MHF 4UI UNIT 6 Trigonometric Functions II Day 1 Trig Identities (Part I) Function, Sine Review: Related Angles: a θ θ a θ = π + a θ = π - a Using CAST Rule : sin (π-a) = sin a cos(π-a) = - cos a tan (π-a) = - tan a sin (π+a) =- sin a cos(π+a) = - cos a tan (π+a) = tan a θ a θa θ = 2π - a θ = - a sin (2π-a) = - sin a cos(2π-a) = cos a tan (2π-a) = - tan a sin (-a) = - sin a cos(-a) = cos a tan (-a) = - tan a Example 1: Find the exact value of the following: a) b) Example 2: If and ,find θ. Co Related Angles (These angles are related to the y axis!!!) x y z a θ x y Co Related Angles a θ a θ θ a θ = π/2 - a θ = π/2+a θ = 3π/2 - a θ a θ =3π/2 + a sin (3π/2+a) = -cos a sin (π/2+a) = cos a cos(3π/2+a) = sin a cos(π/2+a) = -sin a tan (3π/2+a) = -cot a tan (π/2+a) = -cot a sin (π/2-a) = cos a sin (3π/2-a) = -cos a cos(π/2-a) = sin a cos(3π/2-a) = -sin a tan (π/2-a) = cot a tan (3π/2-a) = cot a Example 3: Express as a corelated angle, then evaluate. Review: Trig Ratios Using x, y and r P (x, y) θ x2 + y2 = r2 sin θ = cos θ = tan θ = Pythagorean Identity: cos2θ + sin2θ = 1 Example 4: Prove 1 + tan2x = sec2x Example 5: Prove 1 + cot2x = csc2x
© Copyright 2026 Paperzz