ECE 308 -13 Frequency Analysis of Signals and Systems Z. Aliyazicioglu Electrical and Computer Engineering Department Cal Poly Pomona Frequency Analysis of Signals and Systems The Fourier Series for Discrete-Time Periodic Signals The Fourier representation of signal maps the signal into frequency domain. The Fourier transform provides a different way to interpret signals and systems. It is useful for convolution operation in time domain maps into multiplication in frequency domain It gives us information about system or signal characteristic of behavior ECE 308-13 2 1 Frequency Analysis of Signals and Systems The Fourier Series for Discrete-Time Periodic Signals A given periodic sequence x(n) with period N, that is x(n)=x(n+N) The Fourier representation of x(n) can be expressed as N −1 x ( n ) = ∑ ck e j 2π kn / N , k =0 where ck ara the coefficients in the series representation. This equation is called the Discrete-time Fourier Series (DTFS) The Fourier coefficients {ck }, k = 1,2,..., N − 1 provides the description of x(n) in the frequency domain ck = 1 N N −1 ∑ x (n )e − j 2π kn / N n =0 ECE 308-13 3 Frequency Analysis of Signals and Systems ck represents the amplitude and phase associated with the frequency component sk = e j 2π kn / N = e jωk n where ω k = 2π k / N The function Sk are periodic with period N. Hence sk (n ) = sk (n + N ) So, that ck + N = 1 N N −1 ∑ x ( n )e n =0 − j 2π ( k + N ) n / N = 1 N N −1 ∑ x ( n )e n =0 − j 2π kn / N = ck Therefore,ck is periodic sequence with fundamental period N. Instead of focusing in periodic range k=0,1,…, N-1 in frequency 2π k domain 0 < ω k = N < 2π for 0<k<N-1, We do in range of 2π k N N −π < ω k = < π , which corresponds to − < k < N 2 2 ECE 308-13 4 2 Frequency Analysis of Signals and Systems Example: Determine the spectra of the following signal x (n ) = cos πn ω0 = 3 π 3 f0 = 1 6 Hence x(n) is periodic with fundamental period N=6 ck = 1 N N −1 ∑ x (n )e − j 2π kn / N n =0 x (n ) = cos πn 3 = 1 5 ∑ x(n)e− j 2π kn / 6 , k = 0,1,...,5 6 n =0 1 1 = e j 2π n / 6 + e − j 2π n / 6 2 2 c−1 = c5 e j 2π n / 6 = e j 2π (5−6) n / 6 = e j 2π 5n / 6 which means that ck = 1 5 nπ ∑ cos( 3 )e− j 2π kn / 6 , k = 0,1,...,5 6 n =0 ECE 308-13 5 Frequency Analysis of Signals and Systems Example:(cont) 1 π 2π − j 2π k 2 / 6 3π ck = (1 + cos e − j 2π k / 6 + cos e + cos e − j 2π k 3/ 6 6 3 3 3 4π − j 2π k 4 / 6 5π − j 2π k 5/ 6 ) , k = 0,1,...,5 + cos e + cos e 3 3 c0 = 0 c1 = 1 2 c2 = 0 c3 = 0 c4 = 0 c5 = 1 2 % Find the Fourier Series coefficients of x(n)=cos(pi n/3) for k=1:6 c(k)=0; for n=1:6 c(k)=c(k)+cos(pi*(n-1)/3)*exp(-j*2*pi*(k-1)*(n-1)/6); end c(k)=c(k)/6; end for k=1:6; rats(c(k)) end . ECE 308-13 6 3 Frequency Analysis of Signals and Systems Example: Determine the spectra of the following periodic signal with period N=4 x ( n ) = {1,1,0,0} ck = 1 N N −1 ∑ x ( n )e − j 2π kn / N n =0 = 1 3 ∑ x(n)e− j 2π kn / 4 , k = 0,1, 2,3 4 n =0 1 ck = (1 + e − j 2π k / 4 ) , k = 0,1,2,3 4 c0 = 1 2 1 c1 = (1 − j ) 4 c0 = 1 2 c1 = c3 = 2 4 1 4 c2 = 0 c3 = (1 + j ) 2 (c = − π 1 4 4 (c3 = c2 = 0 π 4 ECE 308-13 7 Frequency Analysis of Signals and Systems Fourier Transform for DT The Fourier transform of a finite-energy discrete time signal x(n) is defined as ∞ X (ω ) = ∑ x(n)e − jω n n =−∞ X(ω) signal is periodic with period 2π , ∞ X (ω + 2π k ) = ∑ x(n)e − j (ω + 2π k )n ∑ x(n)e − jω n − j 2π kn ∑ x(n)e − jω n n =−∞ ∞ X (ω + 2π k ) = n =−∞ ∞ X (ω + 2π k ) = e = X (ω ) n =−∞ The inverse Fourier transform of discrete-time signal is x (n ) = 1 2π π ∫ X (ω )e −π jω n dω ECE 308-13 8 4 Frequency Analysis of Signals and Systems Properties of the Fourier Transform for DT Properties Time Domain Frequency Domain Notation x(n ), x1(n ), x2 (n) Linearity ax1(n) + b x2 (n) Time Shifting x(n − k ) Time Reversal X (ω ), X1(ω ), X 2 (ω ) aX1(ω ) + bX 2 (ω ) e − jω k X (ω ) X ( −ω ) x( −n) Convolution X1(ω ) X 2 (ω ) x1(n) * x2 (n) rx1x2 (l ) = x1(l ) * x2 (−l ) Correlation Sx1x2 = X1(ω )X 2 (−ω ) = X1(ω )X 2* (ω ) e j ω0 n x ( n ) Frequency Shifting X (ω − ω0 ) 1 1 X (ω + ω0 ) + X (ω − ω0 ) 2 2 x1(n)cos ω0 n Modulation Multiplication 1 2π x1(n)x2 (n) Differentiation in Frequency domain * nx(n) ∞ Parseval’s Theorem ∫ X (λ )X (ω − λ ) d λ 1 −π j x (n ) Conjugation π 2 dX (ω ) dω X * (−ω ) π ∑ x (n)x (n) = 2π ∫ π X (ω )X (ω )dω 1 1 * 2 − n =−∞ 1 * 2 ECE 308-13 9 Frequency Analysis of Signals and Systems Example: a n x1(n) = 0 ∞ X1(ω ) = ∑ x(n) = 0.8 n≥0 = x(n)e − jω n = 1 1 − 0.8e − jω ∞ X 2 (ω ) = ∑ x(n)e n =−∞ ∞ = − jω n n =1 ∞ ∑ 0.8n e − jω n = n =0 jω n = x(n) = x1(n) + x2 (n) n<0 n≥0 ∞ ∑(0.8e − jω n ) n =0 e e jω − 0.8 −1 = ∑ 0.8 n =−∞ ∑(0.8e ω ) j = −∞ < n < ∞ a − n x2 (n ) = 0 n<0 n =−∞ n − n − jω n e −1 = ∑ (0.8e ω ) j −n n =−∞ 0.8e jω 1 − 0.8e jω ECE 308-13 10 5 Frequency Analysis of Signals and Systems Example: (cont) X (ω ) = X1(ω ) + X 2 (ω ) = 1 1 − 0.8e − jω + 0.8e jω 1 − 0.8e jω = 1 − 0.82 1 − 2(0.8)cos ω + 0.82 n=-20:20; x=0.8.^abs(n); stem (n,x) xlabel ('n') ylabel ('x(n)') title ('x(n) sequence') figure; w=-2*pi:0.1:2*pi; y=(1-0.8^2)./(1-2*0.8*cos(w)+0.8^2); plot (w,y); xlabel ('\omega') ylabel ('y(\omega)') title ('Fourier transform of x(n) sequence') (Fourier1.m) ECE 308-13 11 Frequency Analysis of Signals and Systems Example: x(n) = 0.5 n −∞ < n < ∞ n=-20:20; b=0.5 x=b.^abs(n); stem (n,x) xlabel ('n') ylabel ('x(n)') title ('x(n) sequence') figure; w=-2*pi:0.1:2*pi; y=(1-b^2)./(1-2*b*cos(w)+b^2); plot (w,y); xlabel ('\omega') ylabel ('y(\omega)') title ('Fourier transform of x(n) sequence') (Fourier2.m) X (ω ) = 1 − 0.52 1 − cos ω + 0.52 ECE 308-13 12 6 Frequency Analysis of Signals and Systems Example: (cont) X (ω ) = 1 − 0.52 1 − cos ω + 0.52 ECE 308-13 13 Frequency Analysis of Signals and Systems Example: x(n) = 0.5n ∞ X (ω ) = ∑ x(n)e 0<n<∞ − jω n n =−∞ = 1 1 − 0.5e − jω = ∞ = ∑0.5 e n =0 jω n − jω n ∞ = ∑(0.5e − jω n ) n =0 e e jω − 0.5 ECE 308-13 14 7 Frequency Analysis of Signals and Systems Example: (cont) n=-0:20; b=0.5 x=b.^abs(n); stem (n,x) xlabel ('n') ylabel ('x(n)') title ('x(n) sequence') figure; w=-2*pi:0.1:2*pi; X=exp(j*w)./(exp(j*w)-b); subplot (2,1,1) plot (w,abs(X)); xlabel ('\omega') ylabel ('X(\omega)') title ('Fourier transform of x(n) sequence') subplot (2,1,2); plot (w,phase(X)); xlabel ('\omega') ylabel ('Phase (X(\omega))') title ('Fourier transform of x(n) sequence') Fourier3.m ECE 308-13 15 Frequency Analysis of Signals and Systems Example: ∞ X (ω ) = ∑ x(n)e − jω n n =−∞ = 1 1 + 0.5e − jω = x(n) = ( −0.5 ) u(n) n ∞ = ∑(−0.5) e n =0 jω e e jω + 0.5 n − jω n ∞ = ∑(−0.5e n =0 − jω n ) n=0:20; b=-0.5 x=b.^n; stem (n,x) xlabel ('n') ylabel ('x(n)') title ('x(n) sequence') figure; w=-2*pi:0.1:2*pi; X=exp(j*w)./(exp(j*w)-b); subplot (2,1,1) wpi=w/pi; plot (wpi,abs(X)); xlabel ('\omega/\pi') ylabel ('X(\omega)') title ('Fourier transform of x(n) sequence') subplot (2,1,2); plot (wpi,phase(X)); xlabel ('\omega/\pi') ylabel ('Phase (X(\omega))') title ('Fourier transform of x(n) sequence') ECE 308-13 16 8 Frequency Analysis of Signals and Systems Example: (cont) ECE 308-13 17 Frequency Analysis of Signals and Systems 2 0 ≤ n ≤ 5 x(n ) = 0 otherwise Example: ∞ X (ω ) = ∑ x(n)e − jω n n =−∞ =2 e e − j 3ω − jω / 2 5 = ∑ 2e − jω n n =0 j 3ω − j 3ω =2 1 − e − j 6ω 1 − e − jω 5 e −e = 2e − j 2 ω sin3ω sinω / 2 e jω / 2 − e − jω / 2 n=0:10; x=2*(n>=0 & n<=5); stem (n,x) xlabel ('n') ylabel ('x(n)') title ('x(n) sequence') figure; w=-2*pi:0.01:2*pi; X=2*(1-exp(-j*6*w))./(1-exp(-j*w)); subplot (2,1,1) wpi=w/pi; plot (wpi,abs(X)); xlabel ('\omega/\pi') ylabel ('X(\omega)') title ('Fourier transform of x(n) sequence') subplot (2,1,2); plot (wpi,phase(X)); xlabel ('\omega/\pi') ylabel ('Phase (X(\omega))') title ('Fourier transform of x(n) sequence') ECE 308-13 18 9 Frequency Analysis of Signals and Systems Example: (cont) ECE 308-13 19 10
© Copyright 2025 Paperzz