Algebra 2 — Unit 2 Day #4 Homework — Graphing Quadratic Functions Name Consider the equations y = 3 (x — 1) 2 — 5 and y = 3x2 — 6x — 2 . a. Show algebraically that these two equations are equivalent. 3 Oc t —x 41) c)( 1 2)( 4-17 — — T toe + 3)( 1- — 1.D)< — b. Notice the value of "a" is 3 for both forms of the equation, but that the numbers for "b" and "c" are different from the numbers "h" and "k'. Why do you think the value of "a" would be the same for both forms of the equation? v6/VA a 'Is -Pie u, Sc, re ° of n 0 ( )e- fri) 2. Use what you learned in the parabola investigation to write an equation for each of the parabolas described. a. A parabola opening upward , shifted 8 units right and 5 units down. 7") b. A parabola with a stretch factor of 10, with its vertex sitting on the x-axis and line of symmetry at x = —6 . oLx+ (4)2c. A downward opening parabola with vertex (-7, —2) and vertical compression of 0.6. 0m ( X A- 3. Simplify the following: +5f +2J a. .1X + ‘.P \C-ce 15-6 c. 4- b. (2V10;1) : 375 a-5 13d. — 4 ( e) Algebra 2 — Unit 2 Day #4 Homework — Graphing Quadratic Functions Name C) 4. Given y = 8x 6 — 4x 5 — 106x 4 + 33x 3 + 346x 2 — 8x — 80 window —5 x 5, scale:1 —250 y 350, scale:50 a. What is the y-intercept? (0) -- b. Identify all real roots to the nearest hundredth. \le:, X= go) x c. Identify all relative maximums. Are any of the values also an extrema? I I. CIL Liq 39,5 . 4 el d. Identify all relative minimums Are any of the values also an extrema? b 0'23 ( oche e)n-o, ) c300 N° e. In what intervals is the graph positive? f. In what intervals is the graph negative? ` -o5 c x c c 5 423-6 v c g. In what intervals is the graph increasing? (2,5i c x c 435 col c x c 1.59 2..(4 ;,g h. In what intervals is the graph decreasing? X< -42,51 _ 1,3 5 tx< .01 1.51 ,2,u? i. Describe the end behavior of the graph. t_n up 12-1; U9 (t ©o) C 4- oo) (-2/o) (- 2, (.5,0) (2.5,o\ ( A3 ) (-2, 51_, (a.(oft.)-3€..,m) ( -1,3 5j1T-1,,L1?) ( Algebra 2 — Unit 2 Day #4 Homework — Graphing Quadratic Functions Name ThGraph each equation without using a table or your graphing calculator. a. y = x 2 + 2 Vertex: (0 1 "7-) Orientation: b. y —3(x + Vertex: up Stretch or Compression? 11 Orientation: 6) 2 + of H) Compression? n rue_ 0 Lai 2 -12 .-10 • 2.4.6 • 9 • 10 • ............ 6 8 12 1 c. y = 2x 2 — 10 d. y = -- (x — 4) 2 — Vertex: Orientation: 5 Vertex: Orientation: down Compression? Stretch o Compression? 12 10 8 2 /2 • 10 8 6 4 4 6 • 8 • 10 • 2. 10 • S 6 • .. • . 2 • - • 2 • 4 • 6 • 8 • 10 • -4 N If 12 -6 :108 -12 V x Algebra 2 - Unit 2 Day #4 Homework - Graphing Quadratic Functions 6. a. 3x 2 + 2x = 8 2-5< -2 r--0 discriminant /00 # of x-intercepts b. 4x 2 - 5x + 9 91 2-1 .5- )C+9 discriminant ° /1 # of x-intercepts a- # of solutions type of solution Name real_ Solve the following equations: 7. 64x 2 - 6 = 55 2 # of solutions type of solution Ain 2 - 5= ( 3x + LO 2- 7- 8. -2(3x + 4 &the ) r"--;0C tn a 6) ti 45 tic 35(= ,-9 :E5M. 3"c+H \I (dig 75 - X• 3 x - H 9. 218x - 41 + 15 = 9 10. I SY 3x- q- ) 5x -- 5%)( -3= as 3 - 71 = 10x -8 2_ -14) p)5 y Ax 1 -023 g/ - 5x Jr II. 53.5 := 5.1-5
© Copyright 2026 Paperzz