Supporting Information - Wiley-VCH

Supporting Information
© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008
Table Ⅲ. The calculated energies of the unrestricted
B3LYP/6-311G(d,p) optimized geometries for the dissociation channels
on the adiabatic singlet ground state potential energy surface of C2H2Br2.
UB3LYP/
6-311G(d,p)a
trans-1,2-C2H2Br2(1Ag) -5225.667758
b
ZPE
0.03246
c
d
△E
△E
CCSD(T)/
cc-pVTZ (kJ/mol) (kJ/mol)
-5222.62039
0
0
cis-1,2-C2H2Br2(1A1)
-5225.666379
0.032767 -5222.652654
3.7
1.3
i1
-5225.57943
0.030002 -5222.558063
231.9
242.4
i2
-5225.579451
0.029986 -5222.557696
231.9
243.3
i3
-5225.552014
0.02978
-5222.535831
303.9
300.2
i4
-5225.66325
0.032295 -5222.649919
11.9
7.3
ts trans -i2
-5225.557768
0.026545 -5222.535814
288.8
291.7
ts trans-i3
-5225.546746
0.028648 -5222.522975
317.8
331.0
ts trans - HBr(3)
-5225.54954
0.02373
-5222.526194
310.4
309.6
ts trans -HBr(4)
-5225.556269
0.023872 -5222.520461
292.7
325.8
ts trans - Br
-5221.514926
0.024973 -5222.539589
270.5
292.6
ts cis -i1
-5225.5669
0.027262 -5222.543804
264.8
272.6
ts cis -i3
-5225.729396
0.029489 -5222.534212
303.5
303.7
ts cis - Br 2
-5225.528141
0.027628 -5222.493846
366.6
404.8
ts cis - HBr
-5225.548791
0.11898
-5222.524728
312.4
313.2
ts i1 - H 2
-5225.489573
0.022715 -5222.459397
467.9
482.3
ts i1- i2
-5225.569668
0.030513 -5222.553519
257.6
255.7
ts i2 -i4
-5225.563778
0.030061 -5222.544913
273.0
277.1
e
1
ts i2 - H 2
-5225.472594
0.018551 -5222.470209
443.7
450.8
ts i 2- HBr
-5225.563039
0.025914
-5222.475306
275.0
312.9
ts i3 - Br 2
-5221.563847
0.028559 -5222.538508
256.8
289.9
ts i 3 - HBr
-5225.537435
0.026126 -5222.506964
342.2
366.4
ts i4 - H 2
-5225.506921
0.021409 -5222.480599
422.3
423.2
ts i4 - Br 2
-5225.527286
0.028412 -5222.500316
368.8
389.8
ts i 4 - HBr
-5216.979907
0.024973 -5222.527071
329.9
329.1
ts v -a(1)
-2650.799793
0.013802 -2649.211682
ts v -a(2)
-77.257652
ts v -a(3)
-5224.344676
0.007251 -5221.312758
ts HBrC 2 H - Br
-2651.433478
0.027035 -2649.849733
ts HBrC 2 H - H
-2651.443242
0.026296 -2649.854255
ts v -a(1) + HBr
-5225.546452
0.021839 -5222.519949
318.5
315.5
ts v -a(2)
+ Br2
-5225.540887
0.021742 -5222.510737
333.1
345.0
ts v -a(3) + H2
-5225.51418
0.007251 -5222.483772
403.3
404.1
ts HBrC 2 H - Br + Br
-5225.538832
0.027035 -5222.510919
338.5
358.4
ts HBrC 2 H - H + Br
-5225.548596
0.026296 -5222.515441
312.9
344.6
H
-0.5021559
0
-0.4998098
Br
-2574.105354
0
-2572.661186
H2
-1.169504
0.010067
-1.1710146
f
g
0.021035
2
-77.1121925
HBr
-2574.746659
0.005924 -2573.308267
Br2
-5148.283235
0.000707 -5145.398545
C2H2
-77.327714
0.026984
C2HBr
-2650.87044
0.018499 -2649.286939
C2Br2
-5224.347184
0.0077
-5221.316225
H2C2
-77.261775
0.02352
-77.1168718
HBrC2
-2650.802914
Br2C2
-5224.347184
HBrC2Br'
-5225.000293
0.020075 -5221.971846
HBrC2Br
-5224.997294
0.019606 -5221.968192
HBrC2H
-2651.446314
0.02794
HBrC2H'
-2651.442864
0.027482 -2649.857188
Br2C2H
-5224.991238
0.018556 -5221.961494
H2C2Br
-2651.448649
0.028616 -2649.864879
H2BrC2
-2651.372271
0.024993 -2649.780044
C2H2 + Br2
-5225.610949
0.027691 -5222.585938
149.2
163.1
C2Br2 + H2
-5225.582325
0.019717 -5222.557119
224.3
217.9
H2C2 + Br2
-5s225.54501
0.024227 -5222.515416
322.3
339.2
Br2C2 + H2
-5225.516688
0.017767
-5222.48724
396.7
396.2
HBrC2 + HBr
-5225.549573
0.022506 -5222.524161
310.3
311.7
C2HBr + HBr
-5225.617099
0.024423 -5222.595206
133.0
130.2
HBrC2Br' + H
-5225.502449
0.020075 -5222.471656
434.1
443.2
HBrC2Br + H
-5225.49945
0.019606 -5222.468002
441.9
451.6
HBrC2H + Br
-5225.551668
0.02794
-5222.521817
304.8
332.1
HBrC2H'+ Br
-5225.548218
0.028189 -5222.518374
313.9
340.0
Br2C2H + H
-5225.493394
0.018555 -5222.461304
457.8
466.4
H2C2Br + Br
-5225.554003
0.028616 -5222.526065
298.7
322.8
H2BrC2+ Br
-5225.477625
0.024993
-5222.44123
499.2
536.0
C2H2(s)+Br+Br
-5225.538422
0.026984 -5222.482781
339.6
361.3
C2Br2+ H+ H
-5225.417133
0.00965
658.05
641.4
-77.187393
0.016582 -2649.215894
0.0077
3
-5221.316225
-2649.860631
-5222.385724
a
UB3LYP/6-311G(d,p) energy with zero-point energy correction in hartree.
zero-point energy by UB3LYP/6-311G(d,p) in hartree.
c
relative energy by UB3LYP/6-311G(d,p) with zero-point energy correction.
d
relative energy by CCSD(T)/cc-pVTZ with UB3LYP/6-311G(d,p) zero-point energy
correction.
b
e
the first entry is CASSCF(2,2)/6-311G(d,p) energy with zero-point energy correction
in hartree, the second, zero-point energy by CASSCF(2,2)/6-311G(d,p) in hartree,
the third, CCSD(T)/cc-pVTZ energy at CASSCF(2,2)/6-311G(d,p) optimized
geometry, the fourth, relative energy by CASSCF(2,2)/6-311G(d,p) with zero-point
energy correction, the fifth, relative energy by CCSD(T)/cc-pVTZ with
CASSCF(2,2)/6-311G(d,p) zero-point energy correction.
f
the first entry is CASSCF(6,6)/6-311G(d,p) energy with zero-point energy correction
in hartree, the second, zero-point energy by CASSCF(6,6)/6-311G(d,p) in hartree,
the third, CCSD(T)/cc-pVTZ energy at CASSCF(6,6)/6-311G(d,p) optimized
geometry, the fourth, relative energy by CASSCF(6,6)/6-311G(d,p) with zero-point
energy correction, the fifth, relative energy by CCSD(T)/cc-pVTZ with
CASSCF(6,6)/6-311G(d,p) zero-point energy correction.
g
the first entry is MP2/6-311G(d,p) energy with zero-point energy correction in
hartree, the second, zero-point energy by MP2/6-311G(d,p) in hartree, the third,
CCSD(T)/cc-pVTZ energy at MP2/6-311G(d,p) optimized geometry, the fourth,
relative energy by MP2/6-311G(d,p) with zero-point energy correction, the fifth,
relative energy by CCSD(T)/cc-pVTZ with MP2/6-311G(d,p) zero-point energy
correction.
4
Table Ⅳ. The calculated energies of the unrestricted
B3LYP/6-311G(d,p) optimized geometries for the dissociation channels
on the adiabatic first triplet state potential energy surface of C2H2Br2.
UB3LYP/
b
a ZPE
6-311G(d,p)
trans-1,2-C2H2Br2(1Ag) -5225.667758
C2H2Br2(3B)
0.03246
CCSD(T)/
Ec
Ed
cc-pVTZ (kJ/mol) (kJ/mol)
-5222.65284
0
0
-5225.585479 0.028853 -5222.557521
216.1
240.8
3
i2
-5225.571282 0.030934 -5222.547449
253.3
272.7
3
i3
-5225.555125 0.028038 -5222.530251
295.8
310.3
3
i4
-5225.578031 0.028667 -5222.552131
235.6
254.5
3
ts H
-5225.495816 0.021452 -5222.464734
451.5
465.0
3
ts Br
-5225.547893 0.027652 -5222.518527
314.7
343.8
3
ts HBr
-5225.495999 0.022951 -5222.459305
451.0
482.1
3
ts i2
-5225.510587 0.024822 -5222.475947
412.7
444.4
3
ts i2-H
-5225.498881 0.021426 -5222.467408
443.4
457.9
3
ts i2-Br
-5225.554061
0.02866 -5222.526294
298.5
322.3
3
ts i2-i4
-5225.563315 0.028943 -5222.529912
274.2
313.5
3
ts i2- H
-5225.485686
0.01864 -5222.444378
478.1
511.1
-5225.501849 0.021459 -5222.464217
435.6
466.4
-5225.55356
0.027427 -5222.524062
299.9
324.9
ts i3-i4
-5225.496843 0.022869 -5222.461515
448.8
481.7
3
ts i3-H
-5225.484695
0.02016 -5222.452269
480.7
494.3
3
ts i3-Br
-5225.548196
0.02758 -5222.518516
313.9
339.9
3
2
ts i2-HBr
3
3
ts i3
5
3
ts i3-Br
-5225.562462 0.027588 -5222.522043
276.5
330.6
ts i3-HBr
-5225.511891 0.022821 -5222.479541
409.3
429.7
3
ts i4-H
-5225.490985 0.019569 -5222.458337
464.2
476.8
3
ts i4-Br
-5225.554179 0.028647 -5222.526832
298.2
320.8
3
ts i4-H
-5225.465512 0.017943 -5222.422375
531.0
567.0
2
3
2
H
-0.5021559
0
-0.4998098
Br
-2574.105354
0
-2572.661186
H2
-1.004264
0.00005
-0.9996208
HBr
-2574.607497
0
-2573.161042
3
-5148.234707
3
3
Br2
0.00042 -5145.333215
HBrC2H'
-2651.442864 0.027482 -2649.864879
HBrC2H
-2651.446314
HBrC2Br'
-5225.000293 0.020075 -5221.971846
H2C2Br
-2651.448649 0.028616 -2649.864879
Br2C2H
-5224.991238 0.018556 -5221.961494
H2BrC2
-2651.372271 0.024993 -2649.780044
3
0.02794 -2649.860631
C2H2
-77.173763
0.023405 -77.0233311
C2H2'
-77.192564
0.023781 -77.0467974
H2C2
-77.16977
0.024645 -77.0214167
BrCHC
-2650.746076
0.01556 -2649.148379
3
C2HBr
-2650.764017 0.016028 -2649.168136
3
C2Br2
-5224.314879 0.007301 -5221.270336
C2Br2'
-5224.324361 0.008298 -5221.284246
3
3
3
3
3
Br2C2
-5224.302429 0.006896 -5221.257846
HBrC2H' + Br
-5225.548218 0.028189 -5222.518374
313.9
340.0
HBrC2H + Br
-5225.551668
304.8
332.1
0.02794 -5222.521817
6
H2C2Br + Br
-5225.554003
0.02861 -5222.526065
298.7
322.8
H2BrC2+ Br
-5225.477625 0.024993 -5222.44123
499.2
536.0
HBrC2Br' + H
-5225.502449 0.020075 -5222.471656
434.1
443.2
Br2C2H + H
-5225.493394 0.018556 -5222.461304
457.8
466.4
C2H2 + 3Br2
-5225.562421 0.027404 -5222.520608
276.6
333.9
3
C2H2 + Br2
-5225.456998 0.210773 -5222.4218756
553.4
584.5
C2H2+ 3Br2
-5225.40847
0.259301 -5222.3565459
680.8
755.3
C2H2' + Br2
-10372.55907 0.024488 -5222.4453419
504.0
523.9
C2H2'+ 3Br2
-5225.427271 0.024201 -5222.3800122
631.4
694.6
H2C2+ 3Br2
-5225.496482
0.02394 -5222.450087
449.7
510.0
3
H2C2+ 3Br2
-5225.404477 0.025065 -5222.354632
691.3
763.5
3
H2C2+ Br2
-5225.453005 0.025352 -5222.419961
563.9
592.8
C2Br2'+ H2
-5225.493865
0.01836
-5222.45526
456.6
481.7
C2Br2'+ 3H2
-5225.328625 0.008344
-5222.2839
890.4
905.4
C2Br2+ 3H2
-5225.417085
-5222.3857
658.2
641.6
3
C2Br2+ H2
-5225.484383 0.017368 -5222.44135
481.5
515.7
C2Br2+ 3H2
-5225.319143 0.007351 -5222.269956
915.3
939.4
3
Br2C2+ H2
-5225.471933 0.016963 -5222.428861
514.2
547.4
Br2C2+ 3H2
-5225.306693 0.006946 -5222.257467
948.0
971.1
Br2C2+ 3H2
-5225.351448
0.00775 -5222.315846
830.5
819.9
BrHC2 + HBr
-5225.492735 0.021479 -5222.456646
459.6
486.3
BrHC2 + 3HBr
-5225.353573 0.015555 -5222.309421
824.9
857.3
BrHC2 + HBr
-5225.410411 0.018499 -5222.376936
675.8
682.7
C2HBr'+ HBr
-5225.510676 0.021952 -5222.476403
412.5
435.7
CH2Br'+ 3HBr
-5225.371514 0.016028 -5222.329178
777.9
806.6
CH2Br'+ 3HBr
-5225.477937 0.018499 -5222.447981
498.5
501.2
3
3
3
3
3
3
3
3
3
3
3
3
0.0097
7
C2H2+Br+Br
-5225.538422 0.026984 -5222.482781
a
339.6
361.3
UB3LYP/6-311G(d,p) energy with zero-point energy correction in hartree.
zero-point energy by UB3LYP/6-311G(d,p) in hartree.
c
relative energy by UB3LYP/6-311G(d,p) with zero-point energy correction.
d
relative energy by CCSD(T)/cc-pVTZ with UB3LYP/6-311G(d,p) zero-point energy
correction.
b
8
Table Ⅴ. RRKM rate constants computed with B3LYP/6-311G(d,p)
zero-point energy corrected CCSD(T)/cc-PVTZ energies and
B3LYP/6-311G(d,p) harmonic frequencies for reactions paths on the
adiabatic singlet ground state surface of C2H2Br2 at 248 nm.
248nm
k1
(cis→i1)
6.13x1010 s-1
k-1
(i1→cis)
5.50x1012 s-1
k2
(cis→i3)
8.03x109 s-1
k-2
(i3→cis)
1.09 x1013 s-1
k3
(i3→C2HBr+ HBr)
3.11x1012 s-1
k4
(i1→C2Br2+ H2)
2.23x104 s-1
k5
(i1→C2HBr+ HBr)
3.96 x1012 s-1
k6
(i2→C2HBr+ HBr)
5.38x1012 s-1
k7
(cis→C2H2+ Br2)
2.78x108 s-1
k8
(cis→HBrC2+ HBr)
1.26x1012 s-1
k9
(i2→C2Br2+ H2)
8.95x108 s-1
k10
(trans→i3)
1.12x109 s-1
9
k-10
(i3→trans)
3.06x1012 s-1
k11
(trans→C2HBr+ HBr)
2.37x1010 s-1
k12
(trans→i2)
2.16x1010 s-1
k-12
(i2→trans)
5.26x1012 s-1
k13
(i2→i4)
1.65x1012 s-1
k-13
(i4→i2)
2.90x1010 s-1
k14
(i4→H2C2+ Br2)
4.38x108 s-1
k15
(i4→Br2C2+ H2)
2.46x107 s-1
k16
(trans→HBrC2+ HBr)
6.38x1012 s-1
k17
(i1→i2)
1.93x1012 s-1
k-17
(i2→i1)
2.63x1012 s-1
k18
(i4→HBrC2+ HBr)
4.55x1010 s-1
k19
(trans→HBrC2H + Br)
8.52x1010 s-1
k20
(i3→C2H2+Br2)
1.77x1015 s-1
10
Table Ⅵ. RRKM rate constants computed with B3LYP/6-311G(d,p)
zero-point energy corrected CCSD(T)/cc-PVTZ energies and
B3LYP/6-311G(d,p) harmonic frequencies for reactions paths on the
adiabatic triplet ground state surface of C2H2Br2 at 248 nm.
248nm
k21
( C2H2Br2→3i3)
1.12x1013 s-1
k-21
( i3→ C2H2Br2)
7.63x1013 s-1
k22
( C2H2Br2→HBrC2H' + Br)
3.76x1012 s-1
k23
( C2H2Br2→3i2)
6.65x108 s-1
k-23
( i2→ C2H2Br2)
7.17x108 s-1
k24
( C2H2Br2→HBrC2Br'+ H)
4.12x106 s-1
k25
( i2→ C2HBr+ HBr)
2.22x109 s-1
k26
( i2→HBrC2Br+ H)
1.59x108 s-1
k27
( i3→C2H2+ 3Br2)
1.71x1015 s-1
k28
( i2→H2C2Br + Br)
4.99x1014 s-1
k29
( i3→ C2HBr+ HBr)
6.03x1011 s-1
k30
( C2H2Br2→3HBrC2+ HBr)
1.50x105 s-1
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
11
k31
( i3→HBrC2H+ Br)
1.42 x1014 s-1
k32
( i2→3i4)
2.64x1012 s-1
3
3
k-32
( i4→3i2)
1.46 x1012 s-1
k33
( i3→3i4)
5.20x105 s-1
k-33
( i4→3i3)
3.41x105 s-1
k34
( i4→Br2C2H + H)
4.39x105 s-1
k35
( i4→H2C2Br + Br)
2.91x1014 s-1
3
3
3
3
3
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30