An update on CSIRO research into AGD in Tasmania Mathew T Cook, Richard Taylor, Ben Maynard, Paula Lima, Peter Kube, Klara Verbyla and Nick Elliott FOOD FUTURES FLAGSHIP 2 | 3 | Environment – water sampling, traditionally labour intensive and replication difficult 4 | Semi-automatic sampling in situ 5 | Results – Semi-automated water sampling RNA analysis 40 35 DNA Analysis Average Ct 30 25 20 15 10 5 0 10000 1000 100 10 Concentration (cells/L) 6 | 1 0 2nd Generation sampler • Computer controlled – set and forget • Capable of taking and archiving 24 samples • Pumps water across filter and then ‘floods’ with appropriate buffer • Will be deployed 2nd ½ of 2014 7 | Non-destructive sampling of gills - swabs 8 | RNA vs DNA results GS 4 GS 2 GS 0 GS 3 Average Cycle Threshold Value per GS Score GS 1 34 32 30 28 Ct Average 26 Lineær (Ct Average) 24 22 20 0 9 | 1 2 3 4 5 10 | Development of Amoebae Bioassay • Assay based on the observation that P. perurans actively ‘takes up’ Neutral red dye • Apply treatments to observe ‘uptake’ • Requires appropriate controls (+ve and –ve) 11 | Indicative results 100 80 60 40 20 0 12 | % viability of N. pemaquidensis after treatment with candidate compound Transcriptomic analysis Compare genetic information of amoeba P. Perurans (infective) and closely related species P. Pemaquidensis (non-infective) to identify differences. N. perurans N. pemaquidensis Compare the two datasets to identify: 1. 2. Seq01: Seq02: Seq03: Seq04: Seq05: Seq06: Seq07: Seq08: Seq09: Seq10: Seq11: Seq12: Seq13: Seq14: Seq15: Seq16: ACGGTAGGCTAGACTAGATATTAACG CCTGAGTACCTGGACTAGATAC GATGCGGTTACGTACGATCCATGGA CATTTATTATATATACGCGCGCGA TTTCGATAGGGGATATATTAACGCCG GTAGGTAGGTGGAGGCCCGCAGACGC GATAGACTCGCGCCGATATATAG ATATATTTCCTAGATCGAGAGATAC Seq01: ACGGTAGGCTAGACTAGATATTAACG GATAGGTTAATTAATTTCCTATAT Seq02: CCTGAGTACCTGGACTAGATAC TGGATTGGATAGCGCGATAGATC Seq03: GATGCGGTTACGTACGATCCATGGA AAAAGTCGATAAGGCTAGAGCTAG Seq04: CATTTATTATATATACGCGCGCGA GGATATAGATATATCTAGATATC Seq05: TTTCGATAGGGGATATATTAACGCCG CGATATAGCCCTCTAGAGATACTTT Seq06: GTAGGTAGGTGGAGGCCCGCAGACGC GATACCCGCGATATATCAT Seq07: GATAGACTCGCGCCGATATATAG TAGATCCCCGAGATAGAGACT Seq08: ATATATTTCCTAGATCGAGAGATAC CACCATAGAAGACTGATCGAGATAG Seq09: GATAGGTTAATTAATTTCCTATAT Seq10: TGGATTGGATAGCGCGATAGATC Seq11: AAAAGTCGATAAGGCTAGAGCTAG Seq12: GGATATAGATATATCTAGATATC Seq13: CGATATAGCCCTCTAGAGATACTTT Seq14: GATACCCGCGATATATCAT Seq15: TAGATCCCCGAGATAGAGACT Seq16: CACCATAGAAGACTGATCGAGATAG ? Transcripts (i.e., functionality) present in one dataset that are “missing” in the other dataset? Of those transcripts that are similar, how similar are they? 13 | Amoeba Transcriptome Analysis Raw Read Support ACGTTA TTAACG ACCGCA TTAACG GGCACG TATACG TACGTA AACGTA CCGGTA ACGGTAGGCTAGACTAGATATTAACG TACAGT TACAGT TACAGT CCTGAGTACCTGGACTAGATAC CATAGT CATAGT CATAGT GATGCGGTTACGTACGATCCATGGA AGTCAT AGTCAT AGTCAT CATTTATTATATATACGCGCGCGA GTACAT GTACAT GTACAT TTTCGATAGGGGATATATTAACGCCG CATGTA CATGTA CATGTA GTAGGTAGGTGGAGGCCCGCAGACGC ACGTTA ACGTTA ACGTTA TTAACG TTAACG TTAACG ATATATTTCCTAGATCGAGAGATAC TACGTA TACGTA TACGTA CCTGAGTACCTGGACTAGATAC TACAGT TACAGT TACAGT GTAGGTAGGTGGAGGCCCGCAGACGC CATAGT CATAGT CATAGT ACGGTAGGCTAGACTAGATATTAACG AGTCAT AGTCAT AGTCAT GTACAT GTACAT GTACAT CATGTA CATGTA CATGTA BLAST GTAGGTAGGTGGAGGCCCGCAGACGC ACGTTA AGTCAT CATGTA TGTA AGTCAT CATGTA ATGTA GTAGGTACG GTAGGTACGTGGAGGCCCGCAGACGC GCCCGCAGACG CATGTA AGTCAT TCAACG G ACGTTA TACGTA 14 | Amoeba Transcriptome Analysis GATAGACTCGCGCCGATATATAG We can turn off genes in P. perurans GSP for ‘Target’ 1 2 3 4 5 6 7 Average Ct cDNA 4 gDNA 5 6 7 time Target 18S Untreated 28.2 22.5 24hr 28.7 22.9 48hr 29.8 23.6 72hr 32 23.9 1week 31.7 24.9 NTC 32.5 34.4 16 | Hybrids – can we unlock the ‘key’ to resistance SxS SxT TxS TxT 17 | AGD functional feed and hybrid trials | Dr Ben Maynard 18 | AGD functional feed and hybrid trials | Dr Ben Maynard Hybrid vigour • 63% hybrid vigour observed at AGD4 • “Best parent” performance 19 | AGD functional feed and hybrid trials | Dr Ben Maynard Breeding for AGD Resistance Broodstock never go to sea 20 | Gill Score is a consistent heritable trait AGD1 versus AGD3 ͻ (heritability range is h2 = 0.14+0.02 to 0.40+0.03) 4.0 Gill score 3rd infection • All infections have significant genetic variation 3.5 3.0 2.5 2.0 1.5 • First infection has lower genetic variation (h2 = 0.14) • Subsequent infections have stronger genetic expression, especially when measured during summer 21 | 1.0 0.5 0.0 2.0 2.5 3.0 3.5 4.0 Gill score 1st infection 4.5 AGD3 versus AGD4 Gill score 4rd infection • Two distinct traits, one is measured at first infection and the other at all subsequent infections 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.0 1.5 2.0 2.5 3.0 3.5 Gill score 3rd infection 4.0 Selection is reducing the number of bathes MONTH Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan 2005 YC Founders 2006 YC 2007 YC 2008 YC 1st generation selection 2009 YC 2010 YC * 2nd generation selection 2011 YC Water temp. 11.5o 11.3o 11.6o 12.5o 14o 15.1o 16.5o 17.2o 16.1o 14.9o 13.6o 12.2o 11.5o 11.3o 11.6o Marine grow-out period AGD infections (1 to 6) and measurement events Low score, prophylactic treatment 22 | 12.5o 14o 15.1o 16.5o Selection is working – A deliberate ‘Bad’ family AVERAGE FAMILY VALUES 2012 YC (SBP COHORT) SBP BAD AGD Best AGD families family family EBV AGDac (Bath interval) * 25% -12% 49% Mean AGD1 Gill score 1.4 1.8 1.2 Mean AGD2 Gill score 3.1 4.5 1.2 NB͗ Following GS2, Best AGD Family хϳ5% ч GS1 23 | Within vs between family variation AGD predictions before and after progeny testing 2009YC Genetic change after progeny testing 60% y = 0.8618x R² = 0.4568 50% 40% 30% 20% 10% 0% -10% -20% -20% -10% 0% 10% 20% 30% 40% 50% Predicted genetic change before progeny testing • Highlights the power of whole genome selection (WGS) to increase genetic gains as the broodstock remain in freshwater (biosecurity) 24 | Can SNP explain some of the AGD resistance observed? SNP # 1 2 3 25 | LG Ssa-07 Ssa-01 Ssa-19 %Variance 34.85 22.45 15.16 Summary • Activities are focused on ‘HOST’, ‘PATHOGEN’ and ‘ENVIRONMENT’ • Focus is on delivering solutions/information to assist in alleviating the issue • Partnership with the end users (industry) is crucial • AGD R&D needs to be dynamic to adjust to changing priorities • International collaboration is key – no need to reinvent the wheel 26 | The CSIRO AGD Team Selective Breeding Amoeba Biology Mat Cook Richard Taylor Natasha Botwright Paula Lima AGD Resilience Nick Elliott Peter Kube Richard Taylor Mat Cook Sonja Dominik John Henshall Scott Cooper Richard Taylor Peter Kube Amoeba Detection Mat Cook Richard Taylor Sharon Appleyard Paula Lima 27 | Dietary Intervention Brett Glencross Mat Cook Ben Maynard Richard Taylor Funding bodies and Industry and Academic collaborators 28 | Thank you CSIRO Food Futures Flagship Mathew Cook Stream Leader t +61 7 3833 5993 e [email protected] w www.csiro.au
© Copyright 2026 Paperzz