Supporting Information © Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008 Table Ⅲ. The calculated energies of the unrestricted B3LYP/6-311G(d,p) optimized geometries for the dissociation channels on the adiabatic singlet ground state potential energy surface of C2H2Br2. UB3LYP/ 6-311G(d,p)a trans-1,2-C2H2Br2(1Ag) -5225.667758 b ZPE 0.03246 c d △E △E CCSD(T)/ cc-pVTZ (kJ/mol) (kJ/mol) -5222.62039 0 0 cis-1,2-C2H2Br2(1A1) -5225.666379 0.032767 -5222.652654 3.7 1.3 i1 -5225.57943 0.030002 -5222.558063 231.9 242.4 i2 -5225.579451 0.029986 -5222.557696 231.9 243.3 i3 -5225.552014 0.02978 -5222.535831 303.9 300.2 i4 -5225.66325 0.032295 -5222.649919 11.9 7.3 ts trans -i2 -5225.557768 0.026545 -5222.535814 288.8 291.7 ts trans-i3 -5225.546746 0.028648 -5222.522975 317.8 331.0 ts trans - HBr(3) -5225.54954 0.02373 -5222.526194 310.4 309.6 ts trans -HBr(4) -5225.556269 0.023872 -5222.520461 292.7 325.8 ts trans - Br -5221.514926 0.024973 -5222.539589 270.5 292.6 ts cis -i1 -5225.5669 0.027262 -5222.543804 264.8 272.6 ts cis -i3 -5225.729396 0.029489 -5222.534212 303.5 303.7 ts cis - Br 2 -5225.528141 0.027628 -5222.493846 366.6 404.8 ts cis - HBr -5225.548791 0.11898 -5222.524728 312.4 313.2 ts i1 - H 2 -5225.489573 0.022715 -5222.459397 467.9 482.3 ts i1- i2 -5225.569668 0.030513 -5222.553519 257.6 255.7 ts i2 -i4 -5225.563778 0.030061 -5222.544913 273.0 277.1 e 1 ts i2 - H 2 -5225.472594 0.018551 -5222.470209 443.7 450.8 ts i 2- HBr -5225.563039 0.025914 -5222.475306 275.0 312.9 ts i3 - Br 2 -5221.563847 0.028559 -5222.538508 256.8 289.9 ts i 3 - HBr -5225.537435 0.026126 -5222.506964 342.2 366.4 ts i4 - H 2 -5225.506921 0.021409 -5222.480599 422.3 423.2 ts i4 - Br 2 -5225.527286 0.028412 -5222.500316 368.8 389.8 ts i 4 - HBr -5216.979907 0.024973 -5222.527071 329.9 329.1 ts v -a(1) -2650.799793 0.013802 -2649.211682 ts v -a(2) -77.257652 ts v -a(3) -5224.344676 0.007251 -5221.312758 ts HBrC 2 H - Br -2651.433478 0.027035 -2649.849733 ts HBrC 2 H - H -2651.443242 0.026296 -2649.854255 ts v -a(1) + HBr -5225.546452 0.021839 -5222.519949 318.5 315.5 ts v -a(2) + Br2 -5225.540887 0.021742 -5222.510737 333.1 345.0 ts v -a(3) + H2 -5225.51418 0.007251 -5222.483772 403.3 404.1 ts HBrC 2 H - Br + Br -5225.538832 0.027035 -5222.510919 338.5 358.4 ts HBrC 2 H - H + Br -5225.548596 0.026296 -5222.515441 312.9 344.6 H -0.5021559 0 -0.4998098 Br -2574.105354 0 -2572.661186 H2 -1.169504 0.010067 -1.1710146 f g 0.021035 2 -77.1121925 HBr -2574.746659 0.005924 -2573.308267 Br2 -5148.283235 0.000707 -5145.398545 C2H2 -77.327714 0.026984 C2HBr -2650.87044 0.018499 -2649.286939 C2Br2 -5224.347184 0.0077 -5221.316225 H2C2 -77.261775 0.02352 -77.1168718 HBrC2 -2650.802914 Br2C2 -5224.347184 HBrC2Br' -5225.000293 0.020075 -5221.971846 HBrC2Br -5224.997294 0.019606 -5221.968192 HBrC2H -2651.446314 0.02794 HBrC2H' -2651.442864 0.027482 -2649.857188 Br2C2H -5224.991238 0.018556 -5221.961494 H2C2Br -2651.448649 0.028616 -2649.864879 H2BrC2 -2651.372271 0.024993 -2649.780044 C2H2 + Br2 -5225.610949 0.027691 -5222.585938 149.2 163.1 C2Br2 + H2 -5225.582325 0.019717 -5222.557119 224.3 217.9 H2C2 + Br2 -5s225.54501 0.024227 -5222.515416 322.3 339.2 Br2C2 + H2 -5225.516688 0.017767 -5222.48724 396.7 396.2 HBrC2 + HBr -5225.549573 0.022506 -5222.524161 310.3 311.7 C2HBr + HBr -5225.617099 0.024423 -5222.595206 133.0 130.2 HBrC2Br' + H -5225.502449 0.020075 -5222.471656 434.1 443.2 HBrC2Br + H -5225.49945 0.019606 -5222.468002 441.9 451.6 HBrC2H + Br -5225.551668 0.02794 -5222.521817 304.8 332.1 HBrC2H'+ Br -5225.548218 0.028189 -5222.518374 313.9 340.0 Br2C2H + H -5225.493394 0.018555 -5222.461304 457.8 466.4 H2C2Br + Br -5225.554003 0.028616 -5222.526065 298.7 322.8 H2BrC2+ Br -5225.477625 0.024993 -5222.44123 499.2 536.0 C2H2(s)+Br+Br -5225.538422 0.026984 -5222.482781 339.6 361.3 C2Br2+ H+ H -5225.417133 0.00965 658.05 641.4 -77.187393 0.016582 -2649.215894 0.0077 3 -5221.316225 -2649.860631 -5222.385724 a UB3LYP/6-311G(d,p) energy with zero-point energy correction in hartree. zero-point energy by UB3LYP/6-311G(d,p) in hartree. c relative energy by UB3LYP/6-311G(d,p) with zero-point energy correction. d relative energy by CCSD(T)/cc-pVTZ with UB3LYP/6-311G(d,p) zero-point energy correction. b e the first entry is CASSCF(2,2)/6-311G(d,p) energy with zero-point energy correction in hartree, the second, zero-point energy by CASSCF(2,2)/6-311G(d,p) in hartree, the third, CCSD(T)/cc-pVTZ energy at CASSCF(2,2)/6-311G(d,p) optimized geometry, the fourth, relative energy by CASSCF(2,2)/6-311G(d,p) with zero-point energy correction, the fifth, relative energy by CCSD(T)/cc-pVTZ with CASSCF(2,2)/6-311G(d,p) zero-point energy correction. f the first entry is CASSCF(6,6)/6-311G(d,p) energy with zero-point energy correction in hartree, the second, zero-point energy by CASSCF(6,6)/6-311G(d,p) in hartree, the third, CCSD(T)/cc-pVTZ energy at CASSCF(6,6)/6-311G(d,p) optimized geometry, the fourth, relative energy by CASSCF(6,6)/6-311G(d,p) with zero-point energy correction, the fifth, relative energy by CCSD(T)/cc-pVTZ with CASSCF(6,6)/6-311G(d,p) zero-point energy correction. g the first entry is MP2/6-311G(d,p) energy with zero-point energy correction in hartree, the second, zero-point energy by MP2/6-311G(d,p) in hartree, the third, CCSD(T)/cc-pVTZ energy at MP2/6-311G(d,p) optimized geometry, the fourth, relative energy by MP2/6-311G(d,p) with zero-point energy correction, the fifth, relative energy by CCSD(T)/cc-pVTZ with MP2/6-311G(d,p) zero-point energy correction. 4 Table Ⅳ. The calculated energies of the unrestricted B3LYP/6-311G(d,p) optimized geometries for the dissociation channels on the adiabatic first triplet state potential energy surface of C2H2Br2. UB3LYP/ b a ZPE 6-311G(d,p) trans-1,2-C2H2Br2(1Ag) -5225.667758 C2H2Br2(3B) 0.03246 CCSD(T)/ Ec Ed cc-pVTZ (kJ/mol) (kJ/mol) -5222.65284 0 0 -5225.585479 0.028853 -5222.557521 216.1 240.8 3 i2 -5225.571282 0.030934 -5222.547449 253.3 272.7 3 i3 -5225.555125 0.028038 -5222.530251 295.8 310.3 3 i4 -5225.578031 0.028667 -5222.552131 235.6 254.5 3 ts H -5225.495816 0.021452 -5222.464734 451.5 465.0 3 ts Br -5225.547893 0.027652 -5222.518527 314.7 343.8 3 ts HBr -5225.495999 0.022951 -5222.459305 451.0 482.1 3 ts i2 -5225.510587 0.024822 -5222.475947 412.7 444.4 3 ts i2-H -5225.498881 0.021426 -5222.467408 443.4 457.9 3 ts i2-Br -5225.554061 0.02866 -5222.526294 298.5 322.3 3 ts i2-i4 -5225.563315 0.028943 -5222.529912 274.2 313.5 3 ts i2- H -5225.485686 0.01864 -5222.444378 478.1 511.1 -5225.501849 0.021459 -5222.464217 435.6 466.4 -5225.55356 0.027427 -5222.524062 299.9 324.9 ts i3-i4 -5225.496843 0.022869 -5222.461515 448.8 481.7 3 ts i3-H -5225.484695 0.02016 -5222.452269 480.7 494.3 3 ts i3-Br -5225.548196 0.02758 -5222.518516 313.9 339.9 3 2 ts i2-HBr 3 3 ts i3 5 3 ts i3-Br -5225.562462 0.027588 -5222.522043 276.5 330.6 ts i3-HBr -5225.511891 0.022821 -5222.479541 409.3 429.7 3 ts i4-H -5225.490985 0.019569 -5222.458337 464.2 476.8 3 ts i4-Br -5225.554179 0.028647 -5222.526832 298.2 320.8 3 ts i4-H -5225.465512 0.017943 -5222.422375 531.0 567.0 2 3 2 H -0.5021559 0 -0.4998098 Br -2574.105354 0 -2572.661186 H2 -1.004264 0.00005 -0.9996208 HBr -2574.607497 0 -2573.161042 3 -5148.234707 3 3 Br2 0.00042 -5145.333215 HBrC2H' -2651.442864 0.027482 -2649.864879 HBrC2H -2651.446314 HBrC2Br' -5225.000293 0.020075 -5221.971846 H2C2Br -2651.448649 0.028616 -2649.864879 Br2C2H -5224.991238 0.018556 -5221.961494 H2BrC2 -2651.372271 0.024993 -2649.780044 3 0.02794 -2649.860631 C2H2 -77.173763 0.023405 -77.0233311 C2H2' -77.192564 0.023781 -77.0467974 H2C2 -77.16977 0.024645 -77.0214167 BrCHC -2650.746076 0.01556 -2649.148379 3 C2HBr -2650.764017 0.016028 -2649.168136 3 C2Br2 -5224.314879 0.007301 -5221.270336 C2Br2' -5224.324361 0.008298 -5221.284246 3 3 3 3 3 Br2C2 -5224.302429 0.006896 -5221.257846 HBrC2H' + Br -5225.548218 0.028189 -5222.518374 313.9 340.0 HBrC2H + Br -5225.551668 304.8 332.1 0.02794 -5222.521817 6 H2C2Br + Br -5225.554003 0.02861 -5222.526065 298.7 322.8 H2BrC2+ Br -5225.477625 0.024993 -5222.44123 499.2 536.0 HBrC2Br' + H -5225.502449 0.020075 -5222.471656 434.1 443.2 Br2C2H + H -5225.493394 0.018556 -5222.461304 457.8 466.4 C2H2 + 3Br2 -5225.562421 0.027404 -5222.520608 276.6 333.9 3 C2H2 + Br2 -5225.456998 0.210773 -5222.4218756 553.4 584.5 C2H2+ 3Br2 -5225.40847 0.259301 -5222.3565459 680.8 755.3 C2H2' + Br2 -10372.55907 0.024488 -5222.4453419 504.0 523.9 C2H2'+ 3Br2 -5225.427271 0.024201 -5222.3800122 631.4 694.6 H2C2+ 3Br2 -5225.496482 0.02394 -5222.450087 449.7 510.0 3 H2C2+ 3Br2 -5225.404477 0.025065 -5222.354632 691.3 763.5 3 H2C2+ Br2 -5225.453005 0.025352 -5222.419961 563.9 592.8 C2Br2'+ H2 -5225.493865 0.01836 -5222.45526 456.6 481.7 C2Br2'+ 3H2 -5225.328625 0.008344 -5222.2839 890.4 905.4 C2Br2+ 3H2 -5225.417085 -5222.3857 658.2 641.6 3 C2Br2+ H2 -5225.484383 0.017368 -5222.44135 481.5 515.7 C2Br2+ 3H2 -5225.319143 0.007351 -5222.269956 915.3 939.4 3 Br2C2+ H2 -5225.471933 0.016963 -5222.428861 514.2 547.4 Br2C2+ 3H2 -5225.306693 0.006946 -5222.257467 948.0 971.1 Br2C2+ 3H2 -5225.351448 0.00775 -5222.315846 830.5 819.9 BrHC2 + HBr -5225.492735 0.021479 -5222.456646 459.6 486.3 BrHC2 + 3HBr -5225.353573 0.015555 -5222.309421 824.9 857.3 BrHC2 + HBr -5225.410411 0.018499 -5222.376936 675.8 682.7 C2HBr'+ HBr -5225.510676 0.021952 -5222.476403 412.5 435.7 CH2Br'+ 3HBr -5225.371514 0.016028 -5222.329178 777.9 806.6 CH2Br'+ 3HBr -5225.477937 0.018499 -5222.447981 498.5 501.2 3 3 3 3 3 3 3 3 3 3 3 3 0.0097 7 C2H2+Br+Br -5225.538422 0.026984 -5222.482781 a 339.6 361.3 UB3LYP/6-311G(d,p) energy with zero-point energy correction in hartree. zero-point energy by UB3LYP/6-311G(d,p) in hartree. c relative energy by UB3LYP/6-311G(d,p) with zero-point energy correction. d relative energy by CCSD(T)/cc-pVTZ with UB3LYP/6-311G(d,p) zero-point energy correction. b 8 Table Ⅴ. RRKM rate constants computed with B3LYP/6-311G(d,p) zero-point energy corrected CCSD(T)/cc-PVTZ energies and B3LYP/6-311G(d,p) harmonic frequencies for reactions paths on the adiabatic singlet ground state surface of C2H2Br2 at 248 nm. 248nm k1 (cis→i1) 6.13x1010 s-1 k-1 (i1→cis) 5.50x1012 s-1 k2 (cis→i3) 8.03x109 s-1 k-2 (i3→cis) 1.09 x1013 s-1 k3 (i3→C2HBr+ HBr) 3.11x1012 s-1 k4 (i1→C2Br2+ H2) 2.23x104 s-1 k5 (i1→C2HBr+ HBr) 3.96 x1012 s-1 k6 (i2→C2HBr+ HBr) 5.38x1012 s-1 k7 (cis→C2H2+ Br2) 2.78x108 s-1 k8 (cis→HBrC2+ HBr) 1.26x1012 s-1 k9 (i2→C2Br2+ H2) 8.95x108 s-1 k10 (trans→i3) 1.12x109 s-1 9 k-10 (i3→trans) 3.06x1012 s-1 k11 (trans→C2HBr+ HBr) 2.37x1010 s-1 k12 (trans→i2) 2.16x1010 s-1 k-12 (i2→trans) 5.26x1012 s-1 k13 (i2→i4) 1.65x1012 s-1 k-13 (i4→i2) 2.90x1010 s-1 k14 (i4→H2C2+ Br2) 4.38x108 s-1 k15 (i4→Br2C2+ H2) 2.46x107 s-1 k16 (trans→HBrC2+ HBr) 6.38x1012 s-1 k17 (i1→i2) 1.93x1012 s-1 k-17 (i2→i1) 2.63x1012 s-1 k18 (i4→HBrC2+ HBr) 4.55x1010 s-1 k19 (trans→HBrC2H + Br) 8.52x1010 s-1 k20 (i3→C2H2+Br2) 1.77x1015 s-1 10 Table Ⅵ. RRKM rate constants computed with B3LYP/6-311G(d,p) zero-point energy corrected CCSD(T)/cc-PVTZ energies and B3LYP/6-311G(d,p) harmonic frequencies for reactions paths on the adiabatic triplet ground state surface of C2H2Br2 at 248 nm. 248nm k21 ( C2H2Br2→3i3) 1.12x1013 s-1 k-21 ( i3→ C2H2Br2) 7.63x1013 s-1 k22 ( C2H2Br2→HBrC2H' + Br) 3.76x1012 s-1 k23 ( C2H2Br2→3i2) 6.65x108 s-1 k-23 ( i2→ C2H2Br2) 7.17x108 s-1 k24 ( C2H2Br2→HBrC2Br'+ H) 4.12x106 s-1 k25 ( i2→ C2HBr+ HBr) 2.22x109 s-1 k26 ( i2→HBrC2Br+ H) 1.59x108 s-1 k27 ( i3→C2H2+ 3Br2) 1.71x1015 s-1 k28 ( i2→H2C2Br + Br) 4.99x1014 s-1 k29 ( i3→ C2HBr+ HBr) 6.03x1011 s-1 k30 ( C2H2Br2→3HBrC2+ HBr) 1.50x105 s-1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 11 k31 ( i3→HBrC2H+ Br) 1.42 x1014 s-1 k32 ( i2→3i4) 2.64x1012 s-1 3 3 k-32 ( i4→3i2) 1.46 x1012 s-1 k33 ( i3→3i4) 5.20x105 s-1 k-33 ( i4→3i3) 3.41x105 s-1 k34 ( i4→Br2C2H + H) 4.39x105 s-1 k35 ( i4→H2C2Br + Br) 2.91x1014 s-1 3 3 3 3 3 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
© Copyright 2026 Paperzz