Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Rational base numeration system for p-adic numbers Karel Klouda1 ,2 [email protected] Joint work with C. Frougny 1 FIT & FNSPE, CTU in Prague 2 LIAFA, Université Paris 7 Mons Theoretical Computer Science Days September 6-10, 2010, Amiens Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Motivation Task: represent 11 in base 3 over the alphabet {0, 1, 2}, i.e., in the form of X ai 3i . Motivation p-adic numbers Positive integers Negative integers Rationals Motivation Greedy algorithm: from left to right 11 2 11 2 3 , r2 = = 3 ≤ 11 < 3 → a2 = 1 = 2 2 9 3 3 a1 = 0, r1 = 2/3, a0 = 2, r0 = 0. h11i3 = 102 1 p -representation q q Motivation p-adic numbers Positive integers Negative integers Rationals Motivation Greedy algorithm: from left to right Division algorithm: from right to left s0 = 11 = 3s1 + a0 ⇒ a0 = 2, s1 = 3 s1 = 3 = 3s2 + a1 ⇒ a1 = 0, s2 = 1 s2 = 1 = 3s3 + a0 ⇒ a2 = 1, s3 = 0 h11i3 = 102 1 p -representation q q Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Division algorithm – negative numbers Algorithm (Division Algorithm) Given a positive s ∈ N and an integer p > 1. 1. Put s0 = s. 2. For i = 0, 1, 2 . . ., define si+1 and ai ∈ Ap = {0, 1, . . . , p − 1} by si = psi+1 + ai . Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Division algorithm – negative numbers Algorithm (Division Algorithm) Given a positive s ∈ N and an integer p > 1. 1. Put s0 = s. 2. For i = 0, 1, 2 . . ., define si+1 and ai ∈ Ap = {0, 1, . . . , p − 1} by si = psi+1 + ai . s0 = −1 = 3s1 + a0 ⇒ a0 = 2, s1 = −1 s1 = −1 = 3s2 + a1 ⇒ a1 = 2, s2 = −1 h−1i3 = · · · 222 = ω 2 Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Division algorithm – negative numbers Algorithm (Division Algorithm) Given a positive s ∈ N and an integer p > 1. 1. Put s0 = s. 2. For i = 0, 1, 2 . . ., define si+1 and ai ∈ Ap = {0, 1, . . . , p − 1} by si = psi+1 + ai . s0 = −1 = 3s1 + a0 ⇒ a0 = 2, s1 = −1 s1 = −1 = 3s2 + a1 ⇒ a1 = 2, s2 = −1 h−1i3 = · · · 222 = ω 2 We want: −1 = 2 ∞ X i=0 3i . Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Division algorithm – rational input Algorithm (Division Algorithm) Given s ∈ Z and an integer p > 1. 1. Put s0 = n. 2. For i = 0, 1, 2 . . . define si+1 and ai ∈ Ap = {0, 1, . . . , p − 1} by si = psi+1 + ai . Then s= ∞ X i=0 ai p i Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Division algorithm – rational input Algorithm (Division Algorithm) Given s t ∈ Q and an integer p > 1. 1. Put s0 = n. 2. For i = 0, 1, 2 . . ., define si+1 and ai ∈ Ap = {0, 1, . . . , p − 1} by si si+1 =p + ai . t t Then ∞ s X = ai pi t i=0 Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Division algorithm – rational base Algorithm (Modified Division (MD) Algorithm) Given s t ∈ Q and co-prime integers p > q ≥ 1. 1. Put s0 = n. 2. For i = 0, 1, 2 . . . define si+1 and ai ∈ Ap = {0, 1, . . . , p − 1} by q Then si+1 si =p + ai . t t ∞ s X ai = t q i=0 i p q Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Division algorithm – rational base Algorithm Given s t ∈ Q and co-prime integers p > q ≥ 1. 1. Put s0 = n. 2. For i = 0, 1, 2 . . . define si+1 and ai ∈ Ap = {0, 1, . . . , p − 1} by q Then si+1 si =p + qai . t t ∞ s X = ai t i=0 i p q Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q What we study We study representations of r -adic numbers (r prime) in the forms X i≥−i0 i p , ai q X i≥−i0 p i ai − , q X ai p i , q q i≥−i0 with some i0 ∈ N and ai ∈ Ap = {0, 1, . . . , p − 1}. X ai p i − , q q i≥−i0 Motivation p-adic numbers Positive integers Negative integers 1 p -representation q q Rationals p-adic absolute value Definition Let p be a prime number. The p-adic valuation vp : Z \ {0} → R is given by n = pvp (n) n0 with p - n0 . The extension to the set of rational numbers, for x = vp (x) = vp (a) − vp (b). a b ∈Q Motivation p-adic numbers Positive integers Negative integers 1 p -representation q q Rationals p-adic absolute value Definition Let p be a prime number. The p-adic valuation vp : Z \ {0} → R is given by n = pvp (n) n0 with p - n0 . The extension to the set of rational numbers, for x = vp (x) = vp (a) − vp (b). The p-adic absolute value on Q: ( 0 |x|p = p−vp (x) if x = 0, otherwise. a b ∈Q Motivation p-adic numbers Positive integers Negative integers Rationals p-adic absolute value – examples Example v3 (6) = 1 ⇒ |6|3 = 3−1 , |1/6|3 = 31 1 p -representation q q Motivation p-adic numbers Positive integers Negative integers Rationals p-adic absolute value – examples Example v3 (6) = 1 vp (pn ) = n ⇒ ⇒ |6|3 = 3−1 , |1/6|3 = 31 |pn |p = p−n → 0 as n → ∞ 1 p -representation q q Motivation p-adic numbers Positive integers Negative integers Rationals p-adic absolute value – examples Example v3 (6) = 1 vp (pn ) = n ⇒ ⇒ |6|3 = 3−1 , |1/6|3 = 31 |pn |p = p−n → 0 as n → ∞ p = r1j1 r2j2 · · · rkjk , q co-prime to p ⇒ ( n −ji n p if r = ri , i ∈ {1, 2, . . . , k }, = ri q ≥ 1 otherwise. r 1 p -representation q q Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Qp – the set of p-adic numbers I The set of p-adic numbers Qp is defined as a completion of Q with respect to | |p . Theorem (Ostrowski) Every non-trivial absolute value on Q is equivalent to the classical absolute value | | or to one of the absolute values | |p , where p is prime. Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Standard representation of p-adic numbers I Theorem Every x ∈ Qp can be uniquely written as x = a−i0 p−i0 + · · · + a0 + a1 p + a2 p2 + · · · + ai pi + · · · X = ai p i i≥−i0 with ai ∈ Ap = {0, 1, . . . , p − 1} and i0 = −vp (x). Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Standard representation of p-adic numbers II Theorem Let x ∈ Qp . Then the standard representation of x is 1. uniquely given, 2. finite if, and only if, x ∈ N, 3. eventually periodic if, and only if, x ∈ Q. Motivation p-adic numbers Positive integers Negative integers Rationals MD algorithm Algorithm (MD algorithm) Let s be a positive integer. Put s0 = s and for all i ∈ N: qsi = psi+1 + ai . Return 1p q q -expansion of s: < s > 1 p = · · · a2 a1 a0 . q q 1 p -representation q q Motivation p-adic numbers Positive integers 1p q q -expansion Negative integers Rationals – properties [Akiyama, Frougny, Sakarovitch, 2008] • for q = 1 we get classical representation in base p, 1 p -representation q q Motivation p-adic numbers Positive integers 1p q q -expansion Negative integers Rationals 1 p -representation q q – properties [Akiyama, Frougny, Sakarovitch, 2008] • for q = 1 we get classical representation in base p, L 1 p = {w ∈ A∗p | w is q q 1p -expansion of some s ∈ N} qq Motivation p-adic numbers Positive integers 1p q q -expansion Negative integers Rationals 1 p -representation q q – properties [Akiyama, Frougny, Sakarovitch, 2008] • for q = 1 we get classical representation in base p, L 1 p = {w ∈ A∗p | w is q q 1p -expansion of some s ∈ N} qq • L 1 p is prefix-closed, q q • L 1 p is not context-free (if q 6= 1), q q Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q T 1 p – tree of nonnegative integers qq 1 2 2 0 2 1 G0 1 2 G1 0 4 3 G2 0 1 7 6 5 G3 2 0 1 11 10 9 8 G4 Children of the vertex n are given by q1 (pn + a) ∈ N, a ∈ Ap . Motivation p-adic numbers Positive integers Negative integers Rationals MD algorithm – the negative case Let s be a negative integer. The q1 qp -expansion of s is < s > 1 p = · · · a2 a1 a0 from the MD algorithm: q q s0 = s, qsi = psi+1 + ai . 1 p -representation q q Motivation p-adic numbers Positive integers Negative integers Rationals MD algorithm – the negative case Let s be a negative integer. The q1 qp -expansion of s is < s > 1 p = · · · a2 a1 a0 from the MD algorithm: q q s0 = s, qsi = psi+1 + ai . Properties of (si )i≥0 : (i) (si )i≥1 is negative, p−1 (ii) if si < − p−q , then si < si+1 , p−1 p−1 (iii) if − p−q ≤ si < 0, then − p−q ≤ si+1 < 0. − p−1 p−q 0 1 p -representation q q Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q In which fields does it work? k kX −1 ai p i p + s = sk q q q i=1 We want: kX −1 p k ai p i s − = |sk |r →0 q q q i=1 r r as k → ∞ Hence, if p = r1j1 r2j2 · · · rkjk , the q1 qp -expansion of s “works” only in Qri , i = 1, . . . , k . The speed of convergence is then ≈ r −ji k . Motivation p-adic numbers Positive integers 1p q q -expansions Negative integers Rationals 1 p -representation q q of negative integers Proposition Let k be a positive integer, and denote B = j p−1 p−q k . Then: (i) if k ≤ B, then < −k > 1 p = ω b with b = k (p − q), q q (ii) otherwise, < −k > 1 p = ω bw with w ∈ A+ p and b = B(p − q). q q Motivation p-adic numbers Positive integers 1p q q -expansions Negative integers 1 p -representation q q Rationals of negative integers Proposition Let k be a positive integer, and denote B = j p−1 p−q k . Then: (i) if k ≤ B, then < −k > 1 p = ω b with b = k (p − q), q q (ii) otherwise, < −k > 1 p = ω bw with w ∈ A+ p and b = B(p − q). q q 2 −4 1 −3 2 0 0 1 1 2 −2 −1 0 1 0 2 3 4 Motivation p-adic numbers Positive integers Negative integers Rationals T 1 p – tree of negative integers qq p = 3, q = 2 1 T q1 pq 2 2 ω 0 ω 1 ω 2 0 2 1 1 2 0 4 3 0 1 7 6 5 2 0 1 11 10 9 8 -1 -2 0 -3 1 -4 2 0 -5 -6 1 2 0 -7 -8 -9 T q1 pq 1 2 0 1 -10 -11 -12 -13 1 p -representation q q Motivation p-adic numbers Positive integers Negative integers Rationals Trees T 1 p and T 1 p qq qq 11 7 2 p = 8, q = 5 6 7 ω 0 ω 3 ω 6 0 5 1 2 3 2 1 4 6 5 4 5 0 3 10 9 8 7 -1 -2 1 -3 4 -4 7 2 -5 -6 5 0 3 -7 -8 -9 1 p -representation q q Motivation p-adic numbers Positive integers Negative integers Rationals Trees T 1 p and T 1 p qq qq 11 7 2 p = 8, q = 5 6 7 ω 0 ω 3 ω 6 0 5 1 2 3 2 1 4 6 5 4 5 0 3 10 9 8 7 -1 -2 1 -3 4 -4 7 2 -5 -6 5 0 3 -7 -8 -9 The trees T 1 p and T 1 p are isomorphic if and only if q q q q p−1 ∈ Z, p−q i.e., B(p − q) = p − 1 1 p -representation q q Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q MD algorithm for rationals Algorithm (MD algorithm) Let x = st , s, t ∈ Z co-prime, s 6= 0, and t > 0 co-prime to p. Put s0 = s and for all i ∈ N define si+1 and ai ∈ Ap by q Return the 1p q q -expansion si+1 si =p + ai . t t of x: < x > 1 p = · · · a2 a1 a0 . q q Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q Examples x < x >1 p q q 5 -5 11/4 11/8 11/5 5 -5 11/7 (si )i≥0 ) p = 3, q = 2 5, 3, 2, 1, 0, 0, . . . -5,-3,-2,-2,-2, . . . 11,6,4,0,0, . . . 11,2,-4,-8,-8,-8, . . . 11,4,1,-1,-4,-6,-4,-6, . . . p = 30, q = 11 11 25 5, 1, 0, 0, . . . ω 19 8 5 -5,-2,-1,-1,. . . ω (12 21 5) 23 13 11, 1, -5, -3, -6, -5, . . . 2101 ω 2012 201 ω 1222 ω (02)2112 abs. values all | |3 all | |3 | |3 all | |2 , | |3 , | |5 | |2 , | |3 , | |5 Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q MD algorithm – properties For the sequence (si )i≥1 from the MD algorithm we have: (i) if s > 0 and t = 1, (si )i≥1 is eventually zero, (ii) if s > 0 and t > 1, (si )i≥1 is either eventually zero or eventually negative, (iii) if s < 0, (si )i≥1 is negative, p−1 t, then si < si+1 , (iv) if si < − p−q p−1 p−1 (v) if − p−q t ≤ si < 0, then − p−q t ≤ si+1 < 0. − p−1 p−q t -1 0 Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q MD algorithm – properties For the sequence (si )i≥1 from the MD algorithm we have: (i) if s > 0 and t = 1, (si )i≥1 is eventually zero, (ii) if s > 0 and t > 1, (si )i≥1 is either eventually zero or eventually negative, (iii) if s < 0, (si )i≥1 is negative, p−1 t, then si < si+1 , (iv) if si < − p−q p−1 p−1 (v) if − p−q t ≤ si < 0, then − p−q t ≤ si+1 < 0. Proposition Let x ∈ Q. Then < x > 1 p is eventually periodic with period < q q p−1 p−q t. Motivation p-adic numbers Positive integers Negative integers 1p q q -representation Rationals 1 p -representation q q I Definition A left infinite word · · · a−`0 +1 a−`0 , `0 ∈ N, over Ap is a 1p q q -representation of x ∈ Qr if a−`0 > 0 or `0 = 0 and ∞ X ak p k x= q q k =−`0 with respect to | |r . If the q1 qp -representation is not finite (i.e., does not begin in infinitely many zeros), then the sum converges if and only if r is a prime factor of p. Motivation p-adic numbers Positive integers Number of Negative integers Rationals 1 p -representation q q 1p q q -representations Let p = r1j1 r2j2 · · · rkjk . Theorem Let x ∈ Qri for some i ∈ {1, . . . , k }. 1p q q -representation of x in Qri . uncountably many q1 qp -representations of (i) If k = 1, there exists a unique (ii) If k > 1, there exist in Qri . x Motivation p-adic numbers Positive integers 1p q q -representations Negative integers 1 p -representation q q Rationals of rational number Theorem Let x ∈ Q and let i1 , . . . , i` ∈ {1, . . . , k }, ` < k , be distinct. (i) There exist uncountably many in all fields Qri1 , . . . , Qri` . 1p q q -representations 1p q q -representation which works namely, the q1 qp -expansion < x > p . q (ii) There exists a unique fields Qr1 , . . . , Qrk ; (iii) The 1p q q -expansion which work < x > 1 p is the only q q which is eventually periodic. in all 1p q q -representation Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q The other representations X i≥−i0 i p , ai q X i≥−i0 p i ai − , q X ai p i , q q i≥−i0 X ai p i , − q q i≥−i0 Motivation p-adic numbers Positive integers Negative integers Rationals 1 p -representation q q The other representations X i≥−i0 i p , ai q X i≥−i0 p i ai − , q X ai p i , q q i≥−i0 p q -rep. 1 q i≥−i0 integer base rational base 1p q q -rep. X ai p i , − q q − pq -rep. − pq -rep. finite conversion by finite sequential transducer infinite conversion by on-line algorithm p-rep. (−p)-rep.
© Copyright 2026 Paperzz