1 of 28 MA 341 Homework 3 (Nonlinear Ordinary Differential Equations) Hoon Hong 1st-order, 1 variable (Sketch) Problem: y' = K y C1 2 y K2 Solution: stable saddle 2 of 28 Problem: y' = K y K1 y K2 y K4 2 Solution: saddle stable unstable 3 of 28 Problem: y' = y2 C1 y K1 y K2 2 Solution: saddle unstable 4 of 28 Problem: y' = K y K2 2 y K1 Solution: saddle stable 5 of 28 Problem: y' = y C1 y K1 y K3 Solution: unstable saddle stable 6 of 28 Problem: y' = K y2 C2 y K1 y K2 Solution: saddle stable 7 of 28 1st-order, 2 variables (Sketch) Problem: y1' = y1 y2 K1 y2' = y1 Ky2 1. Equilibriums: y1 K1 K1 y1 y12 K1 = 0 y1 = K1 , y1 = 1 ----y1 = K1 Ky2 K1 = 0 Ky2 K1 = 0 y2 = K1 ----y1 = 1 y2 K1 = 0 1 Ky2 = 0 y2 = 1 ----K1, K1 , 1, 1 2. Around [-1, -1]: y1 = z1 K1 y2 = z2 K1 z1' = z1 K1 z2 K1 K1 z2' = z1 Kz2 z1' = z1 z2 Kz1 Kz2 z2' = z1 Kz2 z1' = Kz1 Kz2 z2' = z1 Kz2 z' = K1 K1 1 K1 λ = K1 CI z 8 of 28 λ = K1 KI stable 3. Around [1, 1]: y1 = z1 C1 y2 = z2 C1 z1' = z1 C1 z2 C1 K1 z2' = z1 Kz2 z1' = z1 z2 Cz1 Cz2 z2' = z1 Kz2 z1' = z1 Cz2 z2' = z1 Kz2 z' = λ= 1 1 1 K1 z 2 , v = 1, 2 K1 λ = K 2 , v = 1, K1 K 2 saddle 4. Sketch: 9 of 28 Problem: y1' = y12 Ky22 K1 y2' = y1 y2 1. Equilibriums: K1 0 y12 K1 y1 0 0 0 0 y1 y12 y12 K1 = 0 y1 = K1 , y1 = 0 , y1 = 1 ----y1 = K1 Ky22 = 0 Ky2 = 0 y2 = 0 ----y1 = 0 Ky22 K1 = 0 0 =0 ----y1 = 1 Ky22 = 0 y2 = 0 y2 = 0 ----K1, 0 , 1, 0 2. Around [-1, 0]: y1 = z1 K1 y2 = z2 z1' = z1 K1 2 Kz22 K1 z2' = z1 K1 z2 z1' = z12 Kz22 K2 z1 z2' = z1 z2 Kz2 z1' = K2 z1 10 of 28 z2' = Kz2 z' = K2 0 z 0 K1 λ = K2, v = 1, 0 λ = K1, v = 0, 1 stable 3. Around [1, 0]: y1 = z1 C1 y2 = z2 z1' = z1 C1 2 Kz22 K1 z2' = z1 C1 z2 z1' = z12 Kz22 C2 z1 z2' = z1 z2 Cz2 z1' = 2 z1 z2' = z2 z' = 2 0 0 1 z λ = 2, v = K1, 0 λ = 1, v = 0, K1 unstable 4. Sketch: 11 of 28 Problem: y1' = Ky22 Ky1 C2 y2 K3 y2' = y2 Cy1 C1 1. Equilibriums: K1 2 Ky1 K3 1 y1 C1 0 0 1 y1 C1 Ky12 K5 y1 K6 = 0 y1 = K3 , y1 = K2 ----y1 = K3 Ky22 C2 y2 = 0 y2 K2 = 0 y2 = 2 ----y1 = K2 Ky22 C2 y2 K1 = 0 y2 K1 = 0 y2 = 1 ----K3, 2 , K2, 1 2. Around [-3, 2]: y1 = z1 K3 y2 = z2 C2 z1' = K z2 C2 2 Kz1 C4 C2 z2 z2' = z2 Cz1 2 z1' = Kz2 Kz1 K2 z2 z2' = z2 Cz1 z1' = Kz1 K2 z2 z2' = z2 Cz1 z' = K1 K2 λ=I λ = KI 1 1 z 12 of 28 center 3. Around [-2, 1]: y1 = z1 K2 y2 = z2 C1 z1' = K z2 C1 2 Kz1 C1 C2 z2 z2' = z2 Cz1 z1' = Kz22 Kz1 z2' = z2 Cz1 z1' = Kz1 z2' = z2 Cz1 z' = K1 0 1 1 z λ = K1, v = 2, K1 λ = 1, v = 0, 2 saddle 4. Sketch: 13 of 28 Problem: y1' = y12 Ky22 C2 y1 y2' = Ky1 y2 Ky2 1. Equilibriums: K1 0 y12 C2 y1 Ky1 K1 0 0 0 Ky1 K1 0 Ky1 K1 2 y12 C2 y1 = 0 y1 = K2 , y1 = K1 , y1 = 0 ----y1 = K2 Ky22 = 0 y2 = 0 y2 = 0 ----y1 = K1 Ky22 K1 = 0 0 =0 ----y1 = 0 Ky22 = 0 Ky2 = 0 y2 = 0 ----K2, 0 , 0, 0 2. Jacobian: 2 y1 C2 K2 y2 J= Ky2 Ky1 K1 3. Around [-2, 0]: K2 0 z' = z 0 1 λ = K2, v = 3, 0 λ = 1, v = 0, 3 14 of 28 saddle 4. Around [0, 0]: 2 0 z' = z 0 K1 λ = 2, v = K3, 0 λ = K1, v = 0, K3 saddle 5. Sketch: 15 of 28 Problem: y1' = y12 Cy22 K2 y1 K1 y2' = y1 Cy2 K1 1. Equilibriums: 1 0 y12 K2 y1 K1 1 y1 K1 0 1 0 y1 K1 2 y12 K4 y1 = 0 y1 = 0 , y1 = 2 ----y1 = 0 y22 K1 = 0 y2 K1 = 0 y2 = 1 ----y1 = 2 y22 K1 = 0 y2 C1 = 0 y2 = K1 ----0, 1 , 2, K1 2. Jacobian: 2 y1 K2 2 y2 J= 1 1 3. Around [0, 1]: K2 2 z' = z 1 1 1 1 C 2 2 17 , v = 2, 3 1 C 2 2 17 1 1 K 2 2 17 , v = 2, 3 1 K 2 2 17 λ=K λ=K saddle 4. Around [2, -1]: 16 of 28 z' = 2 K2 1 1 z λ= 3 1 C I 7 2 2 λ= 3 1 K I 7 2 2 unstable 5. Sketch: 17 of 28 Problem: y1' = y1 Ky2 C1 y2' = y12 K2 y1 Ky2 C3 1. Equilibriums: K1 y1 C1 K1 y12 K2 y1 C3 Ky12 C3 y1 K2 = 0 y1 = 1 , y1 = 2 ----y1 = 1 2 Ky2 = 0 2 Ky2 = 0 y2 = 2 ----y1 = 2 3 Ky2 = 0 3 Ky2 = 0 y2 = 3 ----1, 2 , 2, 3 2. Jacobian: K1 1 J= 2 y1 K2 K1 3. Around [1, 2]: 1 K1 z' = z 0 K1 λ = 1, v = K1, 0 λ = K1, v = K1, K2 saddle 4. Around [2, 3]: 1 K1 z' = z 2 K1 λ=I 18 of 28 λ = KI center 5. Sketch: 19 of 28 1st-order, 1 variable (Exact) Problem: y' = 2 y K4 y K6 y(0) = 5 1. Find the general solution: dy = 2 dt y K4 y K6 K 1 2 y K4 C 1 2 y K6 dy = 2 dt 1 1 ln y K4 C ln y K6 = 2 t CC 2 2 K Kln y K4 Cln y K6 ln y K6 y K4 = 4 t CC = 4 t CC y K6 = e4 t C C y K4 y K6 = C e4 t, C O 0 y K4 2. Find the particular solution: C =1 y K6 = e4 t y K4 20 of 28 Problem: y' = y K2 y K4 t y(0) = 1 1. Find the general solution: dy = t dt y K2 y K4 K 1 2 y K2 C 1 2 y K4 dy = t dt 1 1 1 2 ln y K2 C ln y K4 = t CC 2 2 2 K Kln y K2 Cln y K4 ln y K4 y K2 = t2 CC = t2 CC 2 y K4 = et C C y K2 2 y K4 = C et , C O 0 y K2 2. Find the particular solution: C =3 2 y K4 = 3 et y K2 21 of 28 Problem: y' = y C1 y K2 e3 t y(0) = 3 1. Find the general solution: dy = e3 t dt y C1 y K2 K 1 3 y C1 C 1 3 y K2 dy = e3 t dt 1 1 1 3t ln y C1 C ln y K2 = e CC 3 3 3 K Kln y C1 Cln y K2 ln y K2 y C1 = e3 t CC = e3 t CC 3t y K2 = ee C C y C1 3t y K2 = C ee , C O 0 y C1 2. Find the particular solution: 1 K1 C= e 4 y K2 1 K1 e3 t = e e y C1 4 22 of 28 Problem: y' = 2 y K5 y K7 y(0) = 3 1. Find the general solution: dy = 2 dt y K5 y K7 K 1 2 y K5 C 1 2 y K7 dy = 2 dt 1 1 ln y K5 C ln y K7 = 2 t CC 2 2 K Kln y K5 Cln y K7 ln y K7 y K5 = 4 t CC = 4 t CC y K7 = e4 t C C y K5 y K7 = C e4 t, C O 0 y K5 2. Find the particular solution: C =2 y K7 = 2 e4 t y K5 23 of 28 Problem: y' = y C2 y et y(0) = 1 1. Find the general solution: dy = et dt y C2 y K 1 2 y C2 C 1 2y dy = et dt 1 1 ln y C2 C ln y = et CC 2 2 K Kln y C2 Cln y = 2 et CC ln y y C2 = 2 et CC t y = e2 e C C y C2 t y = C e2 e , C O 0 y C2 2. Find the particular solution: 1 K2 C= e 3 y 1 K2 2 et = e e y C2 3 24 of 28 Problem: y' = y C3 y C1 t2 y(0) = 3 1. Find the general solution: dy = t2 dt y C3 y C1 K 1 2 y C3 C 1 2 y C1 dy = t2 dt 1 1 1 3 ln y C3 C ln y C1 = t CC 2 2 3 K Kln y C3 Cln y C1 ln y C1 y C3 = = 2 3 t CC 3 2 3 t CC 3 2 3 t CC y C1 3 =e y C3 2 3 t y C1 3 =C e , C O0 y C3 2. Find the particular solution: 2 C= 3 2 3 t y C1 2 3 = e y C3 3 25 of 28 1st-order, 2 variables (Exact) Problem: y1' = y12 Ky2 C3 y2 K3 y2 K5 y2' = y12 Ky2 C3 y1 K1 y1 K2 y1(0) = 0 y2(0) = 2 1. Find the general solution: y1 K1 y1 K2 dy1/dy2 = y2 K3 y2 K5 dy1 y1 K1 y1 K2 1 1 K y1 K2 y1 K1 dy2 y2 K3 y2 K5 = dy1 = ln y1 K2 Kln y1 K1 = 2 ln y1 K2 K2 ln y1 K1 ln y1 K2 2 y1 K1 2 = ln y2 K5 y2 K3 1 1 K 2 y2 K5 2 y2 K3 1 1 ln y2 K5 K ln y2 K3 CC 2 2 = ln y2 K5 Kln y2 K3 CC CC y1 K2 2 C y2 K5 = , C O0 2 y2 K3 y1 K1 2. Find the particular solution: 4 =3 C C= 4 3 y1 K2 2 4 = 2 3 y1 K1 y2 K5 y2 K3 dy2 26 of 28 Problem: y1' = 2 y2 K1 sin y1 cos y2 y2 C1 y2 K2 y2' = sin y1 cos y2 y1 K1 y1 K3 y1(0) = 0 y2(0) = 0 1. Find the general solution: 2 y2 K1 y1 K1 y1 K3 dy1/dy2 = y2 C1 y2 K2 dy1 y1 K1 y1 K3 1 2 y1 K3 K = 2 y2 K1 dy2 y2 C1 y2 K2 1 2 y1 K1 dy1 = 1 1 ln y1 K3 K ln y1 K1 2 2 ln y1 K3 Kln y1 K1 ln y1 K3 y1 K1 1 1 C y2 C1 y2 K2 = ln y2 C1 Cln y2 K2 CC = 2 ln y2 C1 C2 ln y2 K2 CC = ln y2 C1 2 y2 K2 2 CC y1 K3 = C y2 C1 2 y2 K2 2, C O 0 y1 K1 2. Find the particular solution: 3 =4 C C= dy2 3 4 y1 K3 3 = y2 C1 2 y2 K2 2 y1 K1 4 27 of 28 Problem: y1' = y2 K4 ey1 K y2 y2 K1 y2 C2 y2' = y1 K3 ey1 K y2 y1 K2 y1 K5 y1(0) = 0 y2(0) = K1 1. Find the general solution: y2 K4 y1 K2 y1 K5 dy1/dy2 = y2 K1 y2 C2 y1 K3 y1 K3 dy1 y1 K2 y1 K5 2 3 y1 K5 C = y2 K4 dy2 y2 K1 y2 C2 1 3 y1 K2 dy1 = K 2 1 ln y1 K5 C ln y1 K2 3 3 2 ln y1 K5 Cln y1 K2 ln y1 K5 2 y1 K2 = ln = K3 ln y2 K1 C6 ln y2 C2 CC y2 C2 6 y2 K1 3 6 C = 400 y1 K5 2 y1 K2 = dy2 = Kln y2 K1 C2 ln y2 C2 CC CC C y2 C2 y1 K5 y1 K2 = , C O0 y2 K1 3 2. Find the particular solution: 1 50 = C 8 2 1 2 C y2 K1 y2 C2 400 y2 C2 6 y2 K1 3 28 of 28 Problem: 1 y1' = y2 K1 y2 K2 1 y2' = y1 C1 y1 C3 y1(0) = 1 y2(0) = 0 1. Find the general solution: y1 C1 y1 C3 dy1/dy2 = y2 K1 y2 K2 dy1 y1 C1 y1 C3 K 1 2 y1 C3 C = dy2 y2 K1 y2 K2 1 2 y1 C1 1 1 C y2 K1 y2 K2 dy1 = K dy2 1 1 ln y1 C3 C ln y1 C1 = ln y2 K2 Kln y2 K1 CC 2 2 K Kln y1 C3 Cln y1 C1 ln y1 C1 y1 C3 = ln = 2 ln y2 K2 K2 ln y2 K1 CC y2 K2 2 y2 K1 2 CC 2 y1 C1 C y2 K2 = , C O0 y1 C3 y2 K1 2 2. Find the particular solution: 1 =4 C 2 C= 1 8 1 y1 C1 = 8 y1 C3 y2 K2 2 y2 K1 2
© Copyright 2025 Paperzz