Problems (on Moment) 1. The rod on the power control mechanism for a business jet is subjected to a force of 80 N. Determine the moment of this force about the bearing at A. + M A 80 200.15 sin 60 80 200.15 cos 60 cos sin Fx M A 7.71 N m (counterclockwise - ccw) Fy Problems (on Moment) 2. In order to raise the lamp post from the position shown, force F is applied to the cable. If F=200 N, determine the moment produced by F about point A. Geometry: 200sinq q 6m B 200cosq 6m C 3m A 3m Cosine law: BC 32 6 2 236 cos105 2 Sine law: 7.37 3 sin 105 sin q q 23.15o + M A 200 sin 23.156 471.768 N m (counterclockwise - ccw) BC 7.37 m Problems (on Moment) 3. Calculate the moment Mo of the 250 N force about the base point O of the robot. 20o Fx = 250sin40 N Fy = 250cos40 N 400 mm A 60o 50o 40o 30o 40o Fy 500 mm 300 mm O + 0.50.4sin30+0.3sin40 Fx 0.4cos30+0.3cos40 M o 250 cos 400.4 cos 30 0.3 cos 40 250 sin 400.5 0.4 sin 30 0.3 sin 40 M o 189.55 N m (counterclockwise - ccw) 4. The towline exerts a force of P=4 kN at the end of the 20-m-long crane boom. If x=25 m, determine the position of the boom so that this force creates a maximum moment about point O. What is this B moment? q 1.5 m O 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑚𝑜𝑚𝑒𝑛𝑡, OB AB 25 sin 1.5 cos 20 / : cos 25 tan 1.52 400 sec 2 625 tan 2 75 tan 2.25 400 1 tan 2 225 tan 2 75 tan 397.75 0 75 752 4225 397.75 2225 tan m 225m 75m 397.75 0 m1, 2 m1, 2 tan 1.5067 q 90 56.426 33.574o 2 1.1733 M o max 420 80 kN m 4 sin 25 4 cos 1.5 80 25 tan 1.5 20 sec 25 m 56.426o A 5. The 120 N force is applied as shown to one end of the curved wrench. If a=30o, calculate the moment of F about the center O of the bolt. Determine the value of a which would maximize the moment about O; state the value of this maximum moment. If a=30o, MO=? o F = 120 N 30 A + (70+150+70)=290 mm (25+70+70+25) =190 mm O M o 120 cos 3070 150 70 120 sin 3025 70 70 25 Fy 290 Fx M o 41500 N mm 41.5 N m 190 (clockwise - cw) Determine the value of a which would maximize the moment about O. MOmax=? F = 120 N a A O (70+150+70) =290 mm (25+70+70+25) =190 mm a For MOmax, F must be perpendicular to OA. 190 o a arctan 33.2 290 M o 120 190 2 290 2 41603.85 N mm 41.6 N m M o F cos a0.29 F sin a0.19 dM o 0 F sin a0.29 F cos a0.19 da 0.19 0.29 a 33.2o tan a Problems (on Moment) 6. The force exerted by the hydraulic cylinder AB on the door is 3 kN (constant) directed from A to B. Determine the moment of this force about point O (Mo) as a function of q. Also determine Mo for q =50o. 40 cm O q 150 cm A B 20 cm Problems (on Moment) 7. The spring-loaded follower A bears against the circular portion of the cam until the lobe of the cam lifts the plunger. The force required to lift the plunger is proportional to its vertical movement h from its lowest position. For design purposes determine the angle q for which the moment of the contact force on the cam about the bearing O is a maximum. In the enlarged view of the contact, neglect the small distance between the actual contact point B and the end C of the lobe. Problems (on Moment) 8. The pipe assembly is subjected to an 80 N force. Determine the moment of this force about point A. Also determine the minimum distance from point A to the line of action of force 𝐹. Force in vector form Fxy 80 cos 30 69.28 N Fx Fxy sin 40 69.28 sin 40 44.53 N Fy Fxy cos 40 69.28 cos 40 53.07 N Fz 80 sin 30 40 N F 44.53i 53.07 j 40k 𝒓𝑪/𝑨 Position vector from point A to point C rC / A 0.4 j 0.3i 0.2k 0.25i rC / A 0.55i 0.4 j 0.2k Fx Fxy Moment of force 𝑭 about point A M A rC / A F Fy Fz M A 0.55i 0.4 j 0.2k 44.53i 53.07 j 40k M A 29.19k 22 j 17.81k 16i 8.91 j 10.61i M A 5.39i 13.09 j 11.38k minimum distance from point A to the line of action of force 𝑭 d: minimum distance M A rC / A F M A rC / A F rC / A F sin q d rC / A sin q MA d F F M A 5.39i 13.09 j 11.38k Magnitude of the moment M A 5.39 2 13.09 2 11.382 18.16 N m 18.16 d 80 𝒅 = 𝟎. 𝟐𝟐𝟕 𝒎 q 𝒓𝑪/𝑨 Problems (on Moment) 9. Concrete pump is subjected to force 𝐹 acting on point C as shown in the figure. Arms OA, AB and BC lie in the same plane which makes 35o with xz plane. a) Determine the moment of force 𝐹 about point 𝑂. b) Determine the moment of force 𝐹 about line 𝑂𝐴. 35o 10. The spring which connects point B of the disk and point C on the vertical surface is under a tension of 500 N. Write this tension as it acts on point B as a force vector and determine the moment Mz of this force about the shaft axis OA. 𝑭spring=Fspring𝒏C/B 𝑭spring Coordinates : 𝐵 −150𝑠𝑖𝑛30, 150𝑐𝑜𝑠30, 600 𝑩 −𝟕𝟓, 𝟏𝟐𝟗. 𝟗, 𝟔𝟎𝟎 𝑪(𝟑𝟓𝟎, 𝟑𝟎𝟎, 𝟎) 425i 170.1 j 600k Fspring 500 281.57i 112.7 j 397.5k 754.69 Position vector from point O to point C (It may be rC / O 0.35i 0.3 j written the position vector from point O to point B) Moment of force 𝑭𝑠𝑝𝑟𝑖𝑛𝑔 about point O M O rC / O Fspring M O 0.35i 0.3 j 281.57i 112.7 j 397.5k 119.25i 139.25 j 45.02k Moment about the shaft axis M OA M O nOA M O k 45.02 N m 11. Strut AB of the 1 meter diameter hatch door exerts a force of 450 N on point B. Determine the moment of this force about point O. Line OB of the hatch door lies in the yz plane. z 𝐴 0.5𝑠𝑖𝑛30, 0.5 + 0.5𝑐𝑜𝑠30, 0 𝐵 0, 1𝑐𝑜𝑠30, 1𝑠𝑖𝑛30 𝑨 𝟎. 𝟐𝟓, 𝟎. 𝟗𝟑𝟑, 𝟎 𝑩(𝟎, 𝟎. 𝟖𝟔𝟔, 𝟎. 𝟓) z B O 𝑭 30o 0.5 m 30o y A x F 450 0 0.25i 0.866 0.933 j 0.5 0k 0.252 0.067 2 0.52 200.89i 53.84 j 401.79k z F 200.89i 53.84 j 401.79k Position vector from point O to point B (It may be written the position vector from point O to point A) rB / O 0.866 j 0.5k M O rB / O F B 𝑭 O M O 0.866 j 0.5k 200.89i 53.84 j 401.79k x M O 374.86i 100.45 j 179.97 k ! Obtain the same result using position vector 𝒓𝑨/𝑶 rA / O 0.5 j 0.5 cos 30 j 0.5i 0.5i 0.933 j 0.5 m 𝑀𝑂 = 𝑀𝑂 = 𝑀𝑂 𝑑= = 0.951 𝑚 𝐹 30o A M O rA / O F Minimum distance from point O to line AB, d: 𝐹 = 450 𝑁 , y 30o 374.862 + 100.452 + 179.972 = 427.84 𝑁. 𝑚 Problems (on Moment) 12. Concentrated force is acting perpendicular to the crank arm BC at point C. For the position q=70°, what is Mx , the moment of about the x axis? At this instant, My =20 N·m and Mz =37.5 N·m. P 100 mm y B C O 200 mm q z 150 mm A x q=70°, My =20 N·m and Mz =37.5 N·m Mx=? P P P P sin j P cos k y B, C B C 200 mm z 70o y 200 mm O O, A q z A rC / O r 250i 200 sin 70 j 200 cos 70k r 250i 187.94 j 68.4k Mo r P M o 250i 187.94 j 68.4k P sin j P cos k M o 250 P sin k 250 P cos j 187.94 P cos i 68.4 P sin i x q=70°, My =20 N·m and Mz =37.5 N·m Mx=? M o 250 P sin k 250 P cos j 187.94 P cos i 68.4 P sin i M y 250 P cos 20 103 N mm 1 M z 250 P sin 37.5 103 N mm 2 2 1 250 P sin 37.5 103 250 P cos 20 103 tan 1.875 61.93 P 170 N M x 187.94 P cos 68.4 P sin 25294 N mm 25.294 N m Problems (on Moment) z 13. Rectangular plate ADCF is held A (0, 5, 3) m in equilibrium by string AB which D (0, 2, 2) y has a tension of T=14 kN. Determine, F O a) The magnitude of the moment of C (4, 6, 0) m about the axis DC, b) The perpendicular distance B (6, 3, 0) m x between lines AB and DC. z A (0, 5, 3) m D (0, 2, 2) y O C (4, 6, 0) m 6i 2 j 3k T TnT 14 7 T 12i 4 j 6k 4i 4 j 2k 2 2 1 nDC i j k 6 3 3 3 a) The magnitude of the moment of about the axis DC B (6, 3, 0) m x M DC ? M C rB / C T 2i 3 j 12i 4 j 6k 18i 12 j 28k 2 2 1 M DC M C nDC 18i 12 j 28k i j k 3 3 3 2 2 1 18 12 28 3 3 3 M DC 12 8-9.33 10.67 kN m z b) The perpendicular distance between lines AB and DC A (0, 5, 3) m D (0, 2, 2) y O C (4, 6, 0) m B (6, 3, 0) m T 12i 4 j 6k , T nDC T nDC cosq nDC 2i 2 j k 3 2 2 1 22 12 4 6 3 3 3 3 22 22 14(1) cos q , cos q 0.52 3 42 q 58.67 x Theparallel component of a force to a line does not generate moment with respect to that line. If T is resolved into two components parallel and normal to line DC, then M DC T sin θ d M DC 10.67 , d 0.89 m T sin θ 14 sin 58.67 The magnitude of moment MDC is equal to the normal component of T to line DC and the perpendicular distance between T and line DC. 14. The arms AB and BC of a desk lamp lie in a vertical plane that forms an angle of 30o with xy plane. To reposition the light, a force of magnitude 8 N is applied as shown. Determine, a) the moment of the force about point A, b) the moment of the force about the axis of arm AB, c) the angle between the line of action of force and line AB, d) the perpendicular distance between the line AB and line of action of force. Direction CD is parallel to the z-axis and lies in a parallel plane to the horizontal plane. 45o y AB 450 mm , BC 325 mm D 50o 45o 20o C A 150 mm x 30o z F Fx i Fy j Fz k Fx 8Cos 45Sin20 1.93 N Fy 8Sin45 5.66 N Fz 8Cos 45Cos 20 5.32 N a) F 1.93i 5.66 j 5.32k MA ? rC / A 0.45Sin45 0.325Sin50 Cos 30i 0.45Cos 45 0.325Cos 50 j 0.45Sin45 0.325Sin50 Sin30k rC / A 0.491i 0.11 j 0.2835k M A rC / A F M A 0.491i 0.11 j 0.2835k 1.93i 5.66 j 5.32k 2.19i 3.16 j 2.57 k AB 450 mm , BC 325 mm b) M AB ? M AB M A n AB rAB 0.45Sin45Cos 30i 0.45Cos 45 j 0.45Sin45Sin30k rAB 0.275i 0.318 j 0.159k rAB n AB 0.61i 0.71 j 0.35k rAB AB 450 mm , BC 325 mm M AB 2.19i 3.16 j 2.57 k 0.61i 0.71 j 0.35k 1.81 Nm M AB 1.81 0.61i 0.71 j 0.35k 1.1i 1.28 j 0.64k c) F n AB F n AB Cosq 1.93i 5.66 j 5.32k 0.61i 0.71 j 0.35k 81Cos q 3.3 8Cos q q 114.63 d) If the force is resolved into two components parallel and normal to line AB, only normal component generate a moment. The parallel component of a force to a line does not generate moment with respect to that line. M AB FSinqd d M AB 1.81 0.249 m FSinq 8Sin114.63
© Copyright 2026 Paperzz