1 Equilibrium potential (6pt) At equilibrium, the total current crossing the cell membrane is zero, such that: ge (Veq − Ee ) + gi (Veq Ei ) = 0 Veq (ge + gi ) = ge Ee + gi Ei ge Ee + gi Ei Veq = (2pt) ge + gi (1) (2) (3) For ge → 0, Veq → Ei (1pt) For ge → +∞, Veq → Ee (1pt) And Veq = 0 for ge = −gi Ei /Ee ≈ 1.4mS (1pt) Correct plot: (1pt) 2 Integrate-and-fire neuron (7pt + bonus) 2.1 The voltage tends exponentially to the equilibrium voltage, which is such that: τ dV = 0 = El − Veq + RI0 dt Veq = El + RI0 (4) (5) The neuron only spikes if Veq > Vth , that is, if I0 > Vth − El (2pt) R (6) 2.2 At t = t0 , the voltage is at El , it then tends towards the equilibrium potential with time constant τ : V (t) = Veq + (V (t0 ) − Veq ) exp(−(t − t0 )/τ ) = El + RI0 + (El − El − RI0 ) exp(−(t − t0 )/τ ) = El + RI0 (1 − exp(−(t − t0 )/τ )) 1 (7) (8) (9) Therefore, the neuron only spikes if: El + RI0 (1 − exp(−T /τ )) > Vth Vth − El I0 > (3pt) R(1 − exp(−T /τ )) (10) (11) Plot: For T << τ , exp(−T /τ ) ≈ 1 − T /τ, I0 ≈ Tτ VthR−El (1pt) For T >> τ , exp(−T /τ ) ≈ 0, I0 ≈ VthR−El (1pt) 2.3 Advanced Supposing that the neuron hasn’t fired during the first current step, during the delay, the voltage decays exponentially back to El : V (t) = Veq + (V (t0 + T ) − Veq ) exp(−(t − (t0 + T ))/τ ) = El + (El + RI0 (1 − exp(−T /τ )) − El ) exp(−(t − (t0 + T ))/τ ) = El + RI0 (1 − exp(−T /τ )) exp(−(t − (t0 + T ))/τ ) (12) (13) (14) So that when the second step starts, the voltage is now: V (t0 + T + ∆t) = El + RI0 (1 − exp(−T /τ )) exp(−∆t/τ ) (15) And during the next current step, the voltage increases exponentially to El + RI0 V (t) = Veq + (V (t0 + T + ∆t) − Veq ) exp(−(t − (t0 + T + ∆t)/τ )(16) = El + RI0 + (El + RI0 (1 − exp(−T /τ )) exp(−∆t/τ ) − El − RI0 ) exp(−(t − (t0 + T + ∆t)/τ )(17) El + RI0 (1 + ((1 − exp(−T /τ )) exp(−∆t/τ ) − 1) exp(−(t − (t0 + T + ∆t)/τ ))(18) Such that by the end of the second step: V (t0 + 2T + ∆t) = El + RI0 (1 + ((1 − exp(−T /τ )) exp(−∆t/τ ) − 1) exp(−T /τ ))(19) = El + RI0 (1 − exp(−T /τ )) + exp(−∆t/τ )RI0 (exp(−T /τ ) − exp(−2T /τ )(20) The neuron fires during the second step if: Vth < El + RI0 (1 − exp(−T /τ )) + exp(−∆t/τ )RI0 (exp(−T /τ ) − exp(−2T /τ )(21) Vth − El − RI0 (1 − exp(−T /τ )) < exp(−∆t/τ )RI0 (exp(−T /τ ) − exp(−2T /τ )(22) 2 Vth − El − RI0 (1 − exp(−T /τ )) (23) RI0 (exp(−T /τ ) − exp(−2T /τ ) Vth − El − RI0 (1 − exp(−T /τ )) )(24) −∆t/τ > log( RI0 (exp(−T /τ ) − exp(−2T /τ ) RI0 (exp(−T /τ ) − exp(−2T /τ ) ∆t < τ log( )(25) Vth − El − RI0 (1 − exp(−T /τ )) exp(−∆t/τ ) > 2.4 2.4.1 Integrate-and-fire with refractory period (7pt) fI curve without refractory period We may consider that the neuron’s membrane potential is clamped to El during a refractory period tr . Supposing that the neuron was reset to El after a spike occuring at t = 0, without refractory period, the voltage dynamics are given by: V (t) = El + RI0 (1 − exp(−t/τ )) (26) Such that the neuron spiked when: Vth = El + RI0 (1 − exp(−T /τ ))(1pt) El + RI0 − Vth exp(−T /τ ) = RI0 RI0 T = τ log( )(1pt) El + RI0 − Vth (27) (28) (29) And the firing rate is given by: F = 1 RI0 ) τ log( El +RI 0 −Vth (30) Which goes to +∞ when I0 goes to +∞. (1pt) 2.4.2 fI curve with refractory period We may consider that the neuron’s membrane potential is clamped to El during a refractory period tr . (1pt) Supposing that the neuron was reset to El after a spike occuring at t = 0, with refractory period, the voltage dynamics are given by: V (t) = El + RI0 (1 − exp(−(t − tr )/τ )), t > tr 3 (31) And the neuron spikes when: T = tr + τ log( RI0 )(1pt) El + RI0 − Vth (32) And the firing rate is given by: F = 1 (1pt) RI0 ) tr + τ log( El +RI 0 −Vth (33) Now, when I0 goes to +∞, the firing rate only goes to 1/tr , since the neuron cannot fire during the refractory period. (1pt) 4
© Copyright 2026 Paperzz