Zs/^/KEϬ /E/d/>^&dz&dKZ^^^^DEd ZWKZd KddKD^,^dd>/E'Z :&&ZzEZ'zEdZ !"#$%&'$()*&" +% ΘsWZK:dEK͘ϭϵϮϳϮϴ Θs&/>EK͘ϰϭ͘ϬϰϬϯ 08/29/2016 WZWZ&KZ 9 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Table of Contents 1.0 ExecutiveSummary............................................................................................................................1‐1 1.1 SummaryofFindings..........................................................................................................................1‐1 2.0 BottomAshSettlingAreaCharacterization...............................................................................2‐1 2.1 LocationandGeneralDescription.................................................................................................2‐1 2.2 ImpoundmentDesign/ConstructionHistory...........................................................................2‐1 2.3 ImpoundmentModifications...........................................................................................................2‐1 2.4 CurrentImpoundmentDimensionsandCapacities..............................................................2‐1 2.5 ImpoundmentInstrumentation.....................................................................................................2‐2 2.6 ImpoundmentInspections...............................................................................................................2‐2 2.6.1 2009Black&VeatchInspection.................................................................................2‐2 2.6.2 2015Haley&AldrichAnnualInspection................................................................2‐2 2.6.3 2016Black&VeatchInspection.................................................................................2‐2 3.0 SubsurfaceCharacterization...........................................................................................................3‐1 3.1 PreviousInvestigations.....................................................................................................................3‐1 3.1.1 InitialGeotechnicalInvestigation...............................................................................3‐1 3.1.2 2009Investigation............................................................................................................3‐1 3.1.3 2014Survey........................................................................................................................3‐2 3.1.4 2015Inspection.................................................................................................................3‐2 3.1.5 2016MonitoringWells...................................................................................................3‐2 3.2 DataGapAnalysis................................................................................................................................3‐2 3.3 2016SupplementalInvestigation.................................................................................................3‐3 3.4 DesignSubsurfaceConditions........................................................................................................3‐4 3.5 DesignGroundwaterConditions...................................................................................................3‐6 4.0 SafetyFactorAssessment.................................................................................................................4‐1 4.1 SlopeStabilityAnalysis......................................................................................................................4‐2 4.1.1 Long‐TermMaximumStorageLoading...................................................................4‐2 4.1.2 MaximumSurchargeLoading......................................................................................4‐2 4.1.3 SeismicLoading.................................................................................................................4‐3 4.1.4 SoilLiquefaction................................................................................................................4‐3 5.0 References.............................................................................................................................................5‐1 AppendixA2016SupplementalInvestigation.......................................................................................A‐1 BLACK & VEATCH | Table of Contents i Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 LIST OF TABLES Table1‐1 Table3‐1 Table3‐2 Table4‐1 InitialSafetyFactorAssesmentResults......................................................................................1‐1 DataGapAnalysisMatrix..................................................................................................................3‐3 StabilityAnalysisparameters.........................................................................................................3‐6 CCRRuleSafetyFactorRequirements(§257.73(e)).............................................................4‐2 LIST OF FIGURES (LOCATED AFTER REPORT TEXT) Figure1‐1SafetyFactorAssessmentProcessOutline.........................................................................................F‐2 Figure2‐1SiteLocation....................................................................................................................................................F‐3 Figure2‐2SubsurfaceInvestigation............................................................................................................................F‐4 Figure4‐1SlopeStabilityResults–Long‐TermStabilityCase.........................................................................F‐5 Figure4‐2SlopeStabilityResults–MaximumSurchargeCase.......................................................................F‐6 Figure4‐3SlopeStabilityResults–SeismicCase..................................................................................................F‐7 BLACK & VEATCH | Table of Contents ii Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 1.0 Executive Summary ThisreportpresentsasummaryoftheinitialsafetyfactorassessmentfortheWestarJeffrey EnergyCenter(JEC)BottomAshSettlingAreanearStMarys,Kansas.Thisinitialsafetyfactor assessmentwascompletedincompliancewith40CFR§257.73(e)andincludescompilationofthe historyofconstructionandmodificationsincompliancewith40CFR§257.73(c),aswellasreview ofavailableinformationregardingtheimpoundmentaswellasavisualinspectionofthe impoundmentandappurtenantstructures.Theoverallstepsforthesafetyfactorassessmentare showninFigure1‐1. 1.1 SUMMARY OF FINDINGS TheinitialsafetyfactorassessmentfortheBottomAshSettlingAreabermconfirmsthatthe calculatedfactorsofsafetyequalorexceedtheminimumsafetyfactorsforrequiredbytheCCRRule (Table1‐1). TABLE1‐1 INITIALSAFETYFACTORASSESMENTRESULTS MINIMUMFACTOROF SAFETY(1) CALCULATEDFACTOROF SAFETY Long‐term‐maximumstoragepool 1.50 1.55 Maximumsurcharge 1.40 1.50 Seismicloading 1.00 2.82 SoilLiquefaction(2) 1.20 N/A(3) LOADINGCONDITION Notes: (1)CCRRuleSafetyFactorRequirements(§257.73(e). (2)Soilliquefactioncaseisonlyrequiredifsoilsareidentifiedashavingpotentialforliquefaction underseismicloading. (3)Soilsweredeterminedtobenon‐liquefiable. BLACK & VEATCH | Executive Summary 1‐1 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 2.0 Bottom Ash Settling Area Characterization 2.1 LOCATION AND GENERAL DESCRIPTION TheJECEnergyCenterBottomAshArea(BASA)islocatedinSt.Marys,Kansas,within PottawatomieCounty,innortheasternKansas(Figure2‐1).ThelatitudeandlongitudeoftheBASA centerisapproximately,39.286N,96.117W.TheBASAisavalleyfill,surfaceimpoundmentthat collectsbottomashfromthemainplant.ThebottomashisdeliveredtotheBASAasslurryvia multiplepipesattheeastend.Theheavierbottomashsettlesintheareanearthepipeoutlet,and isroutinelyremovedtoallowthewatertoflowintotheremainingportionoftheBASAwherethe suspendedbottomashisallowedtosettle.Anoutletpipenearthebermallowstheclearwaterto exitandflowtothenextpond(BottomAshPond)inthesystem.Bottomashisremovedfromthe BASA,dewatered,andusedattheplantsite. 2.2 IMPOUNDMENT DESIGN/CONSTRUCTION HISTORY InformationprovidedbyWestarEnergyfora2009BlackandVeatch(B&V)Inspectionand EngineeringEvaluationreportandthe2016AnnualInspectionReportpreparedbyHaleyand Aldrich,Inc.(H&A)fortheBASAindicatesthattheimpoundmentwasconstructedinthe1980’s initiallyasasmall,non‐engineeredstructure.Thebermwaslaterenlargedbyusingamixedfill consistingofflyashandbottomashspreadandcompactedin1to2footlifts.Compactiongenerally wasaccomplishedbyusingthedozersandscrapersthatwereusedtoplacethematerial.No constructionrecordswereprovidedaspartofthisassessment.Accordingtothe2009report,the BASAhasaninletinvertpipeelevationof1231.72feetandanoutletinvertelevationof1205.58 feet.Theoutletpipedischargestoanopenchannelthatcontinuestowardsthenextbottomash pond. NodesigndrawingswereprovidedbyWestarEnergy.Threeboringsweredrilledaspartof the2009inspectionandevaluationstudy(Figure2‐2).Allthreeboringsindicatethatthefly ash/bottomashmix(siltysand)restsincontactwithweatheredrockandbedrockshaleand limestone.Basedontheborings,thenativesoil(siltyclay)appearstohavebeenremovedpriorto buildingtheberm. 2.3 IMPOUNDMENT MODIFICATIONS The2016H&AAnnualInspectionReportindicatesthatin2012theBASAunderwenta verticalexpansionbeingraisedbyapproximately4feet.Thereportindicatedthatthebermwas raisedusingamixtureofflyashandbottomashcompactedin8inchthicklifts.BasedonB&V discussionwithfacilitystaff,therewasnoconstructiondocumentationoftheverticalexpansion. Duringthiswork,theinletinvertpipeelevationwasalsoraisedto1239.5feet. 2.4 CURRENT IMPOUNDMENT DIMENSIONS AND CAPACITIES Basedonthe2015H&AAnnualInspectionReport,thebermhasanominalcrestelevation of1,243feet.Elevationatthedownstreamtoeofthebermatthelowestpointisapproximately BLACK & VEATCH | Bottom Ash Settling Area Characterization 2‐1 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 1,198feetresultinginamaximumbermheightofapproximately45feet.Thebermis40feetwide atthecrestandapproximately1,500feetlong.Theimpoundmenthasafootprintofapproximately 52.5acresandhasadesigntotalcapacityof1,593,200cubicyards Althoughthebermisonecontinuousfeature,inplanviewitcanbeseparatedintoa“west berm”sectionthattrendsnorth‐southanda“northberm”sectionthattrendseast‐west.Thewest bermincreasesinelevationtoapproximately1245feetwhereitjoinstheexistinggrade.Thenorth bermincreasesinelevationto1250feetwhereitjoinstheexistinggrade. 2.5 IMPOUNDMENT INSTRUMENTATION Currently,noinstrumentationexistsinthebermattheBASA.Twopiezometerswere installedduringthe2009B&Vinvestigation;however,the2016H&AAnnualInspectionReport notedthatthepiezometerswerenon‐functioningandremovedshortlyaftertheinspection. 2.6 IMPOUNDMENT INSPECTIONS InaccordancewiththeCCRRules,avisualinspectionoftheBASAisperformedbyWestar EnergyInc.onanintervalnotexceedingsevendays.Thevisualinspectionincludesinspectionfor anysignsofpotentialstructuralweaknessorotherconditionsthathavethepotentialtodisruptthe operationorsafetyoftheimpoundment. Thefollowingpreviousinspectionswerealsoreviewedaspartofthisassessment. 2.6.1 2009 Black & Veatch Inspection Black&VeatchperformedavisualinspectionoftheBASAin2009aspartoftheengineering evaluation.Theinspectionindicatednosignsofinstability;however,severalareasoferosionwere noted. 2.6.2 2015 Haley & Aldrich Annual Inspection Haley&AldrichperformedanannualinspectionoftheBASA(BottomAshAreaI Impoundment)on8October2015.Accordingtothereport,theelevationofthepoolatthetimeof theinspectionwas1239.5feet.Basedontheirinspection,nosignsofinstabilityorunusual movementofthebermwasnoted.Haley&Aldrichdidnoteseveralareasofseepageanderosion alongthefaceoftheberm. 2.6.3 2016 Black & Veatch Inspection Aspartoftheinitialsafetyfactorassessment,Black&Veatchperformedavisualinspection oftheimpoundmenton29July2016.Theprimaryobjectiveoftheinspectionwastoobservethe bermslopeconditionsandidentifyanyissuesthatwouldaffectthestabilityoftheberm.Consistent withthe2015H&AAnnualInspection,Black&Veatchalsoobservedseveralareasofseepage evidencealongthedownstreamslopefaceoftheberm.Atthetimeoftheinspection, measurementsindicatedthattheseepagewasoccurringfairlyconsistentlyapproximately50feet fromthecrestedgeoftheslope. BLACK & VEATCH | Bottom Ash Settling Area Characterization 2‐2 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 3.0 Subsurface Characterization Theinitialstepinthesafetyfactorassessmentwastogatherandreviewtheexisting informationontheBASAtofullycharacterizethesubsurfaceconditionsoftheberm.Black& Veatchreviewedtheexistingsubsurfaceinvestigationsandanalysistodetermineifanydatagaps existed.Basedontheresultsofthedatagapanalysis,samplesofthe2012fillwerecollectedand tested.Theresultsofthedatacollectionanddatagapprocessaredescribedinthefollowing sections. 3.1 PREVIOUS INVESTIGATIONS 3.1.1 Initial Geotechnical Investigation ThesubsurfaceinvestigationfortheJeffreyEnergyCenterwasconductedin1974.Nosoil boringswereperformedintheimmediateareaoftheBASAaspartofthesubsurfaceinvestigation fortheplant,coalstoragearea,andrailroadspurs.Theclosestboringthatwaspartoftheinitial investigationislocatedontheoppositesideofthenorth‐southrailroadspureastoftheBASA. Theexistingbermandimpoundmentdevelopedfromasmallnon‐engineered impoundmentthatwascollectingbottomash.Itappearsthatnoboringswereperformedaspartof thedesignanddevelopmentoftheearlyimpoundment. 3.1.2 2009 Investigation In2009,Black&VeatchwascontractedtoperformaninspectionandevaluationoftheBASAberm atJeffreyEnergyCenter.Thestudyincluded: Sitemonitoringandinspectionoftheberm Surveytheberm Geotechnicalinvestigation Slopestabilityanalysisoftheberm Reportofresults Thegeotechnicalinvestigationincludedthreeboringsalongthecrestoftheberm(Figure2‐ 2).Thedepthsoftheboringsvariedfrom31feetto61feet,andeachboringcoredatleast10feet ofbedrock.SamplingincludedStandardPenetrationTests(SPT),Thin‐walledsamples(Shelby Tubes),bulksamples,androckcores.Laboratorytestingincludessoilmoisture,drydensity, Atterberglimits,grainsizeanalysis,unconfinedcompressivestrength,anddirectsheartesting.A standardProctortestwasperformedontheflyash/bottomashmaterial. Theboringlogsindicatethatthebermischaracterizedasverydensesiltysandthatisgray, brown,reddishorange,ortan,finegrained,andcontainsatracetosomegravel.Layerswithatrace ofcementationwerealsoobserved.Thesiltysandoverliesbedrockcomposedofgrayishgreen shaleortantoorangelimestone.Theshalerangesfromhighlyweathered(canbebrokenbyhand, BLACK & VEATCH | Subsurface Characterization 3‐1 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 textureindistinct,andfabricintact)toresidualsoil(advancedstateofdecompositionresultingin plasticsoil).LimestonewasencounteredatthebaseoftheberminboringB‐3andwasdescribed asmoderatelyweathered(discolorationthroughout,slightlossofstrength,andtextureintact). TwopiezometerswereinstalledatsoilboringsB‐1andB‐3aspartofthe2009geotechnical investigation(Figure2‐2).ThepiezometeratB‐1(B‐1A)wasinstalledwiththescreenedinterval fromadepthof19feetto29feet,whichwouldbeatthebaseoftheberm.ThepiezometeratB‐3 (B‐3B)wasinstalledwithascreenedintervalfrom12.5feetto22.5feet,whichisalsoatthebaseof theberm.Ameasurementofgroundwaterduringdrillingwasatadepthof28.5feet.Thisvalue shouldbeconsideredsuspectbecauseitwasbelowthebaseoftheberm.Twoothervalueswere reportedonthepiezometerconstructionlogs;however,thedateofmeasurementisnotconsistent withthepiezometerlogs.ThemeasuredwaterdepthsatB‐1AandB‐3Bwere19.1feet(elevation 1225.9feet)and12.1feet(elevation1226.9feet),respectively.Bothofthesedepthswouldplace thegroundwatersurfacewithintheberm. 3.1.3 2014 Survey Asdocumentedinthe2016AnnualInspectionReport,acombinationtopographicand bathymetricsurveywascompletedbyProfessionEngineeringConsultantsin2014. 3.1.4 2015 Inspection The2015AnnualInspectionbyHaleyandAldrichdidnotincludesoilboringsormaterial testing. 3.1.5 2016 Monitoring Wells InMarch2016Haley&Aldrichinstalledatotalofsixmonitoringwellsaroundtheareaof theBASAberm.ThelocationsofthesesixboringsareshownonFigure2‐2. 3.2 DATA GAP ANALYSIS Black&Veatchcompletedadatagapanalysisoftheexistingavailableinformationto identifyiftherewereanddatagapsthatwouldneedtobefilledpriortocompletingtheboththe factorofsafetyandliquefactionanalysis.Table3‐1presentsamatrixthatpresentstheresultsof thedatagapanalysis. BLACK & VEATCH | Subsurface Characterization 3‐2 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 TABLE3‐1 DATAGAPANALYSISMATRIX REQUIRED DATA QUALITATIVE EFFECTON ANALYSIS INFORMATIONSOURCE QUALITYOF DATA DATAGAP SlopeGeometry High Topographic/Bathymetric surveyin2014 High No MaterialUnit Weight Medium 2009B&VReport High Yes,no informationon 2012fill MaterialStrength High 2009B&VReport Medium Yes,no informationon 2012fill Groundwater Conditions withinSlope Medium Seepageobservations from2015and2016 Inspections Low(no piezometer measurementsin dike) No SeismicLoading Low(minimal seismicloadingin thisarea) USGSSeismicHazardMap High No RequiredDesign Margins High CCRRules High No Basedonthedatagapanalysis,Black&Veatchdeterminedthatthelackofinformationon thematerialpropertiesofthe2012fillmaterialwasadatagap.Basedondiscussionswithplant staff,thematerialusedwasacombinationofflyashandbottomashthatwasconsistentwiththe materialusedinthepreviousbermraises;however,therewasnodocumentationofthefill placement.Inordertofilltheinformationgap,asupplementalinvestigationwasconductedon 2016andisdiscussedinthefollowingsection. 3.3 2016 SUPPLEMENTAL INVESTIGATION AsindicatedinTable3‐1,thelackofinformationregardingthematerialusedforthe2012 dammodificationswasidentifiedasadatagap.Sincetheamountoffillplacedduringthe modificationwasgenerallylessthan3feet,shallowtestpitswereusedtoobtainsamplesofthefill material. BLACK & VEATCH | Subsurface Characterization 3‐3 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 ThesitewasvisitedbyBlack&Veatchon8July2016,andatthattime,threebulksamples werecollectedofthefillmaterialasshownonFigure2‐2.Photosofthethreetestpitsareincluded inAppendixA. Sampleswerecollectedinfivegallonbucketswithasmallsubsamplecollectedinasealed plasticbagtopreservethenaturalsoilmoisturecontent.Black&VeatchsubcontractedTerraconof Lenexa,Kansastoperformthelaboratorytestingonthesamplesincludinggrain‐sizeanalysis, standardProctortesting,anddirectsheartesting.Black&Veatchtransportedthebulksampleto theTerraconlaboratoryaswellasassignedlaboratorytestingrequirement.Theresultsofthe laboratorytestsareincludedinAppendixA. Thethreetestpitsindicatedthatthefillgenerallyconsistedofgrayishbrown,siltysand withgravelthatwascemented.Drycrushstrengthoftheintactmaterialsuggestedahard consistency.Sincethismaterialwasreportedtobeamixtureofflyashandbottomash,the cementationislikelytheresultoftheself‐cementingpropertiesoftheflyash.Comparedtothe bermmaterialfromthe2009investigation,thenearsurfacematerialwithinthebermwasgenerally coarserandhadlessfinesthanthedeeperoriginalbermmaterial.Thedirectsheartestresults showedaslightlylowerstrength,bothfrictionandcohesion,comparedtothedeeperoriginalberm material.Itshouldbenotedthatthedirectsheartestswereperformedonrecompactedsamples andthesampleswerenotallowedtocure;thereforethecementationobservedinthesoilsfromthe testpitswasnotconsideredinthetest.Basedontheobservationofcementationinthetestpits comparedtothelowcohesioninterceptofthetestresults,thesetestresultsareconsidered conservativeasthein‐situbermmaterialisexpectedistoshowahighercohesioninterceptdueto thecementation. 3.4 DESIGN SUBSURFACE CONDITIONS Thedesignsubsurfaceconditionsforthefactorofsafetyassessmentweredevelopedbased onreviewofthepreviousinvestigationsandsupplementalinvestigation.The2016Haley&Aldrich boringswereadvancedalongthetoeoftheimpoundment.Reviewofthefourborings(MW‐BAA‐1, 2,3,and4)indicatedthatthetoeoftheimpoundmentgenerallyconsistedofzeroto7feetof overburden/clayeysandfollowedbylimestoneandshalebedrock.Whilenogeotechnical laboratorytestingwasprovidedfortheseborings,thesoillayeringwasusedtodevelopthecritical slopestabilitysection. Thethreeboringsfromthe2009Black&VeatchReportweredrilledalongthecenteraxisof theberm(Figure2‐2).Allthreeboringsindicatedthatthebermfillconsistedofflyash/bottomash mixthatclassifiedassiltysand.Thematerialwithinthebermwasdescribedasverydense,tan, brownandgray,silty,finegrainedsandwithatraceofgravel.Designsoilpropertiesforthislayer weredeterminedbasedonaveragevaluesfromlaboratorytesting,andarelistedinTable3‐2. Thethreetestspitsthatwerecompletedaspartofthe2016supplementalinvestigation indicatedthatthematerialusedtoraisethebermin2012wasslightlycoarserthantheoriginal bermfillandhadaslightlylowerstrength.Designsoilpropertiesofthismaterialweredetermined basedonthedirectsheartestresultsandarelistedinTable3‐2. BLACK & VEATCH | Subsurface Characterization 3‐4 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Basedonthe2014topographicandbathymetricsurvey,upstreamoftheberminthe impoundment,bottomashappearstohavesettledfromtheslurrywaterandhascollectedalong thebottomoftheimpoundmentandupstreamtoeoftheberm.Nosamplesofthismaterialwere collectedduringthe2009B&Vstudy.Thismaterialwasconsideredtohavenostrengthonlyaunit weight.Sincethismaterialisontheupstreamportionoftheberm,thematerialdoesnotaffectthe stabilityoftheberm. Thebermfillrestsdirectlyonaweatheredbedrockprofilecomposedofshaleand limestone.Basedonthethree2009borings,thetopoftheprofileisagrayishgreenshalethatis weatheredtoresidualsoil.Thematerialpropertiesfortheweatheredshaleweredevelopedbased ontheresultsfromthe2009B&Vreport.Drainedoreffectivestressstrengthparameterswere developedbasedonpublishedcorrelations.Thedesignvaluesfortheweatheredshaleare presentedinTable3‐2. Belowtheweatheredshale,thebedrockiscomposedofshaleandlimestone.Unconfined compressiontestingindicatedthestrengthoftheintactrockvariedbetweenapproximately400 and9,000poundspersquareinch.ThedesignpropertieslistedinTable3‐2werebasedonthe loweststrengthandaverageunitweightsfromthelaboratorytesting. BLACK & VEATCH | Subsurface Characterization 3‐5 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 TABLE3‐2 STABILITYANALYSISPARAMETERS LAYER BERMMATERIAL UPPER LOWER TotalUnitWeight 125 125 BOTTOM ASH WEATHERED SHALE BEDROCK 115 125 140 TotalStress(Undrained)Parameters Cohesion(c)(psf) 330 1300 0 2000 30,000 AngleofInternalFriction() (degrees) 33 38 0 0 0 EffectiveStress(Drained)Parameters Cohesion(c’)(psf) 330 1300 0 0 30,000 AngleofInternalFriction(’) (degrees) 33 38 0 28 0 3.5 DESIGN GROUNDWATER CONDITIONS Nolongtermfieldmeasurementsoftheporepressureshavebeencollectedwithinthe berm.Forthestaticandseismicanalysis,itwasassumedthatthewaterelevationontheupstream sidewouldbeattheelevationoftheoutletinvert(1239.5feet).Waterlevelmeasurementswere notedonthepiezometerlogsfromthe2009Investigation.ThewaterdepthsatB‐1andB‐2were reportedat19.1feetdeep(elevation1225.9feet)and12.1feet(elevation1226.9feet),respectively withanaveragevalueofelevation1226.4feet.Thesetwomeasurementsweremadewiththepool elevationlowerthancurrent;therefore,anadjustmentwasmadebasedonthechangeinthe normalpoolelevationbetweenthe2009and2015Reports.Accordingtothetworeports,the outletinvertpipeelevationwasraisedfrom1231.72to1239.5feet;therefore,theaveragephreatic surface(upperboundaryofthewatersaturatedzone)atthecenterlineofthebermwasincreased 7.8feettoelevation1234.2feet. Basedontheobservationofseepageinthe2015and2016inspections,thephreaticsurface withintheslopewasshowntointerceptthedownstreamfaceoftheberm.Accordingtothe2016 B&Vinspection,theseepagewasoccurringapproximately50feetdownslopefromthebermcrest whichwasapproximatelyelevation1222feet.Groundwaterelevationsmeasuredatthemonitoring wellslocatedalongthewesterntoeoftheberminApril2016indicatedthegroundwaterelevation wasapproximately1211to1212feet.Thesegroundwaterelevationsarehigherthanthelowest surfaceelevationatthebermstoe;therefore,thephreaticsurfaceatthetoeofthebermwas modelledatthesurface. BLACK & VEATCH | Subsurface Characterization 3‐6 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Forthemaximumsurchargeanalysis,thewaterelevationontheupstreamsidewas increasedtothesameelevationasthetopoftheberm.Thephreaticsurfaceinthebermwasalso increasedthesameamount. BLACK & VEATCH | Subsurface Characterization 3‐7 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 4.0 Safety Factor Assessment InaccordancewiththeCCRRule§257.73(e),initialandperiodicsafetyfactorassessments arerequiredforCCRimpoundments. Theassessmentsaretobeperformedforthecrosssectionoftheembankmentthatis anticipatedtobethemostsusceptibletostructuralfailure.Black&Veatchidentifiedthecritical crosssectionbasedonengineeringjudgment,theembankmentgeometry,loadingconditions, anticipatedphreaticwaterlevelswithintheembankmentcross‐sectionaswellasexpected subsurfacesoilconditions.Usingthe2014topographicandbathymetricsurveydata,Black& Veatchanalyzedthreesurfaceprofilesthroughthebermtoidentifythecriticalsection(Section1) shownon(Figure4‐1).Overall,thecrestelevationandupstreamanddownstreambermslopes wereconsistent;therefore,thecriticalprofilewasidentifiedbasedonthelowesttoeelevation, whichcorrespondedtothehighestberm. Formodelingthesoilandrocklayerswithinthemodel,thebaseofthebermwas determinedbyconnectingastraightlinefromthedownstreamtoeofthebermthroughthebottom ofthefillinboringB‐2totheintersectionwiththegroundsurfaceupstreamoftheberm.The upstreamslopeofthebermwasextendedtothelineformingthebaseoftheberm.Inthecross sectionthebermconsistsofthedownstreamslope,crest,upstreamslopeandbaseoftheberm betweentheupstreamanddownstreamslopes.Theextensionofthebaseofthebermandthe groundsurfaceupstreamofandadjacenttothebermformsasmallareathatisassumedtobefilled withbottomashthathassettledfromtheslurry.Theboringlogsalongthecenterlineoftheberm indicatethattheupperportionofbedrockisweatheredshalethatisweatheredtoresidualsoil.At thecenterline,a10‐footthicklayerofresidualshalewasmodelledbelowthebaseoftheberm.At thedownstreamtoe,thethicknessoftheweatheredshalewasreducedbasedontheobserved thicknessofsoilinthe2016monitoringwelllogs.Thephreaticsurfacewithinthebermforboth long‐termmaximumpoolandmaximumsurchargecaseswasmodelledasdescribedinSubsection 3.5. TheCCRRulerequiresthecriticalsectiontobeanalyzedunderthefourloadingcondition listedinTable4‐1.Eachoftheseloadingconditionsaswellastheresultsarediscussedfurtherin Section4.2. BLACK & VEATCH | Safety Factor Assessment 4‐1 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 TABLE4‐1 CCRRULESAFETYFACTORREQUIREMENTS(§257.73(E)) LOADINGCONDITION MINIMUMFACTOROFSAFETY Long‐term‐maximumstoragepool 1.50 Maximumsurcharge 1.40 Seismicloading 1.00 SoilLiquefaction* 1.20 Note:Soilliquefactioncaseisonlyrequiredifsoilsareidentifiedashaving potentialforliquefactionunderseismicloading. 4.1 SLOPE STABILITY ANALYSIS Black&VeatchperformedtheslopestabilityanalysisusingtheSLOPE/Wcomputer programthatispartoftheGeoStudio2012analysissoftware.TheSLOPE/Wprogramisalimit equilibriummethodthatallowsforcomplexsoillayeringandhasthecapabilityofperforming optimizationoftheslipsurface. 4.1.1 Long‐Term Maximum Storage Loading Thelongtermmaximumstorageloadingconditionrepresentstheconditionwiththepoolat normaloperatingconditionundersteady‐stateseepageconditions.Theminimumfactorofsafety determinedfortheLong‐termMaximumStorageanalysisis1.55,whichisgreaterthantherequired factorofsafetylistedinTable4‐1(Figure4‐1). 4.1.2 Maximum Surcharge Loading AccordingtotheCCRRulePreamblePartVI(E)(3)(b)(ii)(c),themaximumsurchargepool loadingconditionismeanttoensurethattheimpoundmentcanwithstandatemporaryriseinthe poolelevation.Thebermhasanoutletinvertpipeelevationof1239.5feet.Additionally,aculvert alongthenorthedgeofthebermallowswatertoexittheimpoundmentpriortothebermover topping.Ifthesesystemsarebothunserviceable,thenthelowelevationalongthetopoftheberm willcontrolthewaterelevation,whichis1242feet.Thiswaterelevationwillbeusedtocompute themaximumsurchargeloading.TheCCRrulePreamblenotesthatthisloadingconditionshould considertheconditiontooccurlongenoughforsteady‐stateseepageconditionstooccurwithinthe embankment;thereforedrained,oreffectivestresssoilpropertieswereusedforthiscase.The resultsforthiscaseindicatedaminimumfactorofsafetyof1.50,whichisgreaterthantherequired factorofsafetylistedinTable4‐1(Figure4‐2). Inadditiontothemaximumsurchargepoolloadingcase,theCCRRulePreamblePartVI (E)(3)(b)(i)alsoaddressesthepotentialfortherapidorsuddendrawdowncase.Theruleclearly statesthattheconventionalrapiddrawdowncaseasistypicalforadamstructureisnotapplicable BLACK & VEATCH | Safety Factor Assessment 4‐2 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 toCCRimpoundments,becauseatnopointwouldaCCRimpoundmentbedrawndownlikeadam. However,asecondconsiderationforthiscaseisdiscussedspecificallyforimpoundmentsadjacent toabodyofwater.Theintentofthiscaseisthattheadjacentbodyofwaterexperiencesaflood conditionandtheexterioroftheCCRimpoundmentisinundatedbytheadjacentbodyofwater. Whilethisconditionpresentsastabilizingforceontheexterioroftheimpoundment,whenthe adjacentbodyofwaterreturnstonormalconditions,itmayoccurrapidlyenoughthattheexterior slopescouldremaininasaturatedcondition.ThisloadingscenarioisnotpossibleattheBASAdue totheCCRimpoundmentnotbeingadjacenttostreams,pondsorreservoirsthatcanrisetothe pointthatthedownstreamslopeofthebermisinundated.Therefore,noadditionalcasewas analyzed. 4.1.3 Seismic Loading Inadditiontoslopestabilityanalysesfortheembankmentsundertheprescribedstatic loadingconditions,slopestabilityanalyseswerealsoperformedforseismicloadingconditionsas prescribedintheCCRRule(§257.73(e)). AsdiscussedintheCCRRulePreamblePartIII(D)(3)(b)(2)theseismicstabilityanalysis wascompletedbasedonthemethodologiesdescribedinthe2009MineSafetyandHealth Administration(MSHA)EngineeringandDesignManualforCoalRefuseDisposalFacilities. FollowingtheMSHA’sguidance,asimplifiedpseudo‐staticprocedurewasapplicablesincethe impoundmentisnotwithinaseismicimpactzoneandtheembankmentandfoundationdidnot containmaterialthatwassusceptibletosignificantstrengthlossduringthedesignseismicevent. Thepseudo‐staticmethodconsidersthepotentialinertialforcesduetogroundaccelerationsduring anearthquakebytheinclusionofastatichorizontalforceinthelimitequilibriumanalyses.The statichorizontalforceisdeterminedbasedontheweightoftheslidingmassandthehorizontal seismiccoefficient(kh)whichistakenasone‐halfofthePGAatthebedrockperHynes‐Griffin& Franklin(1984). InaccordancewiththeCCRrule,thePGAvaluewasdeterminedbasedonanearthquake eventwitha2%probabilityofexceedancein50yearswhichisequivalenttoareturnperiodof approximately2,475years.TheearthquakeconditionsweredeterminedbasedontheU.S. GeologicalSurvey(USGS)NationalSeismicHazardMapswhichindicatedPGAof0.084atthe bedrock.Akhvalueof½*0.084or0.042wasusedtosimulatethehorizontalearthquakeloading usingpseudo‐staticmethodsinthelimitequilibriumslopestabilityanalysesfortheseismicloading condition.Theresultsforthiscaseindicatedaminimumfactorofsafetyof2.82,whichisgreater thantherequiredfactorofsafetylistedinTable4‐1(Figure4‐3). 4.1.4 Soil Liquefaction BasedontheCCRRule,257.73,soilliquefactionanalysisoftheembankmentandfoundation soilswereevaluatedtodetermineifthesoilsaresusceptibletoliquefactionunderthedesign earthquake.Liquefactionofsoilstypicallyoccursinloose,saturatedorpartiallysaturatedsoilsthat undergoalossofstrengthduetothegenerationofporepressuresduringaseismicevent. BLACK & VEATCH | Safety Factor Assessment 4‐3 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Basedontheboringsfromthe2009B&Vinspectionandevaluationreport,thematerials includedflyash/bottomashfill,weatheredbedrock,andbedrockcomposedofshaleand limestone.Thebottomash/flyashfillwascompactedin1to2footliftsduringbermconstruction. ThismaterialisverydensesiltysandwithN‐valuesgreaterthan50.Thus,thebermisnot susceptibletoliquefaction.Thebermsitsonweatheredshaleandlimestonethatisnotconsidered susceptibletoliquefaction. BLACK & VEATCH | Safety Factor Assessment 4‐4 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 5.0 References Black & Veatch (2009) Bottom Ash Settling Berm Inspection and Engineering Evaluation Report, December 2009. Haley & Aldrich (2016), report on Initial Annual CCR Surface Impoundment PE Inspection Bottom Ash Area 1 Impoundment, File number 41938.006, January 2016. Hynes‐Griffin, Mary E. and Franklin Arley G., (1984), Rationalizing the Seismic Coefficient Method, Department of the Navy, Miscellaneous Paper GL‐84‐13, July 1984. U.S. Environmental Protection Agency (2015), Hazardous Solid Waste Management System; Disposal of Coal Combustion Residuals From Electric Utilities; Federal Register Volume 80, No. 74 40CFR Parts 257 and 261, April 17, 2015., BLACK & VEATCH | References 5‐1 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Figures BLACK & VEATCH | Figures F‐1 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 STEP1: STEP2: STEP3: DataGathering Analysis Report Kick‐off Meeting Collection/ Review of Existing information Data gap analysis Data gathering Design Soil Properties Identify Critical Section Slope Stability Evaluate analysis results against CCR Rule Prepare summary report Analysis Soil Liquefaction Analysis and analysis Figure 1‐1 Safety Factor Assessment Process Outline BLACK & VEATCH | Figures F‐2 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Westar Energy JEFFREY ENERGY CENTER BOTTOM ASH SETTLING AREA St. Marys, Kansas Site Location Map Legend _ ^ _ ^ _ ^ Bottom Ash Settling Area Site Location Jeffrey Energy Center / _ ^ ces: Esri, HERE, orme, USGS, Intermap, 0 1.75 3.5 7 Miles 0 365 730 1,460 2,190 2,920 Feet FIGURE 2-1 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community File: \\na\data\energy\dept\geo\data\Services\PowerGeneration\192728 - JEC Bottom Ash Ponds\GIS Files\Figure 2-1.mxd Printed on: Thursday, August 25, 2016 Figure 2‐1 Site Location BLACK & VEATCH | Figures F‐3 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Westar Energy JEFFREY ENERGY CENTER BOTTOM ASH SETTLING AREA St. Marys, Kansas Subsurface Investigation @ A BVS-03 MW-BAA-1 Legend Previous Soil @ Boring A ! > BVS-02 2016 Bulk ! > B-3 @ MW-BAA-2 A @ A ! > Sample | BVS-01 ! > B-2 @ A | Section 1 | | / B-1 @ A MW-BAA-3 @ A @ A @ A MW-BAA-6 MW-BAA-4 _ ^ ces: Esri, HERE, orme, USGS, Intermap, 0 1.75 3.5 7 Miles @ A 0 90 180 360 540 720 900 1,080 1,260 Feet MW-BAA-5 FIGURE 2-2 Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community File: \\na\data\energy\dept\geo\data\Services\PowerGeneration\192728 - JEC Bottom Ash Ponds\GIS Files\Figure 2-2.mxd Printed on: Thursday, August 25, 2016 Figure 2‐2 Subsurface Investigation BLACK & VEATCH | Figures F‐4 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Figure 4‐1 Slope Stability Results – Long‐Term Stability Case BLACK & VEATCH | Figures F‐5 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Figure 4‐2 Slope Stability Results – Maximum Surcharge Case BLACK & VEATCH | Figures F‐6 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Figure 4‐3 Slope Stability Results – Seismic Case BLACK & VEATCH | Figures F‐7 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Appendix A 2016 Supplemental Investigation BLACK & VEATCH | Appendix A A‐1 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Figure A‐1 Photo of BVS‐01 Test Pit BLACK & VEATCH | 2016 Supplemental Investigation A‐2 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Figure A‐2 Photo of BVS‐02 Test Pit BLACK & VEATCH | 2016 Supplemental Investigation A‐3 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 Figure A‐3 Photo of BVS‐03 Test Pit BLACK & VEATCH | 2016 Supplemental Investigation A‐4 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT BLACK & VEATCH | 2016 Supplemental Investigation REVISION 0 A‐5 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT BLACK & VEATCH | 2016 Supplemental Investigation REVISION 0 A‐6 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 BLACK & VEATCH | 2016 Supplemental Investigation A‐7 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 BLACK & VEATCH | 2016 Supplemental Investigation A‐8 Westar Energy, Inc. | INITIAL SAFETY FACTOR ASSESSMENT REPORT REVISION 0 BLACK & VEATCH | 2016 Supplemental Investigation A‐9
© Copyright 2025 Paperzz