⇥sin 26 =or27(cos +1 3), or y = 27(cos 26)x +6 81 cos 26 sin 26.⇤ yy=+ = 426)(x 1 7 )⇤4+⇥2x 5 x=sin0,2x +ytan (x cos 2x + sin 2x + 28x tan3 (x7 ) sec2 (x7 ) . dy dy pdy = 27 p the equation of p the tangent line is d x ✓22 (4x ✓3 );2 if=x8x ◆=sec23! 44. dy = sec 3x cos(1 + then sin = 26, cos 26,8so 2 ◆ 2 ydy= dy = p8dx 3 1) 2 (4x ) p (4x ),x = ⇡/2 sec2!(4⇡) ⇡. the When x = of⇡, y =tangent tan(4⇡) = 2is 0, so 7047. Chapter p then dx 1 27 dy⇡ 9 y5 == 135 45. dy = 3 sec (⇡/2 x) tan(⇡/2 x); if 1, so equation the line 2 2 +=5 0, dy (7 x) 3x + 5 (7 x) 3x dx dx dx x= ⇡ 3 27(cos 26)(x 2p 46. = 3 x 1 + ; if x = 2 then y = , = 3 = , so the equation of the tangent line is dx dx p p y + sin 26 = + 3), or y = 27(cos 26)x + 81 cos 26 sin 26. 2 42. the == 4 tan 2x= + sec 2 + dx 4 16 3 8+= ydx 0, or yof the1tangent 8 x ⇡x 4 8⇡. dx+ 1equation x3 +xsinline x is y = 8 ⇡(x x⇡) sin 135 27 ! 2 (135/16)(x p ydy 27/8 = or y 3= then xy = . sinp26, 2dydy = 27 dy = 3x✓ +2 ✓ x3x) ); tan(⇡/2 if 2), x◆= 3 ◆ 2 cos 26, so the equation of the tangent line is 2cos(1 16 2 45. = 3 sec (⇡/2 x); if x = ⇡/2 then = 0, y = 1, so the equation of the tangent line is 3x + 5 (7 x)x (7 x) 3x + 5 (3x + cos x) p44. 123/ 43 – 55 odds dy d dy dx dx 1 1 27 dy 9 5 135 3 + 3p 3 2 dx dx 48. =x326 12 cot x cot x = 12 cot x csc x, = 24. When x y = 3,ofsothe thetangent equation 46. yy⇥ = x 1 + ; if x = 2 then y = , = 3 = , so =the⇡/4, equation lineofis the + sin = 27(cos 26)(x + 3), or y = 27(cos 26)x + 81 cos 26 sin 26. 3 3 2 2 3 sinyx + sin x) 2 5 (x + sin x) 1 3x x+ 70 dx+ 1 = 0,+or Chapter 2 dx x=⇡/4 x=dx 8 (xdxp 44 16 p p dy d dy 2 2 2 2 2 2 135or 3=) = 24(x y 27 = 24x + 47. tangent = secline (4xis )y◆ ✓ (4x 8x sec⇡/4), (4x ), = 38 +⇡6⇡. sec (4⇡) = 8 ⇡. When x = ⇡, y = tan(4⇡) = 0, so ydx 27/8✓= (135/16)(x 2),◆or y = x dx x= . p⇡ dy dyp 2 3 1 dx dy p p dy 1 27 dy 9 0, 5 y =1351, so the equation of the tangent line is 16 2 45. = 3 sec (⇡/2 x) tan(⇡/2 x); if x = ⇡/2 then =the dy = 43. the cos 3x 3xthe sinx3x; ⇡if then 1y and y⇡) = ⇡, of the tangent y +⇡ = (xline⇡), equation tangent ythen = 8=y ⇡(x 8=so ⇡x 8⇡. 46. = 33xp 13 );+ifif2x2x=line ;= xis3= 2 then = sin , =dy 3 27 equation = , so equationline of isthe tangent is 2x of dx dx 44. = cos(1 + = 26, = dy x dy dx dx x x 8 dx 4 4 cos 26, 16 so the equation of the tangent line is y + 1 = 0, or y = 1 2 dx dx p y==2x x. 49. or 5 x + = 4 1/2 = 7/2. When x = 1, y = 2, so the equation of the tangent ( 2x), p p p dy d dy 135 27 2= 27(cos 2 2y = 227(cos 2sec sinsec 26= 26)(x + or 26)x 818cos⇡26 sin 26.= 8 ⇡. When x = ⇡, y = tan(4⇡) = 0, so dx+ = dx 2 2 )5= xor 47. yydy (4x ) d (4x 8x (4x ), sec2 (4⇡) 27/8 (135/16)(x 2),3), y= x 2x=1 .p dy⇡+ = 3 ◆ ✓ cot dx = 12 dx dx x= p 2 ✓cot x =◆ 12 cot3 16 2 7 3 48. dy x x csc x, = 24. When p p 11),line 27 135 x = ⇡/4, y = 3, so the equation of the is 3y x2 = orif yis =y==2x8then .y = dx dx tangent dx⇡) x=⇡/4 the equation of1(7/2)(x the ⇡(x =dy8 dy ⇡x3 9 58⇡. 46. line 1 + ; x , = = , so the equation of the tangent line is dy = 2 2 2 dx xy d 3 = x24(x 4 0, 4 y =16p1, so the equation ⇡/4), y== ⇡/2 24x8then +dx 3 + 6⇡. 45. tangent sec3is2(⇡/2 x) tan(⇡/2 x);2 iforxdy = p p of the tangent line is dy = 3line 2 2 2 2 dx dx 47. = sec (4x ) (4x ) = 8x sec (4x ⇡, y = tan(4⇡) = 0, so 135), 27 dy p = 8 ⇡ sec (4⇡) = 8 ⇡. When x = dy d y + 1 = 0, or y = 1 dx dx dx x= ⇡ =cot or12ycot = 3 x csc xp2 x, . p 3 dy 27/8 1(135/16)(x dy p 24. When x = ⇡/4, y = 3, so the equation of the 48. ydy =p 12p x xcot x x2), =22 )3/2 = 16 2 50. = (1 ( 2x), = 1. When x = 0, y = 0, so the equation of the tangent line is y = x. the equation of2 the tangent line is y = 8dy ⇡(x dx x=⇡/4 ⇡) = 8 ⇡x 8⇡. dx = dx 2+ 2✓ p 49. dx 2x✓ 5 x x◆ ( 2x), dx x=0 = 4 1/2 = 7/2. When x = 1, y = 2, so the equation of the tangent 1 ◆ 2 tangent line is 1y 3 2= 524(x = 24x + 3dy + 6⇡. 9 5 dx dxy x=1 dy 1 x2 ⇡/4), or 135 p of the tangent line is dy3 y = 27 , p 2 d 46. dy = sec 3 2x ; sec if 2x(4x =722), then = 32 (4⇡) == 8p⇡. , soWhen the equation dy = d (4x12+ dy 47. (4x ) ) = 8x = 8 ⇡ sec x == 3, ⇡, y = tan(4⇡) = 0, so 2 3 3 2 p dx x x 8 dx 4 4 16 is y 2 = (7/2)(x 1), or y = x . 48. line = 12 cot x cot x = 12 cot x csc x, = 24. When x = ⇡/4, y so the equation of the dx dx dx x=dx dy d x2 dp ⇡ p p dy = x(psin(5x)) dy dx dx x=⇡/4 2 2 135 27 51. (5x) + cos(5x) 2 sin x (sin x) = 5x sin(5x) + cos(5x) 2 sin x cos x = of the tangent 2 equation ofx tangent 8xy⇡(x = 8=6⇡. ⇡x When 8⇡. x = 1, y = 2, so the equation p 2),line 49. the = 2x =5(135/16)(x 4 ⇡) 7/2. 2x), ydx or( yis =y =or .24x tangent is ythe+3dx = =dx +1/2 3+ dx 27/8line x=1 2= 5 24(x x2 ⇡/4),16dx 2 dy 5x sin(5x) 1 x = + cos(5x) sin(2x), 7 dy 3 2 3/2 50. dy 2x), = 1. When x = 0, y = 0, so the equation of the tangent line is y = x. line = is p y p2 3=2 (7/2)(x x . d (1 x21),) or (y = dy 3 dy 2 dy2 = 121cot p= 24. 2cot dx dy 2x=0 48. dx 12 cot x, When x = ⇡/4, y = 3,p so the equation of the 2 5 xx 2 x2d+ 2 2x2csc 2 When d y= 2x dp2x)x= d= d x8p 49. =dxp 4 x=⇡/4 1/2 =⇡7/2. =⇡.1, yWhen = 2, so = the equation of the tangent (sec2x), dx 47. dx sec (4x ) (4x = 8x (4x ), 8 sec (4⇡) = ⇡, y 10 = sin(5x) tan(4⇡) =2 0, so 2 = 5x cos(5x) (5x) 5 sin(5x) sin(5x) (5x) cos(2x) (2x) = 25xxcos(5x) cos(2x). dx 2 dx x=1 2 5 x dx dx x= ⇡ tangent line is y 3 = 24(x ⇡/4), or y = 24x + 3 + 6⇡. p p p dx dx dx dx dy equation 1 of the x tangent 7 dy8 3⇡(x d ⇡) = 8 ⇡x 8⇡. 2 3/2 the line dy d x1), p 50. line = (1 ( y is 2x), When 0, ysin(5x) = 0, so+the equation of the tangent is x( y 2sin(5x)) =2 (7/2)(x =y = x sin . x= 1.(sin 51. = (5x))+orcos(5x) x) =x =5x cos(5x) 2 sin x cos x = line is y = x. dx 2 2 dx2 x=0 1 x 22 2 p dx dx dx dy d dy 2 d 2 x 2 dy d y 2 2 2 52. dy = = 2x cos(3x (3xp ) = 6x (cos(3x 6x( sin(3x )) When (3x2 x )+ sin(3xof2 )the + 6tangent cos(3x2 ). 49. 5 3 )x+2d+ =dy 4 1/2 = 7/2. = 61,cos(3x y = 2, )so=the36x equation 2x), ), 2 2 = 5x 12 sin(5x) sin(2x), 2 12 cot3 xdy dx dx dx 48. = = cot xdxcos(5x) cot x5 = csc x, = 24. When x = ⇡/4, y = 3, so the equation of the dx dx dy 1 x x=1 2 x dy = p d x2 )3/2 ( 2x), dx (1 x=⇡/4 50. dx =ddx 1. When x= 0,sin(5x) y = 0,+socos(5x) the equation of the xtangent line is y = x. 7 3 2 = x( sin(5x)) 51. (5x) + cos(5x) 2 sin x (sin x) = 5x 2 sin x cos = 2 dx 2 dx ddxy is y 1line d xis (7/2)(x tangent y 3 d= (5x) 24(x ⇡/4), 3 + 6⇡. line 2 cos(5x) = 1), or5ysin(5x) = xor yx=0 .= dx24xd+(5x) 2 cos(2x). dy =(1 5xx) + (1dx + x) 2 2 d2 ycos(2x) (2x) = 25x3cos(5x) 10 sin(5x) 2sin(5x) dx 2 dx2 = dx dx 53. = = = 2(1 x) and = 2(2)( 1)(1 x) = 4(1 x) 3 . 5x sin(5x) + cos(5x) sin(2x), 2 2 2 dx (1 x) d x2 (1 x) dy dx dy d dy2 = x( p dy 1sin(5x)) dy2 sin 2x 51. (5x)2 + cos(5x) x) == 7/2. 5x sin(5x) cos(5x) x cosequation x= 2 x = (sin d y d d d 0,+x 3/2 p 49. = 2x 5 x + 4 1/2 = 1, yequation = 2,2 sin so of the ofline theistangent ( 2x), dsin(5x) y dx 50. dy (12 2✓ x◆ ) x25( sin(5x) 2x), = 1. When = yWhen the10 tangent y = x. dx 22 d◆ dx 2 0, d 2 so the 2 2 sin(5x) =p 5x cos(5x) (5x) (5x) = 25x cos(5x) ✓ ✓ 2 dx ◆ ✓sin(3x ◆xcos(2x) ✓= ◆(2x) dx2= dx x=1= 5 52. dx = cos(3x ) (3x ) = 6x cos(3x ), 6x( )) (3x ) + 6 cos(3x ) = 36x sin(3x2 ) +2 6cos(2x). cos(3x2 ). 2 x=0 1 2x 1 dx dx dx dx dy d 1 1 1 1 1 2 2 7 3 dx dx dx dx = 5x sin(5x) + cos(5x) sin(2x), 54. line = + tan = sec + tan , is xy sec2 = x(7/2)(x dx dx x1), or y = 2xx 2 2 . x x x 2 d y d d d dy d d y d dy =(1 5x x) d+2x) d ◆ (5x) d✓22cos(2x) ◆ ✓ ◆ 2 10 ✓sin(5x) ◆2 2 + 2 (2x) 2 cos(5x) 2 2◆ 2 ), 2 sin y ◆sin(5x) cos(5x) 51sin(5x) sin(5x) = cos(2x). 52. dy = x( cos(3x ) ✓(1 ==+ 6x✓ cos(3x =✓6x( sin(3x )1+◆cos(5x) 61)(1 cos(3x ) 2=✓ ). 3 1x 51. cos(5x) x) =2 )) 5x sin cos sin(3x x= d2 y2= 2sin(5x)) 1(3x d)(5x) 1=dx 1 (sin 1 dx d dx 2 25x 1 3 ). + 6 2cos(3x 2 2x x) 53. = 2(1 = (3x 2(2)( x) =36x 4(1 x) dx dx(5x) dx2 and 2 dx dx dx dx 2 2 2 dy 1 x dy = sec sec + sec + sec = sec tan . dx (1 x) (1 x) dx 2 3/2 2 2 3 p x 50. = ( 2x),x =x 1. When x x = 0,dx y = 0, line is y = x. dx = x (1dx x )sin(2x), x x so thex equationxof the tangent x 5x sin(5x) + cos(5x) dx 2 dx2 x=0 1 x) x✓2+ 2 dy d dy (1 (1 + 2 d y ✓ ◆ ✓ ✓ ◆ ✓ ◆ 2 d◆ 2x) 2 ◆d y 2 2 2 2 2 2 2 = 52. ddy ) 1 (3x ) ==6x cos(3x = ), 2(12 =x) sin(3x )) (3x1d ) +1)(1 6 cos(3x 36x sin(3x 53. x) )3== 4(1 x) 3 . ) + 6 cos(3x ). 126x(2d 2and y = cos(3x 3 (1 2 1dx2 =dx 2(2)( 2 2 dd cot13 ✓(1 2 1= dx dx dx dx x) x) 55. y = cot (⇡ ✓) = so dy/dx 3 cot ✓ csc ✓. 54. dy2 ==x sec tan , = 25x cos(5x) 10 sin(5x) 2 cos(2x). 5x cos(5x) d (5x) +5 tan sin(5x) = sin(5x)sec (5x) + cos(2x) (2x) dx = x( sin(5x)) x dx x + cos(5x) x 2 sin x xd dx x= 5x sin(5x) x + cos(5x) 2 sin x cos x = dx(5x) dx 51. dx (sin x) 2 ✓+✓◆ ✓ ◆ ✓ 2◆✓ ◆ ◆ ✓dx ◆ ✓ ◆d y✓ ◆✓ ◆✓ ◆ ✓ ◆ ✓ ◆ dx dx (1 2◆5x) 2✓ 2 dy 1 (1 d x) 1=1 2(1 1 2 = 1 ddy yau 1+ d 1= 1 1 2(2)( d 1 1)(1 2x) 3 2= 4(1 1 53. dy = x) 31. 2 2 1x)1 2 and + b 2secad 2 bc 22 22tand d d y 54. = x sec + tan = sec + , = sec + sec + sec = sec tan = 5x sin(5x) + cos(5x) sin(2x), dx (1 x) (1 x) dx 2 2 2 2 2 2. 2 56. 6dx2= cos(3x .x 6x cos(3x 52. )x + ))x (3x dx x),x2 2 = x 6x( x x ) x+ 6 cos(3x x(3x dx x x sin(3x dx x3 ) = x36x sin(3x x ) + 6 cos(3x ). 2) = cu + dx (cu d) dx dx dx dx 2 ✓ ◆ d✓ ◆ ✓ ◆ ✓ ✓◆d ◆ ✓ ◆ ✓ ◆ d y ✓ ✓◆1 ◆ dd ✓ ◆ ✓ 1 ◆ ✓ 1◆ d2 y = 5x 2 cos(5x) d 1 1 (2x) = 2 25x 1 1 sin(5x) 2 cos(2x). 5 sin(5x) 10 2 1 1 2 (5x) 2 cos(5x) dy 1 d (5x) 1sec 1 secsin(5x) 1 2 1cos(2x) 2 2 3 3 2 2 = sec + + sec = sec tan . dx dx 2 tan 54. ydy x sec =3 cotxsec , 55. =2= cot (⇡ ✓)(1 = +dx cot ✓+soxtan dy/dx ✓ dx csc ✓.d+ 2= 3 d (1 x) + x) 2 y dx x x dx x x dx x x x x 2 2 2 3 3 x b sin dx ⇡!] x= = 2⇡a x xx)⇡! + x sin ⇡! x ⇡! = 57. dx [a cos ⇡! sin 2⇡b cos ⇡(b a)(2 sin ⇡! cos ⇡!) 53. = cos ⇡! + = 2(1 and = 2(2)( 1)(1 x) = 4(1 x) . = ⇡(b a) sin 2⇡!. 2◆ ✓ ◆x)2 ✓2 ◆ ✓ ◆ ✓ ◆ ✓ ◆ dx (1 ✓x) (1 dx d! 2 ✓ ◆ 2 ✓ ◆ dy d d y d 5 1(3x 1 12 )) d (3x12 ) + 6 cos(3x 2 1 36x2 sin(3x 1 2d 3 21 2 216x( 2 sin(3x 2 = 2 22 ) = +3 (⇡ b2 2✓) bccot 52. yd =yau = cos(3x )ad= )= 6x cos(3x ),=sec ) + 6 cos(3x2 ). 55. cot 3 cot ✓ csc ✓.◆ + +✓sec ✓ dx ◆x dx ✓ ◆✓ soxdy/dx ✓ x◆ ✓ ◆x = x3 sec x tan x . 2 dx2 x 56. 6dx . sec dx2 2= x sec dx x dx 2 58. 2dycsccu(⇡/3 y) 1 cot(⇡/3 1 1 1 1 + d 2 (cu +dd) 1 y). 54. ✓ = x sec◆ + tan = sec2 + tan , 5 2 dx x dx x x x x x au + b ad bc dy (1 x) + (1 + x) 2 d y 3 3 2 2 2 55. cot (⇡ ✓) cot so dy/dx 3 cot ✓◆csc and ✓. ✓ ◆= 2(2)( 56. . =✓ ✓ 53. y6d2= = ✓= ◆ ◆ 2 ==2(1 ✓ x) ✓ ◆ 1)(1 x) ✓3 =◆4(1 ✓x)◆3 . 2d)22 2 22 (1(cux) cu + d + dx (1 x) dx d y 1 d 1 1 1 1 d 1 = ⇡(b 2 1 ⇡!) = ⇡(b a) sin 2⇡!. 57. [a cos ⇡! + b sin ⇡!] = 2⇡a cos ⇡!2 sin ⇡! + 2⇡b sin ⇡! cos ⇡! a)(21sin ⇡! cos sec sec + 2 sec + sec2 = 3 sec2 tan . d! = dx✓2 au + bx◆5 ✓ad◆ x bcdx x x x x dx x x x x ✓ ◆ ✓ ◆ ✓ ◆ ✓ ◆ d 56. 6dy 2 2 2 1 d22 . 1 1 ⇡! sin1⇡! +2 2⇡b 1 1 57. [a + bcot(⇡/3 2⇡a cos cu d ⇡!(cu +sin d) ⇡!] =y). 54. 2d! =cos x+3sec + tan = 2 sec 2 sin+⇡! tancos ⇡! ,= ⇡(b a)(2 sin ⇡! cos ⇡!) = ⇡(b a) sin 2⇡!. 58. csc (⇡/3 y) 3 dx x dx x x x x x 55. y = cot (⇡ ✓) = cot ✓ so dy/dx = 3 cot ✓ csc ✓. ✓ ◆ ✓ ◆ ✓ ◆ ✓ ◆ ✓ ◆ ✓ ◆ ✓ ◆ 2 2 dd✓ y (⇡/3 1 2d 1 1 1 1 d 1 2 1 1 22◆ y) cot(⇡/3 2 2 2 58. 2 csc y). 5sec+ b sin ⇡!] 57. [a=cos ⇡! cos ⇡!) = sec= 2⇡a+cos2⇡! secsin ⇡! ++2⇡b secsin ⇡! cos ⇡! = ⇡(b = 3 a)(2 sec sin ⇡!tan . ⇡(b a) sin 2⇡!. 2 au + b ad bc d! x x dx x x x x dx x x x x 56. 6dx . cu + d (cu + d)2 2 3 58. 2 csc (⇡/3 55. y = cot (⇡ y) ✓)cot(⇡/3 = cot3 ✓y). so dy/dx = 3 cot2 ✓ csc2 ✓. d 57. ✓[a cos2 ⇡! + b sin2 ⇡!] = 2⇡a cos ⇡! sin ⇡! + 2⇡b sin ⇡! cos ⇡! = ⇡(b a)(2 sin ⇡! cos ⇡!) = ⇡(b a) sin 2⇡!. d! au + b ◆5 ad bc 56. 6 . cu + d (cu + d)2 58. 2 csc2 (⇡/3 y) cot(⇡/3 y). 57. d [a cos2 ⇡! + b sin2 ⇡!] = d! 58. 2 csc2 (⇡/3 y) cot(⇡/3 y). 2⇡a cos ⇡! sin ⇡! + 2⇡b sin ⇡! cos ⇡! = ⇡(b a)(2 sin ⇡! cos ⇡!) = ⇡(b a) sin 2⇡!.
© Copyright 2026 Paperzz