Polynomial Functions Review for Check-in Quiz Name: ________________________________________________ Date: _________ Simplify the functions by completing the operation. 1. (2d3 – 5d2 + 1) + (3d3 + 2d2 – 7d) 2. (x2 – 5x + 1) – (3x2 + x – 5) 3. 2 (x – 4)3 (2x + 7)2 4. Function composition: 5. f(x) = 3x – 5 g(x) = 2x + 1 Find f(g(x)). 8. f(x) = 2x2 + 11 Find g(f(x)). 6. f(x) = x – 2 g(x) = x2 + 3 Find g o f. g(x) = 4x 9. f(x) = -4x + 6 Find f o g (–2) Factor squares and cubes and trinomials 7. f(x) = x2 – 9 g(x) = 3x2 Find f o g (x) g(x) = 5x – 1 10. f(x) = 2x2 Find f(g(–1)). g(x) = x2 + 7 11. x3 + 27 12. 8x3 – 1 13. 9x2 – 16 14. 64x3 – 125y3 15. 2x3 + 16 16. x2 + 100 Graph the cubic functions. 17) 3 f (x) x 1 5 Initial Point: ( , ) 18) 3 f (x) 2 x 3 4 y y Initial Point: ( x 19) 3 Initial Point: ( , ) 20) f (x) 1 3 x 4 2 Initial Point: ( y x x 21. Fill out the table on end behavior! , ) y ) x f (x) 3 x 4 , Function Degree LC Rough Sketch (with maximum turns) End Behavior A f (x ) 4x 3 2x 1 x , f(x) _____ x , f(x) _____ B f (x ) 10x 3 x , f(x) _____ x , f(x) _____ C f (x ) 2(x 5)(x 2) x , f(x) _____ x , f(x) _____ D f (x ) 2x 7 x 4 x 1 x , f(x) _____ x , f(x) _____ E f (x ) x(x 3)(x 5) x , f(x) _____ x , f(x) _____ F f (x ) 5x(x 3)2(x 1)3 x , f(x) _____ x , f(x) _____ G f (x ) 5(x 2)(x 3)3 x , f(x) _____ x , f(x) _____ H f (x )1x 4 2x 3 1x 6 x , f(x) _____ x , f(x) _____ I f (x ) 5x 2 x , f(x) _____ x , f(x) _____ J f (x ) x(x 2)6 x , f(x) _____ x , f(x) _____ 22. Given the factors, find the zeros. a. Factor: (x + 3) Zero: ________ d. Factor: (x – 5) Zero: ________ b. Factor: (x) Zero: ________ e. Factor: (x – 100) Zero: ________ c. Factor: (2x + 6) Zero: ________ f. Factor: (5x – 1) Zero: ________ 23. Given the zeros, find the factors. a. Zero: 9 Factor: ___________ d. Zero: –3 Factor: _____________ b. Zero: 0 Factor: ___________ e. Zero: –3i Factor: _____________ c. Zero: 3 5 Factor: ___________ f. Zero: 7 Factor: _____________ 24. Given a zero, find another zero. a. Zero: 5i, ______________ c. Zero: 4 – 7i, ______________ b. Zero: 17 , ______________ d. Zero: 5 2 3 , ______________ Use your calculator to find the following information: 25. 26. 27. Function: y = –4x3 – 2x2 + x – 4 Degree: ____________ Lead Coeff: _____________ # of Zeros: __________ # of Real Zeros:__________ Function: Rough Sketch: # of Imaginary Zeros: __________ y = 3x4 + 2x2 – 3x – 7 Degree: ____________ Lead Coeff: _____________ # of Zeros: __________ # of Real Zeros:__________ y = – (x – 1)2 (x + 2)2 Rough Sketch: # of Imaginary Zeros: __________ Graph Sketch y Degree: ________ Leading Coefficient: ________ End behavior: x , f(x) _____ x , f(x) _____ Real zeros: _______ _______ _______ Multiplicity: _______ _______ _______ 28. y = –3 (x – 1)2 (x + 4)3 Graph Sketch y Degree: ________ Leading Coefficient: ________ End behavior: x , f(x) _____ x , f(x) _____ x Real zeros: _______ _______ _______ Multiplicity: _______ _______ _______ 29. y = x (x + 4)3 (x – 2)2 Graph Sketch y Degree: ________ Leading Coefficient: ________ End behavior: x , f(x) _____ x , f(x) _____ x Real zeros: _______ _______ _______ Multiplicity: _______ _______ _______ 30. Find the polynomial with a leading coefficient of 2 that has the given zeros: 1, –2i Write f(x) in factored form: ________________________________________ Change to Standard Form: Use f(x) = 5x4 – 8x2 + 5x – 2 to answer the questions below. 31. Use DIRECT substitution given x = 2. Write as an ordered pair: ____________ Write in function notation: ___________ Is the ordered pair a zero? ____________ 32. Use SYNTHETIC substitution given x = 1. Write as an ordered pair: ____________ Write in function notation: ___________ Is the ordered pair a zero? ____________ 33. Use SYNTHETIC substitution given x = –2. Write as an ordered pair: ____________ Write in function notation: ___________ Is the ordered pair a zero? ____________ SOLUTIONS 1. 5d3 – 3d2 – 7d + 1 E. Deg = 3, LC = 1, End Beh: , 2. –2x2 – 6x + 6 F. Deg = 6, LC = 5, End Beh: , 3. 4x2 + 28x + 49 G. Deg = 4, LC = 5, End Beh: , 4. 2x3 – 24x2 + 96x – 128 H. Deg = 4, LC = 1, End Beh: , 5. f(g(x)) = 6x – 2 I. Deg = 2, LC = 5, End Beh: , 6. g(f(x)) = x2 – 4x + 7 J. Deg = 7, LC = 1, End Beh: , 7. f(g(x)) = 9x4 – 9 22. a) –3 b) 0 c) –3 8. g(f(x)) = 8x2 + 44 d) 5 e) 100 f) 1 9. f(g(–2)) = 50 10. f(g(–1)) = 128 11. (x + 3) (x2 – 3x + 9) 12. (2x – 1) (4x2 + 2x + 1) 13. (3x – 4) (3x + 4) 14. (4x – 5y) (16x2 + 20xy + 25y2) 15. 2 (x + 2) (x2 – 2x + 4) 16. Prime 17. 18. 19. 20. Initial Point: (–1, –5) Check with calc. Initial Point: (–3, –4) Check with calc. Initial Point: (–4, 0) Check with calc. Initial Point: (0, 4) Check with calc. 21. A. 23. 24. Deg = 3, LC = –10, End Beh: , C. Deg = 2, LC = 2, End Beh: , D. Deg = 7, LC = 2, End Beh: , 5 c) (5x – 3) f) x 7 25. Deg = 3, LC = –4 #zeros = 3, #real = 1, #imag = 2 26. Deg = 4, LC = 3 #zeros = 4, #real = 2, #imag = 2 27. Deg = 4, LC = –1, End Beh: , Real Zeros: 1, 1, –2, –2 Multiplicity: 2 (bounce) 2 (bounce) 28. Deg = 5, LC = –3, End Beh: , Real Zeros: 1, 1, –4, –4, –4 Multiplicity: 2 (bounce) 3 (cross) 29. Deg = 6, LC = 1, End Beh: , Real Zeros: 0 –4, –4, –4 2, 2 Multiplicity: 1 (C) 3 (C) 2 (B) 30. y = 2x3 – 2x2 + 8x – 8 31. (2, 56), f(2) = 56, No, output is not 0. 32. (1, 0), 33. (–2, 36), f(–2) = 36 No, output is not 0. Deg = 3, LC = –4, End Beh: , B. a) (x – 9) b) x d) (x + 3) e) (x + 3i) a) –5i b) 17 c) 4 + 7i d) 5 2 3 f(1) = 0, Yes, output is 0.
© Copyright 2026 Paperzz