Practice 8-5B Worksheet

Name
LESSON
8-5
Date
Class
Practice B
Factoring Special Products
Determine whether each trinomial is a perfect square. If so, factor it.
If not, explain why.
1.
2
x 6x 9
yes; x ⫹ 3 2
2.
4x 2 20x 25
yes; 2x ⫹ 5 2
3.
36x 2 24x 16
no; 24x ⫽ 2 6x ⭈ 4 4.
9x 2 12x 4
yes; 3x ⫺ 2 2
5.
A rectangular fountain in the center of a shopping mall
2
2
has an area of (4x 12x 9) ft . The dimensions of the
fountain are of the form cx d, where c and d are whole
numbers. Find an expression for the perimeter of the
fountain. Find the perimeter when x 2 ft.
4 2x ⫹ 3 ft; 28 ft
Determine whether each binomial is the difference of two squares. If
so, factor it. If not, explain why.
6.
2
x 16
yes; x ⫹ 4 x ⫺ 4 7.
9b 4 200
no; 200 is not a perfect square.
8.
1 m6
yes; 1 ⫹ m 3 1 ⫺ m 3 9.
36s 2 4t 2
yes; 6s ⫹ 2t 6s ⫺ 2t 10. x 2y 2 196
no; the operation between the two squares is addition.
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a107c08-5_pr.indd 36
36
Holt Algebra 1
12/26/05 8:07:17 AM
Process Black
*À>V̈ViÊ
&ACTORING3PECIAL0RODUCTS
--"
n‡x
n‡x
&ACTOREACHPERFECTSQUARETRINOMIALBYFILLINGINTHEBLANKS
X X
SXDSX
*À>V̈ViÊ
&ACTORING3PECIAL0RODUCTS
--"
x
DS
X
$ETERMINEWHETHEREACHTRINOMIALISAPERFECTSQUARE)FSOFACTORIT
)FNOTEXPLAINWHY
x
D XX
ÞiÃÆÊÊÊTXÊÊÎÊEÊÓÊ
X XSX D X X
ÎX
X
Ó
SX
X £
DS ÎX DS ÎX £
X X
D ÞiÃÆÊÊÊTÓXÊÊxÊEÊÓÊ
XX
£
˜œÆÊÓ{XÊqÊÓÊÊTÈXÊ Ê{ÊEÊ
&ACTOREACHPERFECTSQUARETRINOMIAL
ÊTXÊʙÊEÊÓÊ
X X
ÊTÈXÊÊÓÊEÊÓÊ
XX
XX
ÞiÃÆÊÊÊTÎXÊÊÓÊEÊÓÊ
!RECTANGULARFOUNTAININTHECENTEROFASHOPPINGMALL
HASANAREAOFX XFT 4HEDIMENSIONSOFTHE
FOUNTAINAREOFTHEFORMCXDWHERECANDDAREWHOLE
NUMBERS&INDANEXPRESSIONFORTHEPERIMETEROFTHE
FOUNTAIN&INDTHEPERIMETERWHENXFT
#OMPLETETHEFOLLOWINGSENTENCES
XXISNOTAPERFECTSQUARETRINOMIALBECAUSE
ÈʈÃʘœÌÊ>Ê«iÀviVÌÊõÕ>Ài°
XXISNOTAPERFECTSQUARETRINOMIALBECAUSE
£ÓXÊqÊÓ­ÓXÊ ÊÈ®°
A &INDANEXPRESSIONFORTHESIDELENGTHOFTHETILE
B &INDANEXPRESSIONFORTHEPERIMETEROFTHETILE
C &INDTHEPERIMETERWHENXIN
$ETERMINEWHETHEREACHBINOMIALISTHEDIFFERENCEOFTWOSQUARES)F
SOFACTORIT)FNOTEXPLAINWHY
XÊÊ{ʈ˜°
{ÊÊTXÊÊ{ÊEʈ˜°
{nʈ˜°
X
T Î
DSX
Î
P S ÓP D
TTÊÎÊÊ£ÓÊEÊTÊTÊÎÊÊ£ÓÊEÊ
X Y Ç
DS ÓP ÞiÃÆÊÊÊTXÊÊ{ÊEÊTXÊÊ{ÊEÊ
B
&ACTOREACHBINOMIALINTOTHEDIFFERENCEOFTWOSQUARES
X SX
{ÊÊTÓXÊÊÎÊEÊvÌÆÊÓnÊvÌ
!SQUAREFLOORTILEHASANAREAOFSXXDIN4HESIDELENGTH
OFTHETILEISOFTHEFORMCXDWHERECANDDAREWHOLENUMBERS
Ç
D
ÊTÊ{XÊxÊÊYET{ÊXÊxÊÊYE
˜œÆÊÓääʈÃʘœÌÊ>Ê«iÀviVÌÊõÕ>Ài°
M ÞiÃÆÊÊÊT£ÊÊÊMÊÎÊEÊT£ÊÊÊMÎÊEÊ
S T #OMPLETETHEFOLLOWINGSENTENCES
X Y ÓäʈÃʘœÌÊ>Ê«iÀviVÌÊõÕ>Ài°
ÞiÃÆÊÊÊTÈSÊÊÓTETÈSÊÊÓTE
NISNOTADIFFERENCEOFSQUARESBECAUSE
˜œÆÊ̅iʜ«iÀ>̈œ˜ÊLiÌÜii˜Ê̅iÊÌܜÊõÕ>ÀiÃʈÃÊ>``ˆÌˆœ˜°
MISNOTADIFFERENCEOFSQUARESBECAUSE
̅iʜ«iÀ>̈œ˜ÊLiÌÜii˜Ê̅iÊÌܜÊõÕ>ÀiÃʈÃÊ>``ˆÌˆœ˜°
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
œÌʏ}iLÀ>Ê£
*À>V̈ViÊ
&ACTORING3PECIAL0RODUCTS
--"
n‡x
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
,iÌi>V…
&ACTORING3PECIAL0RODUCTS
,%33/.
n‡x
$ETERMINEWHETHEREACHTRINOMIALISAPERFECTSQUARE)FSOFACTORIT
)FNOTEXPLAINWHY
)FAPOLYNOMIALISAPERFECTSQUARETRINOMIALTHEPOLYNOMIALCANBEFACTOREDUSINGAPATTERN
a 2 2ab b 2 Sa b D2
X X
a 2 2ab b 2 Sa b D2
EÓ
ÞiÃÆÊÊÊT{XÊÊ™Ê Ê Ê
$ETERMINEWHETHERXXISAPERFECTSQUARETRINOMIAL)FSOFACTORIT
)FNOTEXPLAINWHY
XX
3TEP&INDABTHENAB
˜œÆÊ̅iʏ>ÃÌÊÌiÀ“Ê“ÕÃÌÊLiÊ«œÃˆÌˆÛi°
^
Aq4x 2 2x
XX
^
Bq25 5 ÞiÃÆÊÊÊTXÊÊ£ÊEÊÓÊ
SXD
3TEP&INDABTHENAB
^
Aq9x 2 3x
^
Bq36 6 ÞiÃÆÊÊÊTÎYÊÊ££ÊEÊTÎYÊÊ££ÊEÊ
A
X
B
AB
X
&ACTOROREXPLAIN
D ˜œÆÊÊDʙʈÃʘœÌÊ>Ê«iÀviVÌÊõÕ>Ài°
PQ
ÞiÃÆÊÊÊT{ÊPÓÊÊ£äQET{P
Ê ÓÊÊ£äQE
X Y ˜œÆÊ̅iʜ«iÀ>̈œ˜ÊLiÌÜii˜Ê̅iÊÌܜÊõÕ>ÀiÃʈÃÊ>``ˆÌˆœ˜°
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 59
-IDDLETERMSXDpAB
XX
X X
ÞiÃÆÊÊÊTÇÊÊÊTÎÊEÊTÇÊÊÊTÊÎÊEÊ
4HELASTTERMISAPERFECTSQUARE
$ETERMINEWHETHEREACHTRINOMIALISAPERFECTSQUARE)FSOFACTORIT
)FNOTEXPLAINWHY
T
4HEFIRSTTERMISAPERFECTSQUARE
34/0
"ECAUSEXDOESNOTEQUALABX XISNOTAPERFECTSQUARETRINOMIAL
Y ABSXDSDX
$ETERMINEWHETHEREACHBINOMIALISTHEDIFFERENCEOFTWOSQUARES
)FSOFACTORIT)FNOTEXPLAINWHY
-IDDLETERMSXDAB
$ETERMINEWHETHERXXISAPERFECTSQUARETRINOMIAL)FSOFACTORIT
)FNOTEXPLAINWHY
{ÊÊTxXÊÊÓÊEÊV“ÆÊÓxÓÊV“
4HELASTTERMISAPERFECTSQUARE
3TEP3UBSTITUTEEXPRESSIONSFORAANDBINTOSa b D2
4HEAREAOFARECTANGULARFRAMEFOR+ENSARTWORKIS
GIVENBYSX XDCM 4HEDIMENSIONSOFTHE
FRAMEAREOFTHEFORMCXDWHERECANDDAREWHOLE
NUMBERS&INDANEXPRESSIONFORTHEPERIMETEROFTHE
FRAME&INDTHEPERIMETERWHENXCM
4HEFIRSTTERMISAPERFECTSQUARE
4HEREFOREXXISAPERFECTSQUARETRINOMIAL
Ó
ÞiÃÆÊÊÊTÊX ÊÊnÊEÊ Ê
ABSXDSDX
XX
Î
œÌʏ}iLÀ>Ê£
œÌʏ}iLÀ>Ê£
XqAB
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
59
XX
A
X
A
X
B
B
AB
X
AB
X
&ACTOROREXPLAIN
TXE
&ACTOROREXPLAIN
TXE
(OLT!LGEBRA
Holt Algebra 1
12/28/05 8:02:31 PM