Section 5 – 5A: Integration by Substitution 1 • x n+1 + C , n ∈ ℜ ≠ −1 This theorem requires that n +1 the power function must be exactly ∫ x n dx . It cannot be a function like ∫ (2x − 3) n dx or The integral of the power function is ∫ x n dx = ∫ ( )n 3x − 1 “like” ∫ x n dx or ∫ (sin(x) ) n dx . This section will develop ways to integrate many functions that are dx . We can extend the integral ∫ x n dx where we must have the exact expression x n to state that ∫u n du = 1 • u n+1 + C for any function where u = f (x) and du = f ′ (x) dx n +1 Theorem Let f (x) be a contiouos function and g(x) be differential then If ∫ f ( g(x)) • g′(x) dx and u = g(x) and du = g′ (x) dx then ∫ f (g(x) ) • g′(x)dx = ∫ f (u) du and ∫ f (u) du = F (u) + C This process allows us to transform an integral in terms of f (x) and dx into an integral in terms of f (u) and du. In many cases the integral in terms of f (x) could not be integrated but the new integral in terms of f (u) can be integrated. The process of changing an integral in terms of f (x) and dx into an integral in terms of f (u) and du is called integration by substitution. The integral ∫ ( 3x − 2) 4 Example 1 3 dx cannot be integrated using ∫ x n dx If we let u = 3x − 2 and take the derivative of u du (3x − 2) = 3 and du = 3 dx then dx Substitute u in for 3x − 2 and du in for 3 dx 4 u 4 6 47 8 du } 3 ( ) 3x − 2 • 3dx ∫ We get an integral that we can integrate in tems of u and du 1 integrate ∫ u 4 du = u 5 + C 5 substitute 3x − 2 in place of u 1 = (3x − 2 ) 5 + C 5 The key first step was recognizing that if u = 3x − 2 the first part of the integral would become u4 Section 5 – 5A Page 1 © 2015 Eitel The integral ∫ ( 4x − 5) 1/2 Example 2 4 dx cannot be integrated using ∫ x n dx If we let u = 4 x − 5 and take the derivative of u du (4 x − 5) = 4 and du = 4 dx dx Substitute u in for 4x − 5 and du in for 4 dx 1/2 64u748 du } 1/2 • 4 dx ∫ (4 x − 5) We get an integral that we can integrate in tems of u and du 2 integrate ∫ u1/2 du = u3/2 + C 3 substitute 4x − 5 in place of u = 2 (4x − 5 ) 3/2 + C 3 The key first step was recognizing that if u = 4x − 5 the first part of the integral would become u1/2 ( ) Example 3 3 The integral ∫ x 2 − 1 2x dx cannot be integrated using ∫ x n dx If we let u = x 2 − 1 and take the derivative of u du 2 x − 1 = 2x and du = 2x dx dx ( ) Substitute u in for x 2 − 1 and du in for 2 x dx 3 u 4 6 47 8 ∫ ( x2 ) −1 du8 67 • 2x dx 3 We get an integral that we can integrate in tems of u and du 1 integrate ∫ u 3 du = u 4 + C 4 substitute x 2 − 1 in place of u ( ) 4 1 2 x −1 + C 4 The key first step was recognizing that if u = x 2 − 1 the first part of the integral would become u3 = Section 5 – 5A Page 2 © 2015 Eitel U Substitution Examples The examples below are displayed in pairs. The examples on the left are cases where one part of the function is declared to be u and all the rest of the function is exactly du. In these cases, direct substitution of u and du results in an integral that can be integrated in terms of u. Integrate that function and substitute the expression for u in terms of x back in answer to have the final answer in terms of x. The examples on the right are cases where one part of the function is declared to be your u but the rest of the function is NOT exactly du. The remaining expression is off by a constant factor. In these cases you must multiply the expression by a constant and divide the integral by the reciprocal of the constant. Now direct substitution of u and du results in an integral that can be integrated in terms of u. Integrate that function and substitute the expression for u in terms of x back in answer to have the final answer in terms of x. Example 1A If u = 3x − 5 then the remaining expression 6x dx is the exact expression needed for the du substitution 2 ( ) 3 2 ∫ 3x − 5 Example 1B If u = 3x − 5 then the remaining expression x dx is not the exact expression needed for the du substitution. It is off by a constant factor of 6 2 ( If we let u = 3x 2 − 5 then du = 6x dx the function has the exact expression needed for du substitute u and du ∫ ( 3x 2 ) −5 du8 67 • 6x dx 3 3 • x dx If we let u = 3x 2 − 5 then du = 6x dx but we only have an x dx term 3 u 4 647 8 ∫ 3 u 4 647 8 ) 2 ∫ 3x − 5 6x dx ( 3x 2 ) −5 3 • du to be dx 6needs 44 47 46x 44 8 x dx multiply x dx by 6 and 3 = ∫ u du integrate 1 = u4 + C 4 multiply the integral by ( 3 1 2 ∫ 3x − 5 • 6x dx 6 substitute 3x 2 − 5 in place of u = ( ) 1 6 ) 4 1 3x 2 − 5 +C 4 u = 3x 2 − 5 and du = 6x dx the function now has an exact match for du substitute u and du 1 3 ∫ u du 6 integrate 1 = (u) 4 + C 6 substitute 3x 2 − 5 in place of u 4 1 = 3x 2 − 5 + C 6 ( Section 5 – 5A Page 3 ) © 2015 Eitel Example 2A ∫ ( 12x 2 4 x3 Example 2B ∫ ) 3 dx +2 If we let u = 4 x 3 + 2 then du = 12x 2 dx the function has the exact expression needed for du substitute u and du −3 64u748 =∫ ( 4x 3 ) +2 −3 −3 64u748 ( du4 6 47 8 2 • 12x dx 2 ( 4x 3 +2 ) 2 −3 • du to7 be4 124 x 24 dx 6needs 444 8 2 x dx multiply x 2 dx by 12 and 1 multiply the integral by 12 −3 1 • 12x 2 dx ∫ 4 x3 + 2 12 ( ) u = 4x 2 + 2 and du = 6x 2 dx the function now has an exact match for du substitute u and du 1 −3 ∫ u du 12 integrate 1 −1 −2 (u) + C = • 12 2 ) −1 ) 3 ∫ 4x +2 −2 −1 4x 3 + 2 +C 2 = ) +2 dx 3 but we only have an x 2 dx term substitute 4x 3 + 2 in place of u ( 4 x3 If we let u = 4 x 3 + 2 then du = 12x 2 dx = ∫ u−3 du integrate −1 −2 = •u +C 2 = ( x2 +C substitute 4x 3 + 2 in place of u −2 −1 = 4x 3 + 2 +C 24 ( = Section 5 – 5A Page 4 ( ) −1 ) 24 4 x 3 + 2 2 +C © 2015 Eitel Example 3A Example 3B ∫ 4 x − 2 • 4 dx ∫ 4 x − 2 • dx If we let u = 4 x − 2 then du = 4 dx the function has the exact expression needed for du substitute u and du If we let u = 4 x − 2 then du = 4 dx but we only have an 1dx term 1/2 64u748 du needs to 4 be 4 4 8 dx 64 47 1/2 • 1 dx ∫ (4 x − 2) 1/2 64u748 du } 1/2 = ∫ (4x − 2) • 4 dx = ∫ u1/2 du integrate 2 = • u 3/2 + C 3 substitute 4x − 2 in place of u = 2 (4x − 2 ) 3/2 + C 3 multiply 1dx by 4 and multiply the integral by 1 1/2 ∫ (4 x − 2) • 4 dx 4 u = 4x − 2 and du = 4 dx the function now has an exact match for du substitute u and du 1 1/2 du ∫ u 4 integrate 1 2 = • (u) 3/2 + C 4 3 substitute 4x − 2 in place of u 3/2 1 = 4 x3 + 2 +C 6 ( Section 5 – 5A 1 4 Page 5 ) © 2015 Eitel Example 4A 2x + 4 ∫ ∫ ( +4x ) −1/2 ∫ dx ( x 2 + 4x)1/2 x2 Example 4B ( ) ) −1/2 • (x + 2) dx −1/2 u744 64 4 8 ∫ ( x2 +4x ) −1/2 du4 needs to7 be4 2x4 +44dx 6 44 8 • x + 2 dx multiply x + 2 dx by 2 and 1 multiply the integral by 2 −1/2 1 • (2x + 4)dx ∫ x2 + 4 x 2 du 48 647 • (2x + 4) dx = ∫ u−1/2 du integrate ( ) u = x 2 + 4x and du = 2x + 4 dx the function now has an exact match for du substitute u and du 1 −1/2 du ∫ u 2 integrate 1 = • 2 (u)1/2 + C 2 = 2• u1/2 + C substitute u = x 2 + 3x ( ) dx 1/2 If we let u = x 2 + 4 x then du = 2x + 4 dx but we only have an x + 2 dx term −1/2 2 ∫ x +4x + 4x ( If we let u = x 2 + 4 x then du = 2x + 4 dx the function has the exact expression needed for du substitute u and du −1/2 x2 ∫ x2 + 4 x • 2x + 3 dx u744 64 4 8 ( x +2 ) 1/2 = 2 x 2 + 4x +C = 2 x2 + 4 x + C substitute u = x 2 + 4 x ( = x 2 + 4x = Section 5 – 5A Page 6 ) 1/2 +C x2 + 4 x + C © 2015 Eitel Example 5A Example 5B 4 ∫ sin (4 x) • cos(4 x) dx 4 ∫ sin x • cos x dx If we let u = sin(x) then du = cos(x) dx the function has the exact expression needed for du substitute u and du If we let u = sin(4x) then du = 4 cos(4 x) dx but we only have an cos(4 x)dx term 4 u 4 du 4 needs to4 be cos(4 x)4 dx 647 8 6 44 744 44 8 4 cos(4x) dx ∫ (sin(4 x)) • 4 u 4 6 47 8 du 48 647 4 ∫ (sin(x)) • (cos(x)) dx = ∫ u4 du integrate 1 = • u5 + C 5 substitute sin(x) in place of u = 1 (sin(x) ) 5 + C 5 multiply cos(4x) dx by 4 and 1 multiply the integral by 4 1 4 ∫ (sin(4 x)) • 4(cos(4x)) dx 4 u = sin(4x) and du = 4cos(4x)dx the function now has an exact match for du substitute u and du 1 4 ∫ u du 4 integrate 1 1 = • (u) 5 + C 4 5 1 (u) 5 + C = 20 substitute sin(4x) in place of u 1 (sin(4 x))5 + C = 20 = Section 5 – 5A Page 7 1 sin5 (4 x) + C 20 © 2015 Eitel Further Examples of pick a u substitution for integrals Example 6 7 2 ∫ 4 tan (6x) sec (6x) dx 4∫ tan 7 (6x) sec 2 (6x) dx If we let tan(6 x) then du = 6sec 2 (6x) dx but we only have an sec 2 (6x)dx term 2 du4 needs to4 be7 64 sec4 (6x) dx u74 647 8 6 44 44 8 4∫ (tan(6x) ) 7 • sec 2 (6x) dx multiply sec 2 (6x) dx by 6 and 1 multiply the integral by 6 1 4 • ∫ (tan(6x) ) 7 • 6sec 2 (6x) dx 6 u = tan(6x) and du = 6sec 2 (6x)dx the function now has an exact match for du substitute u and du 2 ∫ u7 du 3 integrate 2 1 = • (u)8 + C 3 8 substitute tan(6 x) in place of u 1 (tan(6x) )8 + C = 12 = Section 5 – 5A 1 tan8 (6x) + C 12 Page 8 © 2015 Eitel What do I do if there is an extra factor in terms of x in the integral after I substitute the u and du. 1/2 6 4u74 8 64du 74 8 ∫ x • 2x − 1 • 2dx If u = 2x − 1 then du = 2 dx substitute u and du 1/2 ∫ x • u du there is still an x in the integeral solve u = 2x − 1 for x u +1 x= and substitute for x 2 1/2 ∫ x • u du u + 1 1/2 =∫ • u du 2 1 = ∫ (u + 1)• u1/2 du 2 ( ) = 1 3/2 1/2 du ∫ u +u 2 = 1 3/2 1 1/2 ∫ u du + ∫ u du 2 2 = 1 2 5/2 1 2 3/2 • •u + • •u 2 5 2 3 1 5/2 1 3/2 •u + •u 5 3 substitute 2x − 1 in place of u 1 1 = • (2x − 1) 5/2 + • (2x − 1) 3/2 5 3 = Section 5 – 5A Page 9 © 2015 Eitel
© Copyright 2025 Paperzz