierTransform@D@ f @xD, xD, x, omD + i om * FourierTransform@ f @xD, x, omD Simplify Out[107]= 0 In[108]:= H*above is theorem 3 and example 3 from p. 521; in more detail:*L In[109]:= FourierTransform@E ^H-x ^2L, x, omD ã- om 2 4 Out[109]= 2 In[110]:= D@E ^H-x ^2L, xD 2 Out[110]= -2 ã-x x In[111]:= FourierTransform@%, x, omD H-i omL ã- om 2 4 Out[111]= 2 In[112]:= H*same thing*L In[113]:= In[114]:= In[115]:= ft := FourierTransform@ð, x, omD & In[116]:= ift := InverseFourierTransform@ð, om, xD & In[117]:= Clear@ f D; f @x_D = 1 2 HSign@1 + xD - Sign@x - 1DL; 9 10 688_fourier.nb In[118]:= Plot@ f @xD, 8x, -2, 2<D 1.0 0.8 0.6 Out[118]= 0.4 0.2 -2 In[119]:= -1 1 2 ft@ f @xDD Π2 Sin@omD Out[119]= om In[120]:= FullSimplify@%, om Î RealsD H*see p. 531 in KR*L Π2 Sin@omD Out[120]= om In[121]:= f @x_D = 1 2 HSign@x + bD - Sign@x - bDL; In[122]:= Out[123]= $Aborted In[124]:= In[125]:= In[126]:= In[127]:= Out[127]= H*EXTRACTING FREQUENCIES FROM A COMPLICATED SIGNAL*L f @x_D = [email protected] xD * HSin@3 xD + .9 Sin@2 Pi xDL ã-0.001 x HSin@3 xD + 0.9 Sin@2 Π xDL 688_fourier.nb In[128]:= Plot@ f @xD, 8x, 0, 15<D 1.5 1.0 0.5 Out[128]= 2 4 6 8 10 12 14 -0.5 -1.0 -1.5 In[129]:= ftt = FourierCosTransform@ f @xD, x, omD Chop 446.49-11.3097 om2 1558.55-78.9568 om2 +1. om4 - 6. H-3.+omL H3.+omL 81.-18. om2 +1. om4 Out[129]= 2Π In[130]:= Plot@Abs@fttD, 8om, 2, 7<D 4 3 Out[130]= 2 1 3 4 5 In[131]:= myft := Integrate@ð Cos@om xD, 8x, 0, L<D & In[135]:= L = 20; myftt = myft@ f @xDD Chop; 6 7 11 12 688_fourier.nb In[136]:= Plot@Abs@myfttD, 8om, 2, 7<, PlotRange ® 80, 10<D 10 8 6 Out[136]= 4 2 2 3 4 5 In[137]:= L = 100; myftt = myft@ f @xDD Chop; In[138]:= Plot@Abs@myfttD, 8om, 2, 7<, PlotRange ® 80, 20<D 6 7 6 7 20 15 Out[138]= 10 5 2 3 4 5
© Copyright 2026 Paperzz