A. Armstrong MA 241- Summer 2014 - Integration Review Indefinite Integrals • • • • • • • R R R [f (x) + g(x)]dx = f (x)dx + g(x)dx R R cf (x)dx = c f (x)dx Z xn+1 xn dx = + C, (n 6= −1) n+1 Z 1 dx = ln | x | +C x R x x C Z e dx = e + x a ax dx = +C ln a R sin xdx = − cos x + C • R cos xdx = sin x + C • R sec2 xdx = tan x + C • R csc2 xdx = − cot x + C • R sec x tan xdx = sec x + C R • Z csc x cot xdx = − csc x + C 1 √ dx = sin−1 x + C • 2 1−x Z 1 • dx = tan−1 x + C x+1 Integration Techniques • u-substitution: If u = g(x) is differentiable and f (x) is continuous, then R f (u)du. R f (g(x))g 0 (x)dx = (1) Determine u = g(x). (2) Find the derivative: du dx . (3) Solve for dx. (4) Substitute back into the integral. Simplify integral so the only variable is u. (5) Integrate with respect to u. (6) Substitute back for x. If a definite integral, solve as usual. R R R • Integration by Parts: Given f (x)g 0 (x)dx, let u = f (x) and v = g(x). Then udv = uv − vdu where du = f 0 (x)dx and dv = g 0 (x)dx. 1 Review Problems 1. Evaluate the following integrals. Z 3 (a) (1 + 8x − x2 )dx 7 Z 4 + x2 (b) dx 3 Z 2 x 2ex + 4 cos xdx (c) Z0 3/2 6 √ dt (d) 1 − t2 1/2 2. Use substitution to evaluate the following integrals. Z 2 (a) xex dx Z x (b) dx 2 Z x +1 (c) esin x cos xdx Z (d) x2 (1 + 2x3 )5 dx Z 3. Use integration by parts twice to find the following integral: Z 4. Evaluate the following integral using integration by parts: x2 sin xdx 1 (x2 + 1)ex dx 0 5. Evaluate the following integrals. (Note: You may need to use u-substitution or integration by partsZto solve the integral.) (a) x3 (1 − x4 )8 dx Z (b) t(1 − t)2 dt Z (c) sec x(sec x + tan x)dx Z (d) x5 ln(x)dx Z p 5 (e) 9 − 5y dy
© Copyright 2026 Paperzz