567. IUPAC-NIST Solubility Data Series 70. The Solubility of Gases

IUPAC-NIST Solubility Data Series 70. Solubility of Gases
in Glassy Polymers
Volume Editors
Russell Paterson
University of Glasgow, Glasgow, United Kingdom
Yuri Yampol’skii
Topchiev Institute of Petrochemical Synthesis, Moscow, Russia
with the assistance of
Peter G. T. Fogg
University of North London, London, United Kingdom
Contributors
Alexandre Bokarev
Topchiev Institute of Petrochemical Synthesis, Moscow, Russia
Valerii Bondar
North Carolina State University, Raleigh, North Carolina
Oleg Ilinich
Boreskov Institute of Catalysis, Novosibirsk, Russia
Sergey Shishatskii
Topchiev Institute of Petrochemical Synthesis, Moscow, Russia
Contributor and Evaluator
Yuri Yampol’skii
Topchiev Institute of Petrochemical Synthesis, Moscow, Russia
Received December 11, 1998
Solubility of gases in polymers is an important property of polymeric materials relevant to many practical applications. Sorption of small molecules in polymers is a fundamental concern in such areas as food packaging, beverage storage, and polymer processing. However, by far the main interest in the solubility of gases in polymers, and
especially in glassy polymers, is related to development of novel advanced materials for
gas separation membranes. This is because the concentration gradient of a dissolved gas
is the driving force of membrane processes. Development of these novel separation
methods resulted in a rapid accumulation, in the recent literature, of thermodynamic data
related to the solubility of gases in polymers at different temperatures and pressures.
Polymers can be regarded as special cases of media intermediate between liquids and
solids. As a consequence, modeling of gas sorption in polymers is very difficult and
©1999 by the U.S. Secretary of Commerce on behalf of the United States.
All rights reserved. This copyright is assigned to the American Institute of
Physics and the American Chemical Society.
Reprints available from ACS; see Reprints List at back of issue.
0047-2689Õ99Õ28„5…Õ1255Õ196Õ$95.00
1255
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1256
PATERSON, YAMPOL’SKII, AND FOGG
presents a permanent challenge to theoreticians and experimenters. The collection and
critical evaluation of solubility data for various gas–polymer systems is relevant to both
practical aspects of polymer applications and to fundamental studies of polymer behavior.
This volume of the IUPAC-NIST Solubility Data Series summarizes the compilations
and critical evaluations of the data on solubility of gases in glassy polymers. It is implied
in this edition that ‘‘gases’’ are the components that are either permanent gases 共supercitical fluids兲 or have saturated vapor pressure more than 1 atm at ambient conditions
共298 K兲. The polymeric components of compilations and critical evaluations are primarily high molecular mass, amorphous, linear 共noncross-linked兲 compounds that have the
glass transition temperatures above ambient temperature. The data for each gas–polymer
system have been evaluated, if the results of at least three independent and reliable
studies have been reported. Where the data of sufficient accuracy and reliability are
available, values are recommended, and in some cases smoothing equations are given to
represent variations of solubility with changes in gas pressure and temperature. Referenced works are presented in the standard IUPAC-NIST Solubility Data Series format.
Depending on the gas–polymer system, reported data are given in tabular form or in the
form of sorption isotherms. The data included in the volume comprise solubilities of 30
different gases in more than 80 primarily amorphous homo and copolymers. Where
available, the compilation or critical evaluation sheets include enthalpies of sorption and
parameters for sorption isotherms. Throughout the volume, SI conventions have been
employed as the customary units in addition to the units used in original publications.
© 1999 American Institute of Physics and American Chemical Society.
关S0047-2689共99兲00305-0兴
Contents
1. Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. Introduction to the Solubility Data Series. The
Solubility of Gases in Polymers. . . . . . . . . . . . . . .
3. Critical Evaluations and Compilations of
Selected Systems. . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.
Poly共4-Methylpentene-1兲—Carbon
Dioxide, Methane, Other Gases. . . . . . . . . .
3.2.
Poly共Vinyl Chloride兲—Nitrogen, Carbon
Dioxide, Methane. . . . . . . . . . . . . . . . . . . . .
3.3.
Poly共Vinyl Acetate兲—Various Gases. . . . . .
3.4.
Poly共Acrylonitrile兲—Carbon Dioxide. . . . .
3.5.
Poly共Methyl Methacrylate兲—Carbon
Dioxide, Other Gases. . . . . . . . . . . . . . . . . .
3.6.
Poly共Ethyl Methacrylate兲—Carbon
Dioxide, Other Gases. . . . . . . . . . . . . . . . . .
3.7.
Polystyrenes—Various Gases. . . . . . . . . . . .
3.8.
Poly共Vinyl Cyclohexane Carboxylate兲—
Carbon Dioxide. . . . . . . . . . . . . . . . . . . . . . .
3.9.
Poly共Vinyl Benzoate兲—Various Gases. . . .
3.10. Poly共Vinyl Butyral兲—Carbon Dioxide. . . . .
3.11. Poly共Vinylmethylether兲—Propane. . . . . . . .
3.12. Poly共Vinyltrimethyl Silane兲—Various
gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.13. Poly共Trimethylsilyl Propyne兲—Various
Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.14. Poly共Phenylene Oxides兲—Various Gases. .
3.15. Poly共2,3-Dimethylphenylene Oxide兲—
Carbon Dioxide, Methane. . . . . . . . . . . . . . .
3.16. Poly共Ethylene Terephthalate兲—Carbon
Dioxide and Other Gases. . . . . . . . . . . . . . .
3.17. Polycarbonate—Carbon Dioxide. . . . . . . . .
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1259
1260
1265
1265
1267
1271
1273
1274
1283
1290
1307
1309
1312
1313
1313
1318
1323
1323
1330
1340
3.18. Polycarbonate—Sulfur Dioxide. . . . . . . . . .
3.19. Polycarbonate—Methane. . . . . . . . . . . . . . .
3.20. Polycarbonates—Propane and Other
Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.21. Poly共Aryl-bis-Isopropylidene Ether
Ketone兲—Carbon Dioxide and Methane. . .
3.22. Polyarylate—Various Gases. . . . . . . . . . . . .
3.23. Polyhydroxyether—Carbon Dioxide,
Methane, Nitrogen. . . . . . . . . . . . . . . . . . . . .
3.24. Poly共Phenolphthalein Phthalate兲—Various
Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.25. Polysulfone—Carbon Dioxide. . . . . . . . . . .
3.26. Polysulfone—Methane and Other Gases. . .
3.27. Cellulose—Sulfur Dioxide. . . . . . . . . . . . . .
3.28. Nitrocellulose—Various Gases. . . . . . . . . . .
3.29. Ethyl Cellulose—Various Gases. . . . . . . . .
3.30. Cellulose Acetate—Carbon Dioxide. . . . . .
3.31. Poly共␥-Methyl Glutamate兲—Carbon
Dioxide. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.32. Poly共␤-Benzyl-L-Aspartate兲—Carbon
Dioxide. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.33. Polyamides 共Nylons兲—Various Gases. . . . .
3.34. Polyimide Kapton H—Carbon Dioxide,
Methane, Sulfur Dioxide. . . . . . . . . . . . . . . .
3.35. Polyimide Upilex R—Carbon Dioxide. . . .
3.36. Other Polyamides—Various Gases. . . . . . .
3.37. Polypyrrolone—Various Gases. . . . . . . . . . .
3.38. Block Copolymers and Polymer Blends—
Various Gases. . . . . . . . . . . . . . . . . . . . . . . .
4. Structural Formulas of Polymers. . . . . . . . . . . . . . .
5. Polymer Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6. Gas Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1348
1351
1352
1363
1364
1367
1368
1371
1373
1384
1385
1385
1389
1393
1397
1398
1400
1406
1409
1413
1413
1431
1441
1443
IUPAC-NIST SOLUBILITY DATA SERIES
7. Registry Number Index. . . . . . . . . . . . . . . . . . . . . . 1443
8. Author Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1445
9. Solubility Data Series: Published Volumes
66–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1448
20.
21.
1.
2.
3.
4a.
4b.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
List of Figures
Sorption isotherms of Ar, N2, CH4 共a兲 and
CO2 共b兲 in PVC at 308 K.. . . . . . . . . . . . . . . . . .
Solubility coefficients S/(cm3共STP兲 cm⫺3
atm⫺1) for gases in PVA: curves 1: Helium;
curves 2: Neon; curves 3: Hydrogen. Continuous
curves taken from equilibrium experiments,
broken curves from diffusion experiment.. . . . . .
Sorption isotherms for hydrogen in PVA at
268 K and 278 K.. . . . . . . . . . . . . . . . . . . . . . . . .
Temperature dependence of the solubility
coefficient S/共g g atm⫺1兲. . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in
PMMA.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mixed-gas sorption of CO2 /C2H4 in PMMA at
1.53⫾0.05 atm CO2.. . . . . . . . . . . . . . . . . . . . . . .
Mixed gas sorption of CO2 and C2H4 at 1.53
atm CO2 共a兲 and 3.64 atm CO2 共b兲.. . . . . . . . . . .
Mixed gas sorption of CO2 and C2H4 at 3.93
atm C2H4 共a兲 and 2.06 atm C2H4 共b兲.. . . . . . . . . .
Sorption isotherms for pure gases in PMMA at
308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High-pressure mixed-gas sorption of CO2 /NO2
at 5.00 atm N2O.. . . . . . . . . . . . . . . . . . . . . . . . . .
High-pressure mixed-gas sorption of CO2 /C2H4
at 5.05 atm CO2.. . . . . . . . . . . . . . . . . . . . . . . . . .
High-pressure mixed-gas sorption of CO2 /C2H4
at 4.87 atm C2H4. . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature dependence of 共a兲 p g /MPa and
共b兲 C g /(cm3共STP兲cm⫺3).. . . . . . . . . . . . . . . . . . .
Temperature dependence of the solubility
coefficients.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in
PEMA.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in PEMA
at 288, 298, 308, and 318 K.. . . . . . . . . . . . . . . .
Temperature dependence of Langmuir
⬘ /共cm3共STP兲 cm⫺3兲.. . . .
adsorption parameter C H
Temperature dependence of apparent solubility
coefficient S/共cm3共STP兲 cm⫺3 atm⫺1兲.. . . . . . . . .
The solubility of chlorodifluoromethane
共Freone 22兲 in PS was measured only in
three papers.1–3 Barrie et al.3 studied this system
using a gravimetric technique in the
temperature range 293–333 K. At much higher
temperatures, this system was investigated
by means of inverse gas chromatography.2 The
figure shows the temperature dependence
T/K of the solubility coefficient S/共cm3共STP兲
g⫺1 atm⫺1兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in
various monodisperse polystyrenes at 308 K.. . .
1269
22.
23.
1271
1272
24.
1274
25.
1276
26.
1277
27.
1278
28.
1279
1280
1280
29.
1281
1281
1283
30.
1284
1284
31.
1285
1291
1291
32.
33.
34.
1294
1298
35.
36.
Effect of temperature on sorption isotherms
of carbon dioxide in PS containing 3% by
mass of mineral oil 共a兲 and 10% by mass of
TCP 共b兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption and desorption isotherms of carbon
dioxide in PVB. Open and filled symbols
represent sorption and desorption, respectively...
Sorption and desorption isotherms of carbon
dioxide in PVB at 298 K: 共䊐兲 first sorption
run; 共䊊兲共䊉兲 subsequent sorption and desorption
runs.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption and desorption isotherms of carbon
dioxide in PVBu at 298 K: 共䊐兲 first sorption
run; 共䊊兲共䊉兲 subsequent sorption and desorption
runs.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of various gases in PTMSP
at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of various gases in PTMSP
at 298 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of various gases in PTMSP
at 298 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of various gases in PPO at
298 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mixed gas sorption CO2 /CH4 in poly共phenylene
oxide兲 at 308 K. 共Solid lines兲 sorption model
for mixed gas sorption C i ⫽k Di p i
⬘ b i p i /(1⫹b i p i ⫹b j p j ). 共Dotted lines兲
⫹C Hi
sorption model for pure gases.. . . . . . . . . . . . . . .
Mixed gas sorption CO2 /CH4 in CPPO at 308
K and two different pressures. 共Solid lines兲
sorption model for mixed gas sorption
⬘ b i p i /(1⫹b i p i ⫹b j p j ). 共Dotted
C i ⫽k Di p i ⫹C Hi
lines兲 sorption model for pure gases.. . . . . . . . . .
Temperature dependence of Langmuir
⬘ /共cm3共STP兲 cm⫺3兲. 共䊐兲
adsorption capacity C H
Ref. 1; 共䊏兲 Ref. 2; 共䊉兲 Ref. 5: 共䊊兲 Ref. 9
共crystallization by exposure to CO2兲; 共⽧兲 Ref.
9 共crystallization by heating兲.. . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in
CO2-conditioned crystalline PETP, measured
after CO2 sorption experiment at 308 K. Open
and filled symbols represent sorption and
desorption, respectively.. . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in
amorphous PETP. The dotted arrows show
the decreases in concentration accompanying
crystallization. Open and filled symbols
represent sorption and desorption, respectively...
Sorption isotherms of carbon dioxide in
c-PETP.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in
h-PETP.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in PBTP...
Effect of temperature on carbon dioxide
sorption in PC for ‘‘as-received’’ material
conditioned at 20 atm of CO2.. . . . . . . . . . . . . . .
1257
1299
1309
1310
1312
1318
1320
1320
1323
1324
1329
1330
1334
1334
1335
1335
1339
1343
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1258
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
PATERSON, YAMPOL’SKII, AND FOGG
Equilibrium sorption of carbon dioxide in PC
samples annealed at 398 K. Sorption
measurements were made at 308 K after
conditioning at 20 atm of CO2.. . . . . . . . . . . . . .
Same as for Fig. 37 except that the annealing
temperature was equal to 408 K.. . . . . . . . . . . . .
Sorption and desorption isotherms of carbon
dioxide in polycarbonate at 308 K. Open and
filled symbols represent sorption and
desorption, respectively.. . . . . . . . . . . . . . . . . . . .
Sorption isotherms of CO2 in PC at 308 K for
conditioning pressures of 300, 600, and 900
psia. 共䊊兲 ‘‘as-received,’’ 共䊉兲 CO2 conditioned...
Initial CO2 sorption and desorption in PC at
308 K after conditioning pressures of 300, 600,
and 900 psia. 共䊊兲 ‘‘as-received,’’ 共䊉兲
desorption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of CO2 at 308 K in
CO2-conditioned, ‘‘as-received,’’ and annealed
PC. The annealed sample was first CO2
conditioned at 900 psia and then annealed at
408 K for 500 h under vacuum. 共䊊兲
‘‘as-received,’’ 共䊉兲 900 psia conditioned, 共䊐兲
annealed.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of sulfur dioxide in
polycarbonate.. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of methane in polycarbonate
for unconditioned, carbon dioxide conditioned
and exchange conditioned samples.. . . . . . . . . . .
Sorption isotherms for propane in PC.. . . . . . . . .
Sorption isotherms of various gases in
polycarbonate at 308 K.. . . . . . . . . . . . . . . . . . . .
Comparison of sorption isotherms of methane
at 308 K in TMPC for unconditioned and
conditioned films.. . . . . . . . . . . . . . . . . . . . . . . . .
Comparison of sorption isotherms of methane
at 308 K in TCPC for unconditioned and
conditioned films.. . . . . . . . . . . . . . . . . . . . . . . . .
Comparison of sorption isotherms of methane
at 308 K in TBPC for unconditioned and
conditioned films.. . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide at 308 K
in polycarbonates conditioned by prior CO2
exposure.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of methane at 308 K in
polycarbonates conditioned by prior CO2
exposure. 共䊊兲 PC; 共⽧兲 TMPC; 共䊐兲 TCPC;
共䊉兲 TBPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of nitrogen at 308 K in
polycarbonates without prior CO2 exposure.. . . .
Sorption 共open points兲 and desorption 共filled
points兲 isotherms of carbon dioxide in TMPC
for maximum conditioning pressures of
37.95 共䊊兲, 共䊉兲 and 62.1 共䊐兲, 共䊏兲 atm. 共⽧兲
second desorption. . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in
PAEK-6H6F 共䊊兲 and PAEK-6F6H 共䊉兲.. . . . . . .
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
55.
56.
1343
1343
57.
58.
1344
59.
1347
60.
61.
1347
62.
63.
1347
1350
1352
1353
64.
65.
66.
67.
68.
1354
69.
1355
1355
1356
70.
71.
1356
1356
1356
72.
73.
1358
1363
Sorption isotherms of sulfur dioxide in
polyarylate.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide 共䊐兲,
methane 共䊉兲, and ethane 共䊊兲 in the polymer
at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isoterms of various gases in Kodar
A-150 at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . .
共a兲 log S vs 1/(T/K); 共b兲 log kD vs 1/(T/K);
⬘ vs T/K. 关共䊉兲
共c兲 log b vs 1/(T/K); 共d兲 C H
Ref. 1; 共䊊兲 Ref. 4; 共䊐兲 Ref. 5; 共⽧兲 Ref. 6.兴. . . .
Sorption isotherms of various gases in
‘‘as-received’’ polysulfone films.. . . . . . . . . . . . .
Effects of history of sample treatment on
sorption isotherms: CO2 sorption at 308 K. . . . .
Effect of temperature on CO2 sorption
isotherms in pure polysulfone.. . . . . . . . . . . . . . .
Effect of the content of DDS 共mass %兲 on
CO2 sorption isotherms for polysulfone at
308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Effect of the content of PNA 共mass %兲 on
CO2 sorption isotherms for polysulfone at
308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Effect of the content of TCP 共mass %兲 on CO2
sorption isotherms for polysulfone at 308 K.....
Sorption isotherms of carbon dioxide in
polysulfone.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of methane in polysulfone...
Temperature dependence of apparent solubility
coefficient S/共cm3共STP兲 cm⫺3 atm⫺3兲.. . . . . . . . .
Temperature dependence of Henry’s law
solubility coefficient k D /共cm3共STP兲 cm⫺3
atm⫺1兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide.
Continuous curves: Gas solubilities calculated
from the dual mode sorption model. Dotted
curve: Gas solubility at 343 K calculated from
the empirical relation C⫽1.4 p exp(⫺0.02p). . .
Solubility isotherms of methane in cellulose
2.4-acetate 共sample I兲. Solubility⫽共vol. of gas
at STP/cm3兲/共mass of unswollen polymer/g兲. . . .
Reproducibility of solubility isotherms of
methane in cellulose 2,4-acetate at 293 K.
Solubility⫽共vol. of gas at STP/cm3兲/共mass of
unswollen polymer/g兲. 共Solid line兲 calculated
from the dual mode sorption model with sample
I, after exposure to CO2; 共䊊兲 measurements
with sample II prior to CO2 exposure;
共䊉兲 measurements with sample II after exposure
to high-pressure CO2.. . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in
cellulose acetate. . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide 共a兲 and
xenon 共b兲 in PMG. Sorption⫽共vol. of gas at
STP/cm3兲/mol of residue. 共䊐兲 293 K, 共䊉兲 298
K, 共䊊兲 303 K, 共⫹兲 308 K. Broken line is
heat treated sample.. . . . . . . . . . . . . . . . . . . . . . . .
1366
1370
1371
1372
1375
1375
1377
1377
1377
1377
1379
1379
1389
1390
1391
1392
1392
1393
1393
IUPAC-NIST SOLUBILITY DATA SERIES
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
Sorption isotherms of xenon in PELG.
Sorption⫽共vol. of gas at STP/cm3兲/mol of residue.
共䊐兲 293 K, 共䊉兲 298 K, 共䊊兲 303 K, 共⫹兲 308
K. Broken line is heat treated sample.. . . . . . . . .
Sorption isotherms of xenon in
poly共n-alkyl-L-glutamates兲 at 298 K.
Sorption⫽共vol. of gas at STP/cm3兲/mol of residue.
共䊏兲Me, 共䊐兲 Et, 共䊉兲 Pr, 共䊊兲 Bu, 共⫹兲 Amyl.. . . .
Fugacity ratio calculated by corresponding
state principle, Refs. 1 and 2. Sorption⫽共vol.
of gas at STP/cm3兲/mole of residue.
Sorption isotherms of carbon dioxide in PBLG.
共䊏兲 PBLG cast from benzene at 318 K, 共䊐兲
same film heat treated, 共䊉兲 PBLG cast from
benzene at 333 K, 共䊊兲 same film heat
treated, 共⫹兲 cast from ethylene dichloride at
298 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in the ␣
and ␻ forms of PBLA.
Sorption⫽共vol. of gas at STP/cm3兲/mol of residue.
共䊐兲 303 K, 共䊉兲 308 K, 共䊊兲 313 K. Continuous
line: ␣ form; Broken line: ␻ form.. . . . . . . . . . . .
Sorption isotherms of carbon dioxide in
Kapton H at 333 K. Different symbols
stand for different runs.. . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of methane in Kapton H at
333 K. Different symbols stand for different
runs.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms in commercial Kapton H
共䊊兲 and synthesized samples of polyimide 共䊉兲
obtained by reaction of pyromellitic
dianhydride and oxydianiline PMDA–ODA.. . . .
Sorption isotherms of sulfur dioxide in
polyimide Kapton H.. . . . . . . . . . . . . . . . . . . . . . .
Temperature dependence of apparent solubility
coefficient S/共cm3共STP兲 cm⫺3 atm⫺1兲.. . . . . . . . .
Temperature dependence of the affinity
parameter b/共atm⫺1兲.. . . . . . . . . . . . . . . . . . . . . . .
Temperature dependence of Henry’s law
solubility coefficient k D /共cm3共STP兲 cm⫺3
atm⫺1兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in
polyimide Upilex R.. . . . . . . . . . . . . . . . . . . . . . .
Sorption isotherms of nitrogen and oxygen in
CVC–VA at 298 K for different times of
annealing at 433 K: 共a兲 as cast; 共b兲 5 h
annealing: 共c兲 15 h annealing.. . . . . . . . . . . . . . . .
Sorption isotherms of carbon dioxide in CVC–
VA at 298 K for different times of annealing
at 433 K: 共a兲 as cast; 共b兲 1 h; 共c兲 5 h; 共d兲
10 h; 共e兲 15 h.. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sorption 共open symbols兲 and desorption
共closed symbols兲 isotherms of sulfur dioxide
in block-copolymers with mass % siloxane
content of 13% 共circles兲 and 42% 共squares兲.. . . .
1259
89.
1395
1395
1396
1397
1400
1401
1402
1405
1406
1406
1406
1408
1414
1415
1418
Sorption isotherms of sulfur dioxide in
silane-siloxane copolymers with mass %
siloxane content of: 0% 共1兲, 4% 共2兲, 13% 共3兲,
22% 共4兲, 34% 共5兲, 38% 共6兲, 42% 共7兲, 62%
共8兲, 100% 共9兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . .
90. Sorption of carbon dioxide was studied in
homogeneous and phase separated blends
PMMA/CPSAN 共50/50 by mass兲. The
composition of CPSAN is 28 mass % of
acrylonitrile. The parameters of dual mode
sorption isotherm for carbon dioxide in the
blends at 308 K are: k D ⫽0.89 cm3共STP兲/
⬘ ⫽16.6 cm3共STP兲/cm3;
cm3 atm; C H
b⫽0.183 atm⫺1. Sorption isotherm of carbon
dioxide in homogeneous 共䊉兲 and
phase-separated 共䊊兲 PMMA/CPSAN blends.. . .
91. Sorption isotherm of carbon dioxide in an
amorphous blend containing 65% PMMA
and 35% PVF2 at 308 K.. . . . . . . . . . . . . . . . .
92. Sorption isotherms of carbon dioxide in
PMMA/PVF2 blends at 308 K 共mass % PVF2兲...
93. Sorption isotherms of carbon dioxide in
PMMA/PVF2 blends at 308 K for 35 and
50 mass % of PVF2.. . . . . . . . . . . . . . . . . . . . . . .
94. Sorption isotherms of Ar, CH4 and N2 in PVF2
at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
95. Sorption isotherms of Ar, CH4, and N2 in
PMMA at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . .
96. Sorption isotherms of argon in PMMA/PVF2
blends at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . .
97. Sorption isotherms of carbon dioxide in
conditioned blends and homopolymers at
308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
98. Sorption isotherms of methane in unconditioned
blends and homopolymers at 308 K.. . . . . . . . . .
99. Sorption isotherms of carbon dioxide in TMPC/
PS blends at 308 K.. . . . . . . . . . . . . . . . . . . . . . . .
100. Sorption isotherms of methane in TMPC/PS
blends at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . .
1418
1420
1420
1421
1421
1422
1422
1423
1423
1424
1428
1429
1. Preface
The solubility of gases in polymers is an important property of polymeric materials relevant to many practical applications. In addition, information on the solubility of gases,
its dependence on temperature, pressure, and pretreatment of
polymer are indicative of polymer structure and mechanism
of gas sorption and diffusion in polymers. The shape of solubility isotherms can indicate behavior at the molecular level.
Sorption of small molecules in polymers is a fundamental
concern in such areas as packaging and polymer processing.
Dissolution of gases in polymers, especially at high pressure,
takes place in many industrial processes and data on the
solubility of gases are required in diverse and important applications. Examples include the dissolution of ethene and
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1260
PATERSON, YAMPOL’SKII, AND FOGG
other gases in the process of high pressure polymerization of
ethene, gas dissolution in injection molding processes, and
postreactor polymer processing.
However, the main interest in the solubility of gases in
polymers is due to the development of novel advanced materials for gas separation membranes. The driving force in
gas transport through such nonporous polymeric membranes
is the gradient of concentration of diffusing molecules across
the membrane. Therefore, the solubility, the form of sorption, isotherms, and the values of their parameters are of
utmost importance for understanding sorption and transport
of gases and development of better gas separation processes.
An interesting manifestation of this tendency is that 90% of
the data available today on gas solubility in polymers and
sorption thermodynamics were obtained during the last
10–15 yr, and these years were marked by important advances in the development of membrane gas separation processes.
This volume in the Solubility Data Series contains tabulated collections and critical evaluations of original data for
the solubility of gases in glassy polymers. A later volume
will contain compiled and evaluated data for the solubility of
gases in rubbery and semicrystalline polymers as well as
updated data for crystalline polymers. In some cases, the
published data include the solubility at temperatures higher
than the glass transition temperature of a polymer that is
glassy under ambient conditions, for example polystyrene at
373–473 K. In such cases the editors preferred not to split
the solubility data between two volumes and included corresponding compilation sheets in this volume.
The chemical structure of the repeat units of polymers was
accepted as the basis for organizing the material within this
volume. First, carbon-chain polymers are considered followed by heterochain polymers. Each polymer studied in a
particular published work has been given a separate compilation sheet. Data from the same published work for the dissolution of different gases in the same polymer have been
entered in the same compilation sheet. Gases are considered
in sequences of increased complexity from monatomic to
diatomic and so on. If several compilation sheets are available for the same polymer–gas system, the material is arranged in chronological order. Enthalpies of solution are also
reported where available.
Abundant data that are available in the literature on gas
solubility in polymers can be divided into two groups: the
data based on direct measurements using volumetric, gravimetric, chromatographic or other methods; and the data acquired via an indirect way using the equation S⫽ P/D,
where S is the solubility coefficient, and P and D are the gas
permeability and diffusion coefficients, respectively. Although in many cases the values obtained using both approaches are in reasonable agreement, the authors of the
present volume have not compiled solubility data obtained
by an indirect method because these data are less reliable.
Critical evaluations were prepared only in those cases
where:
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
共1兲 two or more papers were available for the given gas–
polymer system;
共2兲 the data corresponded to overlapping ranges of variation
of pressure and/or temperature. In only a few cases,
however, has there been a sufficient number of detailed
studies to enable the evaluator to recommend a set of
solubility values.
The data were gathered from a search of the chemical
literature from the first years of this century to the first part
of 1991.
The editors would like to acknowledge the help and advice
from several fellow members of the IUPAC Commission on
Solubility Data and in particular Professor Larry Clever
共Emory University, USA兲 and Dr. Peter Fogg 共U.K.兲. Enormous help of S. McFadzean and Marielle Lorusso in the final
part of the preparation of the manuscript is also acknowledged and much appreciated. Professor D. R. Paul and Professor W. J. Koros, from The University of Texas at Austin,
kindly provided us with the reprints and preprints of their
numerous papers. This greatly facilitated our work on compilation and critical evaluation of data.
Russell Paterson
University of Glasgow,
Glasgow, Scotland
Yuri Yampolskii
Institute of Petrochemical Synthesis,
Russian Academy of Sciences, Moscow, Russia.
2. Introduction to the Solubility Data
Series. The Solubility of Gases in
Polymers
The Solubility Data Project aims to make a comprehensive
search of the literature for data on the solubility of gases,
liquids, and solids in liquids. Polymers can be regarded as a
special case of media intermediate by their properties between liquids and solids. The data for each system are evaluated, and where data of sufficient accuracy and reliability are
available, values are recommended and in some cases a
smoothing equation is suggested to represent the variation of
solubility with gas pressure and/or temperature. In the case
of polymers, the correlations of the solubility with some parameters of gases can also be given. A text presenting an
evaluation and recommended values and the compiled data
sheets are published on consecutive pages.
Definition of Gas Solubility
The distinction between solubilities of gases in liquids
共polymers兲 and vapor–liquid equilibrium is arbitrary. It is
generally accepted that the equilibrium set up between a
polymer and a typical gas as argon at 298 K, i.e., above its
critical temperature, is gas–liquid solubility, where as the
equilibrium set up at the same temperature between the same
polymer and n-butane is an example of vapor–liquid equi-
IUPAC-NIST SOLUBILITY DATA SERIES
librium. In this volume, we have taken a fairly liberal view
that is in line with the general policy of all the volumes of
the Solubility Data Series.
We defined gases as the compounds having vapor pressure
more than 1 atm at the temperature 298 K, or having the
normal boiling point of 298 K or above. So, e.g., the equilibrium solubility of 2,2-dimethylpropane 共neo-pentane兲 was
included whereas the solubility of n-pentane was not. The
solubility of the vapor of the compounds that are liquid at
298 K will be considered in a subsequent volume of Solubility Data Series.
It is much more difficult to define adequately polymers as
solvents. A transition from low molecular mass compounds
to high polymers proceeds continuously, and establishing a
boundary between these two kinds of chemical objects is
always arbitrary. However, help in this essentially tentative
choice can come if we bear in mind the fact that studies of
solubility in polymers stemmed from many practical applications of high polymers found as construction, barrier, or
packaging materials, membranes, etc. In all these cases polymers having molecular mass higher than 20,000–30,000 are
used. Another important feature of polymers as solvents is
that high molecular mass compounds in a vast majority of
cases exist as mixtures of different sorts of molecules having
different number of repeat units 共polymer homologues兲, concentration of branchings, cross-links, etc. Additionally, in
many cases polymer samples contain some residual solvents,
traces of catalysts, curing agents, plasticizers and other additives or impurities. So in contrast to the contents of other
volumes, dealing with solubility of gases in liquids, here the
data reported characterize solubility in complex, sometimes
poorly defined, and by no means pure chemicals. Another
problem is related to the fact that glassy polymers are quasiequilibrium objects, since the relaxation processes are too
slow at the temperatures below the glass transition temperature T g . Hence, all the information obtained for solubility of
gases in glassy polymers is, strictly speaking, nonequilibrium. Well known manifestations of this phenomenon are
prehistory effect on solubility and the parameters of sorption
isotherms, the effects of annealing, importance of the protocol of measuring the solubilities of different gases at high
pressure, and so on. All this causes the difficulties in comparison of the results of independent studies and hampers the
selection of the recommended values in Critical Evaluations.
Units and Quantities
The solubility of gases in polymers is of interest to different fields of polymer science and technology, as well as to
other disciplines. The data have been acquired during the last
70 yr in various laboratories by means of diverse instruments. Therefore a variety of ways for reporting gas solubility has been used in the primary literature, and inevitably
sometimes, because of insufficient available information, it
has been necessary to use several quantities in the compiled
tables and plots. Where possible, the gas solubility has been
quoted as a quantity of dissolved gas reduced to standard
1261
conditions 共pressure 1 atm, temperature 273.2 K兲 or
cm3共STP兲 per 1 cm3 of polymer. Other quantities of the solubility of gases in polymers, which are in use, will be considered below. The units of pressure used are Pascals, atmospheres, bars, and millimeters or centimeters of mercury.
Temperature are reported in Kelvin. Enthalpies of solution
data are given in kJ mol⫺1.
Evaluation and Compilation
The solubility of relatively few systems is known with
sufficient accuracy to enable recommended values to be advanced. This is especially true for the solubility in polymers,
as polymer samples studied by different authors rarely coincide 共different manufacturers of the specimens, variation in
molecular mass or molecular mass distribution, etc.兲. Although a considerable number of systems have been studied
by at least two researchers, the range of pressure and/or temperature is often different, thus preventing a meaningful
comparison of the data. Occasionally, one has only to guess
why several groups of workers sometimes obtain very different results under the same conditions, although all the data
reported seem to be flawless or, at least, plausible and internally consistent. In such cases, sometimes an incorrect assessment has been given.
Bearing in mind the mentioned peculiarities of gas–
polymer systems, and especially those concerning glassy
polymers, Critical Evaluations were prepared mainly for the
systems where three or more sources reported solubility data.
In contrast to the policy accepted by the evaluators of other
volumes of Solubility Data Series, the present authors, in
some cases, included the correlations of the solubility coefficients or the parameters of sorption isotherms with different
characteristics of gases that allow to estimate the properties
for other gas–polymer systems.
Sources and Purity of Materials
The purity of the gases has been quoted in the compiled
sheets where given in the original publications. Contrary to
what is usually accepted for solubility of gases in liquids,
even small impurities of heavier gas components can be a
source of error in reported gas solubility values. However,
since a purity of gases is adequately reported in most cases,
appropriate corrections can be introduced if necessary. It is
much more difficult to assess 共or define兲 the purity of polymers. In many cases, the only information available in the
papers were the name of producing company and a trademark of the polymer material. The properties more often
quoted in the publications are a density and a glass transition
temperature. The procedure of the preparation and/or pretreatment of the films is of utmost importance, and, where
possible, are also quoted in data sheets.
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1262
PATERSON, YAMPOL’SKII, AND FOGG
Apparatus and Procedures
Sorption Isotherms
In the compiled data sheets, some key points are made of
the instruments for solubility measurement and procedure
used. There are several books or papers where the experimental methods of the determination of gas solubility in
polymers are considered in more length. They are given in
Refs. 1–9.
Contrary to gas solubilities in common liquids, the solubility of gases in polymers is a nonlinear function of pressure
if the latter is changed in sufficiently wide range. So a standard way of presenting solubility at a certain temperature is
giving, in numerical or, more often, graphical form the dependence of solubility of pressure, or sorption isotherms. It is
traditional to distinguish sorption and desorption isotherms.
The former are obtained in a regime of growing pressure, the
latter when a part of sorbed gas is allowed to desorb from the
sample. When sorption is studied under conditions of full
equilibrium, i.e., above the glass transition temperature, the
sorption and desorption isotherms coincide. If the system is
departed from the equilibrium, sorption hysteresis is observed at higher pressures or for highly sorbed gases. Desorption isotherms in glassy polymers lie always above sorption isotherms owing to the conditioning effect caused by
high pressure gas. Usually, the model parameters are reported for sorption isotherms.
At sufficiently low pressure the isotherms of all the systems can be reduced to directly proportional dependence
Methods of Expressing Gas Solubilities
Because gas solubilities have been determined by means
of different methods, they have been expressed in a variety
of ways. Sometimes solubility is reported as C mw 共mol/g兲 or
in number of moles of a gas dissolved in a unit of mass of
polymer. When determined using a gravimetric method,
solubility is given as C ww 共g/g兲 as a quantity of gas in grams
per 1 g of polymer. Volumetric methods of the determination
of solubility allow to measure it as C v w 共cm3共STP兲/g兲 or as a
volume of gas reduced to the standard conditions dissolved
in 1 g of polymer. However, the most frequently used unit
for the solubility is C vv or the volume of gas reduced to the
standard conditions dissolved in 1 cm3 of the polymer.
When a polymer sample is exposed to high pressure gas,
its volume is decreased n a fraction determined by its PVT
behavior. However, these effects are important only at very
high pressure, and in solubility measurements have been introduced very seldom, if ever. Much more relevant are the
effects of swelling or dilation of polymer samples in contact
with high or even medium pressure gas. Indeed, the dilation
isotherms have been reported together with sorption isotherms in many papers. Therefore, the corrections, taking
into account the changes in the solubility C vv owing to dilation, can be introduced. However, this was not done in most
cases, mainly because a magnitude of such corrections is
minor, as a rule, in comparison with the accuracy of the
determination of gas solubility. Hence, in majority of the
cases the C vv values characterize the solubility of gas in
cm3共STP兲 per cm3 of a pure polymer.
In some very rare cases solubility is expressed as the standard volume of gas per repeat unit of the polymer 共expressed
in g moles兲. All these quantities are interrelated.
C ww ⫽M C mw ,
where M is the molecular mass of the gas
C v w ⫽22 146C mw ⫽22 416M /C ww .
If we neglect the swelling of polymer in the process of sorption:
C vv ⫽C v w ␳ ,
where ␳ is the density of the polymer at the temperature of
measurement.
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
C⫽S p,
where C is the solubility expressed in either way discussed
above, p is pressure, and S is the solubility coefficient. S is
the reciprocal value of Henry’s coefficient H defined by the
equation of Henry’s law
p⫽HC.
If S is expressed in cm3共STP兲 per cm3 of polymer per atm, it
coincides with the Bunsen coefficient defined as the volume
of gas reduced to 273.2 K and 1 atm pressure which is dissolved in a unit volume of solvent 共at the temperature of
measurement兲. In gas chromatographic determination of
solubility, one obtains experimentally the mass fraction Henry’s coefficient
H 1 ⫽ p 1 / 共 m 1 /m 2 兲 ,
where p 1 is the partial pressure of gas, m 1 is the mass of gas,
and m 2 is the mass of polymer, which are in equilibrium.
When passing on to the volume of gas and assuming ideal
behavior of the gas one obtains
S⫽1/H 1 ⫽22 416␳ 2 /M 1 ,
where ␳ 2 is the density of polymer and M 1 is the molecular
mass of the gas. When p and the concentration of dissolved
gas are increased, deviations from Henry’s law isotherms are
observed. Positive deviations, or sorption isotherms convex
to the pressure axis, are characteristic for polymers at temperatures above their glass transition temperature. Under
such conditions, a satisfactory description of the main part of
the systems gas–high molecular weight solvent can be
achieved by using Flory–Huggins equation to describe sorption isotherms10
ln a 1 ⫽ln f 1 ⫹ f 2 ⫹c 12 f 22 ,
IUPAC-NIST SOLUBILITY DATA SERIES
where a 1 is the activity of gas phase, f is the volume fraction,
indices 1 and 2 refer to the dissolved gas and polymer, and
c 12 is the Flory–Huggins parameter characterizing the noncombinatoric contribution into the free energy of the gas–
polymer system. For vapors a good approximation of the
activity is the ratio p/p 0 , where p is the pressure of the gas
and po is its saturated vapor pressure at the temperature of
measurement. In the Flory–Huggins equation the f 1 values
serve as the measure of gas solubility. The volume fractions
f 1 and f 2 are interrelated as f 1 ⫹ f 2 ⫽1. An inconvenient feature of this transcendental equation is that it cannot be solved
in a straightforward manner to express the solubility f 1 as a
function of activity or pressure.
Negative deviations from Henry’s law or the isotherms
concave to the pressure axis are characteristic for sorption of
gases in glassy polymers, and in the vast majority of the
cases are described by the dual mode sorption 共or
Henry⫹Langmuir兲 model11,12
⬘ bp/ 共 1⫹bp 兲 ,
C⫽C D ⫹C H ⫽k D p⫹C H
where k D 共cm3共STP兲/cm3 atm兲 is Henry’s law solubility co⬘ 共cm3共STP兲/cm3兲 is Langmuir’s sorption capacefficient, C H
ity parameter, and b 共atm⫺1兲 is the affinity parameter. The
initial slope of an isotherm is characterized by the equation
⬘ b 兲 p.
C⫽ 共 k D ⫹C H
⬘ b is often considered as an apparent
so the value k D ⫹C H
solubility coefficient in glassy polymers. At higher pressure
pⰇ1/b the isotherm approaches the asymptote described by
the linear equation
⬘ ⫹k D p.
C⫽C H
A transition from low pressure to high pressure range occurs
at p⫽1/b, where two asymptotes intersect. However, the b
value for a certain gas–polymer system is unknown in advance, whereas the experimental range of pressure is often
limited. Therefore, graphical determination of three parameters of the dual mode sorption model is quite unreliable.
Usually, nonlinear least squares procedures are employed in
the simultaneous search for three model parameters or, otherwise, one can be obtained from an independent source,
while two others are found by linear least squares method.
The dual mode sorption model is not a single way to describe
the isotherms concave to the pressure axis. Several other
models and equations have been proposed to fit satisfactorily
the experimental data. We shall consider here some of them,
which contain preferably a minimum number of parameters
and do not require for their use knowledge of different properties of pure polymer and the gas–polymer system. A discussion of more sophisticated models and their physical basis can be found in Ref. 13.
Freundlich isotherm might offer an equally acceptable
way of analyzing the experimental data. The isotherm can be
used in either this
C⫽k pn,
or this form
1263
C⫽a p⫹kpn,
where n⬍1.
Other types of two terms 共multiparameter兲 models have
been discussed in the literature, among them the
Langmuir1⫹Langmuir2 type15
⬘ p/ 共 1⫹b 1 p 兲 ⫹b 2 C H2
⬘ p/ 共 1⫹b 2 p 兲 .
C⫽b 1 C H1
Another model that was proposed to fit this type of sorption
isotherms is the so called matrix model16
C⫽S 0 exp共 ⫺aC 兲 p.
The extension of the gas pressure range studied resulted in
finding at higher pressures a new form of the isotherm: at a
certain pressure (p g ) and solute’s concentration (C g ) the isotherm suffers an inflection; above pg it becomes linear or
convex to the pressure axis. This was explained by plasticization induced by sorbed gas and a corresponding decrease
in the glass transition temperature T g from the T g0 value
characteristic for pure polymer to the experimental temperature T. Several models were proposed to explain this behavior and describe this more complex form of the curve.
Mauze–Stern isotherm:17
⬘ b p/ 共 1⫹b p 兲 .
C⫽ 关 k D exp共 sC 兲兴 p⫹C H
Paul’s et al. isotherm:18
⬘ 关共 T g ⫺T 兲 / 共 T g0 ⫺T 兲兴 b p/ 共 1⫹bp 兲 .
C⫽k D p⫹C H0
Here and in subsequent equations, T g as a function of C can
be estimated from the relation of Chow.19 Kamiya’s et al.
isotherm:20
⬘ b p/ 共 1⫹b p 兲 其 共 1⫺C * /C g 兲 ,
C⫽C D ⫹C H ⫽k D p⫹ 兵 C H0
where C * ⫽C D ⫹ f C H with 0⬍ f ⬍1. All these models are
based on the dual mode sorption model and differ from it by
the introduction of various corrections in order to take into
account plasticization and a more complex form of an isotherm. However, the same shape of the curve can be described by an entirely different form of equation. Some of
the examples will be given below. Stern’s et al. equation:21
2
C⫽S 0 p exp关 AT g 共 T g ⫺T g0 兲共 T g0 ⫺T 兲 /T g0
兴,
and Laatikainen–Lindstrom’s equation:22
C⫽Aa p/ 兵 共 1⫺b p 兲关 1⫹ 共 a⫹b 兲 p 兴 其 .
Several alternative macroscopic and microscopic models
having more sound physical basis have been proposed 共see
e.g., Refs. 23–26兲. However, much information 共usually unavailable兲 about the polymer, sorbed gas, and gas–polymer
interaction is required to use them in fitting or predicting the
gas solubility in polymers.
In cases where nonideal behavior of gas phase is significant, all these equations can be expressed in terms of solute
fagucity f rather than pressure. However, the model parameters obtained when using the f and p values do not differ
dramatically 共see, for example, Ref. 27兲.
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1264
PATERSON, YAMPOL’SKII, AND FOGG
References
R. M. Barrer, Diffusion in and Through Solids 共Cambridge University
Press, Cambridge, 1941兲.
2
A. I. Sarakhov, Balance in Physiochemical Studies 共Nauka, Moscow,
1968兲.
3
R. M. Felder and G. S. Huvard, Methods of Experimental Physics, edited
by R. A. Fava 共Academic NY, 1980兲, Vol. 16C, pp. 315–377.
4
J. L. Lundberg, M. B. Wilk, and M. J. Huyett, J. Polym. Sci. 57, 165, 275.
5
J. L. Lundberg, M. B. Wilk, and M. J. Huyett, Ind. Eng. Chem., Fundam
2, 37 共1963兲.
6
W. R. Vieth, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22,
360 共1966兲.
7
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903
共1976兲.
8
E. S. Sanders, W. J. Koros, H. B. Hopfenberg and V. T. Stannett, J.
Membr. Sci. 13 共1983兲.
9
J. M. Braun and J. E. Guillet, Adv. Polym. Sci. 21, 107 共1976兲.
10
P. Flory, Principle Polymer Chemistry 共Cornell University Press, Ithaca,
NY, 1953兲.
11
R. M. Barrer, J. A. Barrie, and J. Slater, J. Polym. Sci. 27, 177 共1958兲.
1
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
D. R. Paul, Ber. Bunsenges. Phys. Chem. 83, 294 共1979兲.
J. H. Petropoulos, Polymeric Gas Separation Membranes, edited by D. R.
Paul and Yu. P. Yampo’skii 共CRC, Boca Raton, 1994兲 p. 17.
14
Z. Grzywna and J. Podkowka, J. Membr. Sci. 8, 23 共1981兲.
15
S. A. Stern and S. S. Kulkarni, J. Membr. Sci. 10, 235 共1982兲.
16
D. Raucher and M. Sefcik, ACS Symp. Ser. 223, 111 共1983兲.
17
G. R. Mause and S. A. Stern, J. Membr. Sci. 12, 51 共1982兲.
18
J. S. Chiou and D. R. Paul, J. Appl. Polym. Sci. 32, 2897 共1986兲.
19
T. S. Chow, Macromolecules 13, 362 共1980兲.
20
Y. Kamiya, T. Hirose, K. Mizoguchi, and Y. Naito, J. Polym. Sci., Polym.
Phys. Ed. 24, 1525 共1986兲.
21
Y. Mi, S. Zhou, and S. A. Stern, Macromolecules 24, 2361 共1991兲.
22
M. Laatikainen and M. Lindstrom, Acta Polytech. Scand., Chem. Techn.
Metal. Ser. 178, 105 共1987兲.
23
M. A. Krykin, Vysokomol. Soedin., Ser A 31, 1036 共1989兲.
24
J. G. A. Bitter, Transport Mechanism in Membrane Processes 共Plenum,
NY, 1990兲.
25
J. S. Vrentas and C. M. Vrentas, Macromolecules 24, 2404 共1991兲.
26
G. G. Lipscomb, A. I. Ch. E. J. 36, 1505 共1990兲.
27
G. K. Fleming and W. J. Koros, Macromolecules 23, 1356 共1990兲.
12
13
3. Critical Evaluations and Compilations of Selected Systems
3.1. Poly„4-Methylpentene-1…—Carbon Dioxide; Methane, other gases
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共4-methylpentene-1兲 共PMP兲; 关25068-26-2兴 共I兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis. Russian Academy of Sciences, April, 1994
Critical Evaluation:
One two, although detailed, works have been performed on gas solubility in this semicrystalline polyolefin. Tigina 1 studied the
solubility of several gases at different temperatures 共280–350 K兲 and up to high pressure, but only for a single sample with a crystallinity
of 90%. On the other hand, Puleo et al.2 investigated the solubility at the narrower pressure range 共0–2.0 MPa兲, but for several samples
with crystallinity varying from 21.6% to 66.4%. This enabled the calculation of the contributions to the solubility coefficients characteristic of amorphous and crystalline phases of PMP. The solubility coefficients S/cm3共STP兲 cm⫺3 atm⫺1 of PMP with 90% content of
crystalline phase at 310 K are compared below.
Ref. 2*
Components:
共1兲 Helium; He; 关7440-59-7兴 Hydrogen; H2 ; 关1333-74-0兴
Nitrogen; N2 ; 关7727-37-9兴 Carbon dioxide; CO2 ; 关124-38-9兴
Methane; CH4 ; 关74-82-8兴
共2兲 Poly共4-methylpentene-1兲 共PMP兲 关25068-26-2兴 共I兲
Original Measurements:
O. N. Tigina, dissertation, GIAP, Moscow, USSR, 1983.
Variables:
T/K⫽280– 350
p/MPa⫽0.1– 15
Prepared By:
S. M. Shishatskii
Experimental Data
Henry’s law solubility coefficients S/mol/m3 Pa
T/K
Pressure range, MPa
S104
N2
300
310
320
350
0.1–14
0.1–14
0.1–14
0.1–15
0.395
0.383
0.365
0.325
Gas
Ref. 1
A
B
CO2
CH4
0.51
0.346
0.28
0.078
0.12
0.091
CO2
300
310
320
0.1–6
0.1–6
0.1–6
2.9
2.3
1.8
Bearing in mind an approximate character of the calculations of S by an additive scheme,2 the agreement can be considered as reasonable.
More experimental studies are required at different temperatures and pressures for the samples with varying crystallinity before the
properties of this polymer can be properly evaluated and recommended values can be advanced.
CH4
290
300
320
330
0.1–7
0.1–10
0.1–12
0.1–14
0.43
0.38
0.32
0.29
*A: crystallinity found by DSC method.
B: crystallinity found by X-ray diffraction.
References:
1
O. N. Tigina, Dissertation, GIAP, State Institute of Nitrogen Industry, USSR, Moscow, USSR 1983.
2
A. C. Puleo, D. R. Paul, and R. K. Wong, Polymer 30, 1357 共1989兲.
1265
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
Gas
T/K
p/MPa
C105
He
293
2
4
6
8
10
2
6
1
2
6
10
1.8
4.4
8.8
15.2
24.3
1.0
4.0
8.8
0.6
2.4
5.3
2
4
6
8
2
4
6
8
2
4
6
8
2
3
4
5
4.0
9.0
14.6
21.9
3.7
8.1
13.4
20.3
2.9
6.2
10.2
15.2
2.2
121
176
230
313
333
Components:
共1兲 Carbon dioxide; CO2 ; 关124-38-9兴 Methane; CH4 ; 关74-82-8兴
共2兲 Poly共4-methylpentene-1兲 共PMP兲; 关25068-26-2兴 共I兲
Original Measurements:
A. C. Puleo, D. R. Paul, and P. K. Wong, Polymer 30, 1357
共1989兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.2 (0 – 22 atm)
Prepared By:
Yu. P. Yampol’skii
1266
Experimental Data
Sorption isotherms followed Henry’s law, i.e., were linear.
TABLE 1. Solubility coefficients S/cm3共STP兲/cm3 atm*
H2
280
290
300
350
CH4
290
300
320
N2
CO2
8
9
10
12
14
11
13
14
13
14
4
6
8
35
40
45
56
70
42
53
60
43
47
4.4
6.9
9.7
2
4
5
6
7
8
2
8.3
16.6
21.0
25.5
30.5
36.0
74
290
290
Auxiliary Information
MethodÕApparatusÕProcedure
The solubility was measured by means of an apparatus of
hydrostatic weighing the principle of which had been
described in Ref. 1.
Source and Purity of Materials:
PMP of the grade DX-810 had a density of 0.82–0.83 g/cc and
crystallinity 90%.
All the gases were ‘‘chemically pure’’ according to the Soviet
Standard.
Estimated Error:
␦ C/C⫽1.5%.
References:
1
I. F. Golubey and O. A. Dobrovol’skii, Gaz. Prom. 5, 43 共1964兲.
Sample
CH4
CO2
Q
S
A
H
1.0X
2.5X
10X
2.5R
0.22
0.20
0.19
0.18
0.24
0.26
0.32
0.20
0.59
0.52
0.49
0.52
0.63
0.69
0.83
0.54
*Description of samples seen at continuation sheet.
Within the validity of two-phase model and independence of phase properties of the composition the following local solubility coefficients
where found.
Auxiliary Information
MethodÕApparatusÕProcedure
The apparatus and procedure for sorption measuring were
similar to those described in Ref. 1.
Source and Purity of Materials:
PMP samples from Polyscience Co with different thermal
history as well as the copolymers of PMP and 4-共3-butenyl兲
benzocyclobutane 共BBC兲 were studied. Their properties are
given in Table 3. Nothing on gas purity was indicated.
Estimated Error:
No information given.
References:
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
1
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Solubility of gases in PMP: C/共mol/cm3兲 outside the range of Henry’s law
3.2. Poly„Vinyl Chloride…—Nitrogen, Carbon Dioxide, Methane
Components:
共1兲 Poly共4-methylpentene-1兲 共PMP兲; 关25068-26-2兴 共I兲
共2兲 Carbon dioxide; CO2 ; 关124-38-9兴 Methane; CH4 ; 关74-82-8兴
Original Measurements:
A. C. Puleo, D. R. Paul, and P. K. Wong, Polymer 30, 1357
共1989兲.
Experimental Data
TABLE 2. Solubility coefficients k D /cm3共STP兲/cm3 atm in amorphous and crystalline phases of PMP
Amorphous phase
Crystalline phase
Method of cryst.
determination
CH4
CO2
CH4
CO2
DSC
X-ray
0.351
0.378
0.93
0.99
0.095⫾0.013
0.060⫾0.010
0.28⫾0.03
0.20⫾0.02
TABLE 3. Description and characterization of the materials studied
Description
X-ray cryst. 共%兲
T g 共K兲
Q
S
A
H
1.0X
Commercial, quenched
Commercial, slow cooled
Commercial, annealed
Homopolymer
Cross-linked copolymer
with 1% BBC
Same with 2.5% BBC
Same with 10% BBC
Control: copolymer with
2.5% 4-phenyl-1-butene
unable to be cross-linked
53.6
61.2
66.4
62.7
49.7
303
300
295
310
310
2.5X
10X
2.5R
41.8
21.6
55.8
313
326
307
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis. Russian Academy of Sciences, April, 1994
Critical Evaluation:
In spite of the importance of PVC as an industrial polymeric material, only three investigations are available for the solubility of gases
共nitrogen 关7727-37-9兴, carbon dioxide 关124-38-9兴, and methane 关74-82-8兴兲 in this polymer.1–3 In neither case a molecular mass of the
polymer studied has been indicated. The solubility has been measured in PVC containing different amount of stabilizers.2,3 Various
methods of preparation of PVC have been employed.1 So the agreement exhibited in the apparent solubility coefficients presented
below seems to be quite reasonable. Larger discrepancy is observed between the dual-mode sorption parameters reported by El-Hibri
and Paul,2 Fried et al.,3 and those which can be calculated from the sorption isotherms obtained by Berens.1 At least partly this can
be a result of different pressure ranges used in these studies.
Gas
T/K
kD
CO2
298
308
298
298
0.184
0.587
—
—
298
298
—
—
308
302
308
298
308
0.643
—
0.0169
0.105
0.0513
N2
CH4
⬘
CH
b
40.3
0.0496
8.9
0.2094
—
—
—
—
Effect of heat treatment
—
—
—
—
4.85
—
0.4505
2.17
2.305
0.361
—
0.0448
0.0491
0.0622
⬘b
S⫽k D ⫹C H
Ref.
2.18
2.45
2.7*
2.5**
3
2
1
1
1.5*
1.7**
1
2.38
0.058
0.037
0.21
0.19
1
2
1
2
3
2
*The sample obtained by emulsion polymerization.
**The sample obtained by suspension polymerization.
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1.
Units: k D /cm3共STP兲 cm⫺3 atm⫺1; C H
Further experimental studies are required before this system can be properly evaluated and the parameters of sorption isotherms can be
advanced.
1267
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
References:
1
A. R. Berens, Polym. Eng. Sci. 20, 95 共1980兲.
2
M. J. El-Hibri and D. R. Paul, J. Appl. Polym. Sci. 30, 3649 共1985兲.
3
J. R. Fried, E. Parker, and R. L. Ballard, Japan-US Polymer Symposium, 1985, p. 247.
IUPAC-NIST SOLUBILITY DATA SERIES
Sample
Components:
共1兲 Nitrogen; N2 ; 关7727-37-9兴 Carbon dioxide; CO2 ;
关124-38-9兴 Methane; CH4 ; 关74-82-8兴
共2兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲
Original Measurements:
A. R. Berens, Polym. Eng. Sci 20, 95 共1980兲.
Variables:
T/K⫽298– 303
p/kPa⫽0 – 100
Prepared By:
Yu. P. Yampol’skii
TABLE 3. Concentration isotherms of n-butane in emulsion PVC at 303 K; gravimetric data, sorption times ⬎18 h 共the original data
were represented graphically兲
Never-heated
Experimental Data
TABLE 1. Concentration isotherms of CO2 in emulsion PVC at 298 K 共gravimetric data兲. 共The original data were represented
graphically兲
Never-heated
Heat-treated
Concentration
共mg1*/g2*兲
Pressure/kPa
Concentration
共mg1*/g2*兲
7.57
13.98
28.37
41.41
55.25
68.51
81.78
94.66
0.36
0.67
1.29
1.76
2.22
2.61
2.98
3.30
7.41
15.03
28.11
41.59
54.68
68.56
82.26
94.77
0.21
0.38
0.73
1.04
1.32
1.58
1.82
2.03
Never-heated
Never-heated
Concentration 共mg1*/g2*兲
Relative Pressure
Concentration 共mg1*/g2*兲
0.01
0.02
0.04
0.10
0.91
1.49
2.47
5.96
0.01
0.04
0.10
—
0.36
1.08
2.27
—
Auxiliary Information
MethodÕApparatusÕProcedure
Gravimetric sorption experiments were carried out using a
Cahn microbalance and, for highly sorbing gases like butane, a
vacuum system described in Ref. 1. For nitrogen and partly for
carbon dioxide a volumetric gas sorption method was used by
means of Digisorb 2500 automatic surface area analyzer
共Micromeritics Instruments Corp.兲.
Source and Purity of Materials:
Gases: research grade purity.
PVC: obtained by suspension and emulsion techniques 共in the
form of powder兲, density 1.404⫾0.014 g/cm3.
‘‘Never-heated’’ samples: recovered and dried at temperature
not exceeding 273 K.
‘‘Heat-treated’’ samples: heated 1 h at 373 K.
References:
1
A. R. Berens, Angew Makromol. Chem. 47, 97 共1975兲.
N2 (T⫽298 K)
Heat-treated
Relative Pressure
Estimated Error:
No information given.
TABLE 2. Sorption isotherms of CO2 in suspension PVC 共Digisorb data兲. 共The original data were represented graphically兲
CO2 (T⫽298 K)
Heat-treated
Heat-treated
Pressure
/kPa
Concentration
共mg*
1 /g*
2兲
Pressure
/kPa
Concentration
共mg*
1 /g*
2兲
Pressure
/kPa
Concentration
共mg*
1 /g*
2兲
Pressure
/kPa
Concentration
共mg*
1 /g*
2兲
10.79
15.70
22.57
40.64
49.28
59.29
66.76
73.82
79.32
84.24
88.17
90.33
92.88
95.04
96.81
98.39
100.75
—
—
0.48
0.69
0.98
1.63
1.91
2.25
2.49
2.82
2.95
3.07
3.16
3.21
3.29
3.35
3.36
3.37
3.38
—
—
10.61
15.32
22.39
40.08
48.72
58.94
66.60
73.48
79.57
83.70
88.22
90.18
92.15
94.11
96.67
98.44
100.40
—
—
0.33
0.46
0.67
1.14
1.36
1.59
1.80
1.96
2.08
2.19
2.31
2.37
2.42
2.46
5.51
2.54
2.57
—
—
11.32
15.02
22.02
40.14
47.96
58.26
66.08
72.88
78.44
82.76
86.88
89.35
91.63
94.72
96.57
98.84
93.47
97.81
99.66
0.01
0.02
0.02
0.04
0.04
0.05
0.06
0.06
0.06
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.08
11.13
15.04
21.63
40.17
48.00
58.31
65.74
72.95
78.73
83.05
86.97
88.82
91.51
93.77
96.66
97.90
98.72
99.96
—
0.01
0.01
0.01
0.02
0.03
0.03
0.03
0.03
0.03
0.03
0.04
0.04
0.04
0.04
0.04
0.04
0.04
0.04
—
PATERSON, YAMPOL’SKII, AND FOGG
Pressure/kPa
1268
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Nitrogen; N2 ; 关7727-37-9兴 Carbon dioxide; CO2 ;
关124-38-9兴 n-Butane; C5H10; 关106-97-8兴
共2兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲
Auxiliary Information
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon
dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲
Original Measurements:
M. J. El-Hibri and D. R. Paul, J. Appl. Polym. Sci. 31, 2533
共1986兲.
Variables:
Prepared By:
T/K⫽308
p/MPa⫽0–2.5 共0–25 atm兲
Yu. P. Yampol’skii
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.0377
0.0169
0.5870
1.1320
0.4505
8.9390
0.0410
0.0448
0.2094
0.6340
0.5800
0.0513
4.8500
5.1600
2.3050
0.3610
0.2430
0.0622
CO2**
CH4
*No drawing, annealing at 358 K.
**Stretching to draw ratio 3 at 358 K.
FIG. 1. Sorption isotherms of Ar, N2, CH4 共a兲 and CO2 共b兲 in PVC at 308 K.
1269
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
k D /cm3共STP兲 cm⫺3 atm⫺1
Ar
N2
Co2
CO2*
Source and Purity of Materials:
CH4: purity 99%.
Other gases: purity 99.7%.
PVC: B.F. Goodrich Co. 共CS 5760兲; density 1.389 g/cm3, glass
transition temperature 344 K. It contained 2% of tin stabilizer.
Estimated Error:
No information given.
Experimental Data
Dual mode sorption parameters for various gases in PVC at 308 K
Gas
MethodÕApparatusÕProcedure
The sorption measurement was carried out using the pressure
decay method, Ref. 1.
Original Measurements:
J. R. Field, B. E. Parker, and R. L. Ballard, Japan-US Polymer
Symposium 1985, pp. 247–248.
Variables:
T/K⫽298
p/MPa⫽0.16–1.27
Prepared By:
Yu. P. Yampol’skii
Components:
共1兲 Neon; Ne; 关7440-01-9兴 Hydrogen; H2; 关1330-74-0兴
共2兲 Tricresyl phosphate: C19H21O4P; 关1330-78-5兴
共3兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲
Variables:
Prepared By:
T/K⫽283–339
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Dual mode sorption parameters for methane and carbon dioxide in PVC at 298 K
Experimental Data
Smoothed solubility coefficients S 104 /cm3共STP兲/cm3 cm Hg*
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
Sample
CH4
CO2
0.105
0.184
2.17
40.3
0.0491
0.0496
Unplasticized PVC
CO2
Pressure/Mpa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
共V 1* (STP)/V 2* )
0.17
0.34
0.47
0.55
0.67
0.78
0.88
0.98
1.06
1.16
0.38
0.53
0.85
1.11
1.13
1.42
1.61
1.67
1.83
1.95
0.16
0.27
0.41
0.54
0.64
0.77
0.88
1.00
1.14
1.27
3.48
5.28
7.74
9.71
10.98
12.72
13.99
15.27
16.94
18.01
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption isotherms were obtained by the pressure decay
method. Ref. 1. Conditioning at 23 atm for 60 h and degassing
preceded the measurements.
Source and Purity of Materials:
PVC: Samples were compression modeled at 450 K from a
mixture of low molecular mass PVC resin and 3% of a stablizer
共Cincinnati Milacorn 共TM-692兲兲.
Estimated Error:
No information given.
References:
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
1
Temperature/K
399
309
4.6
4.4
2.2
2.1
283
291
2.8
3.0
1.2
1.4
Plasticized PVC
319
Hydrogen
4.0
Neon
2.0
329
339
3.8
3.7
1.9
1.8
297
Hydrogen
3.2
Neon
1.5
307
313
3.4
3.5
1.8
1.9
*Pressure was not indicated: presumably, p⬍atm.
Auxiliary Information
MethodÕApparatusÕProcedure
Volumetric method by Meares1 was used. The sample was
allowed to equilibrate with a gas, then nonsorbed gas was
swipped away with mercury. The volume of gas subsequently
desorbed from the sample was measured by means of McLeod
gauge.
Source and Purity of Materials:
PVC from ICI 共99% ‘‘pure’’兲 in a form of powder was studied.
The plasticized sample contained 0.325 mol fraction of
tricresylphosphate. Films were prepared by calendering after
adding 2 parts of cadmium stearate and 0.2 parts of stearic acid
per 100 parts of the polymer.
Estimated Error:
No information given.
References:
P. Meares, Trans. Faraday Soc. 54, 40 共1958兲.
1
PATERSON, YAMPOL’SKII, AND FOGG
TABLE 2. Sorption isotherms of methane and carbon dioxide in PVC at 298 K 共The original data were represented graphically兲
CH4
Original Measurements:
R. M. Barrer, R. Mallinder, P.S.-L. Wong, Polymer 8, 321
共1967兲.
1270
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane: CH4; 关74-82-8兴
共2兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲
3.3. Poly„Vinyl Acetate…—Various Gases
Components:
共1兲 Chlorine; Cl2; 关7782-50-5兴
共2兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲
Original Measurements:
S. Wachi, H. Morikawa, and H. Inoue, AIChE J. 34, 1683
共1988兲.
Variables:
T/K⫽293–345
关 Cl2兴 ⫽0 – 35 mol/m3
Prepared By:
Yu. P. Yampol’skii
Experimental Data
In the subatmospheric range of pressure the concentration of dissolved chlorine C共mol/m3兲 obeyed the following equation:
Components:
共1兲 Helium; He; 关7440-59-7兴 Neon; Ne; 关7440-01-9兴
Hydrogen; H2; 关1333-74-0兴
共2兲 Poly共vinyl acetate兲 共PVA兲; 关9003-20-7兴 共III兲
Original Measurements:
P. Meares, Trans. Faraday Soc. 54, 40 共1958兲.
Variables:
T/K⫽281–313
p/kPa⫽0.6–27
Prepared By:
Yu. P. Yampol’skii
Experimental Data
C⫽Sy,
where y is the concentration of Cl2 in gas phase 共mol/m3兲. Temperature dependence of the solubility coefficient S is given below:
293
313
323
343
S
20
14
14
11
The following equation was obtained for the temperature dependence of S:
S⫽0.280 exp共 ⌬H S /RT 兲 ,
where ⌬H s is the heat of sorption, is 10 480 kJ/mol.
Auxiliary Information
MethodÕApparatusÕProcedure
Physical sorption of chlorine in PVC was determined using the
constant volume cell method. The pressure changes were
measured by means of a sensor 共Toyoda-kouki PMS-5,5H兲.
Source and Purity of Materials:
PVC 共SC-16, DP-600兲 supplied by Kaneguchi Chemical
Industries Co was prepared by suspension polymerization.
No information on the purity of chlorine is given.
Estimated Error:
No information given.
Auxiliary Information
MethodÕApparatusÕProcedure
After establishing equilibrium between the sample and the gas,
the gas was swept away using mercury. The sorbed gas was
then allowed to desorb into a known volume.
Source and Purity of Materials:
PVA: Gelva V145, M w ⫽450 000 共determined from viscosity兲,
M n ⫽10 000, glass transition temperature 298.6 K.
Estimated Error:
No information given.
1271
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
FIG. 2. Solubility coefficients S/(cm3共STP兲 cm⫺3 atm⫺1) for gases in PVA. Curves 1: Helium; curves 2: Neon; curves 3: Hydrogen.
Continuous curves taken from equilibrium experiments, broken curves from diffusion experiment.
IUPAC-NIST SOLUBILITY DATA SERIES
T/K
Original Measurements:
S. Zhou and S. A. Stern, J. Membr. Sci. 50, 19 共1990兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共vinyl acetate兲, 共PVA兲; 关9003-20-7兴 共III兲
Original Measurements:
S. Takishima, K. Nakamura, M. Sasaki, and H. Masuoka, Sekiyu
Gakkaishi 33, 332 共1990兲.
Variables:
T/K⫽268 and 278
p/MPa⫽0.2–2.0
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽313.2 and 323.2
p/MPa⫽0.898– 8.755
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for hydrogen in PVA 共Compiler兲.
共the value of b seems to be grossly overestimated兲
Experimental Data
Solubility of carbon dioxide in PVA expressed as mass fractions w
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
C h⬘ /cm3共STP兲 cm⫺3
b/atm⫺1
268
278
0.0146
0.0173
0.096
0.027
1.88
1.84
p/Mpa
w
p/Mpa
313.2 K
0.0416
0.0532
0.0936
0.1264
0.1429
0.1723
0.2123
0.2786
0.3909
0.898
1.819
1.906
3.309
4.698
5.655
6.519
7.861
0.0254
0.0485
0.0533
0.0978
0.1397
0.1696
0.2073
0.2668
Auxiliary Information
Source and Purity of Materials:
PVA 共Aldrich Chemical Co兲 had ‘‘viscosity’’ average molecular
weight 158 000 and glass transition temperature 303 K.
The purity of carbon dioxide 共Chugoku Teisan兲 was 99.9%.
Estimated Error:
No information given.
References:
1
W. J. Koros, Ph.D. dissertation, The University of Texas at
Austin, 1977.
FIG. 3. Sorption isotherms for hydrogen in PVA at 268 K and 278 K.
Auxiliary Information
Source and Purity of Materials:
H2 : purity ⬎99.99%.
PVA: Aldrich Chemical Co.; density 1.191 g/cm3, glass
transition temperature 296 K 共via DSC兲.
Estimated Error:
Relative precision: solubility ⬍16%, p⬍0.05%; precision in
T:⬍0.05 K.
PATERSON, YAMPOL’SKII, AND FOGG
1.258
1.449
2.650
3.467
3.846
4.583
5.659
6.885
8.755
w
323.2 K
MethodÕApparatusÕProcedure
Measurements of the solubility were made using a pressure
decay method. The apparatus was similar to one designed by
Koros.1 Pressure was measured by a semiconductor sensor
PX-1A 共Tsukasu Sokken兲. The correction for compressibility
of gas phase was introduced.
MethodÕApparatusÕProcedure
The solubility was measured by a gravimetric method. The
apparatus included a Cahn microbalance, Model C 1100.
Pressure was measured by a gauge 共Model 901 B, Dresser
Industries Inc.兲.
1272
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Hydrogen; H2; 关1333-74-0兴
共2兲 Poly共vinyl acetate兲 共PVA兲; 关9003-20-7兴 共III兲
3.4. Poly„Acrylonitrile…—Carbon Dioxide
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Sulfur dioxide; SO2;
关7446-09-5兴 Ethylene; C2H4; 关74-85-1兴 Chloromethane; C2H6;
关74-84-0兴 Methyl chloride; CH3Cl; 关74-87-3兴
共2兲 Poly共vinyl acetate兲 共PVA兲; 关9003-20-7兴 共III兲
Original Measurements:
D. D. Liu and J. M. Prausnitz, J. Polym. Sci., Polym. Phys. Ed.,
15, 145 共1977兲.
Variables:
T/K⫽398– 473
Prepared By:
Yu. P. Yampol’skii
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共acrylonitrile兲 共PAN兲; 关25014-41-9兴 共IV兲
Variables:
T/K: 298–338 K
P/MPa: 0–3.0
Temperature/K
398
423
448
473
Carbon dioxide
Sulfur dioxide
Ethylene
Ethane
Methyl chloride
990
55
2300
2700
160
1200
87
2900
3000
220
1500
135
3300
3400
300
1700
187
3400
3700
410
Auxiliary Information
Source and Purity of Materials:
PVA 共Cellomer Associates兲 had a molecular mass 83 400.
All gases 共from Matheson Gas Products兲 had a purity better than
99%.
T/K
k D /共cm3共STP兲/cm3 atm兲
⬘ /共cm3共STP兲/cm3兲
CH
b/共atm⫺1兲
298
328
338
0.206
0.160
0.134
3.615
3.496
2.852
0.187
0.139
0.126
Auxiliary Information
MethodÕApparatusÕProcedure
The sorption apparatus and procedures used in the sorption
experiments are the same as described in Ref. 1.
Source and Purity of Materials:
PAN from Standard Oil was used.
CO2 共Raleing Co.兲 had purity 99.9%.
Estimated Error:
No information given.
References:
1
W. R. Vieth and J. A. Eilenberg, J. Appl. Polym. Sci. 16, 945
共1972兲.
1273
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Solute
Estimated Error:
No information given.
Prepared By:
A. K. Bokarev
Experimental Data
Dual mode sorption parameters of CO2 sorption in PAN
Experimental Data
Mass fraction Henry’s law constants/atm
MethodÕApparatusÕProcedure
Inverse gas chromatographic method was used. Two columns
were employed: hydrocarbons were studied in
Chromosorb-supported column, Fluoropac-80 packed column
was used for other solutes. Helium served as a carrier gas.
Correction for pressure drop in the column was introduced.
Original Measurements:
G. S. Huvard, V. T. Stannett, W. J. Koros, and H. B.
Hopfenberg, J. Membr. Sci. 16, 945 共1972兲.
1274
References
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
Original Measurements:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
The system PMMA–carbon dioxide has been studied in a large number of papers 共Refs. 1–11兲. However, different temperature and
pressure ranges studied and different units of the data reported prevent the comparison of all the results.
Figure 4共a兲 shows the temperature dependence of the solubility coefficient S/共g g⫺1 atm⫺1兲. The values obtained by pressure decay
method and expressed in the standard units 共cm3共STP兲/cm3 atm兲 were recalculated by evaluator using the density 1.19 g/cm3 of PMMA.
p/atm
4
5,6
7,8
11
5
10
20
13.5
21.6
34.9
11.4
18.0
28.7
14.0
22.4
35.5
13.2
21.9
36.1
References:
1
P. L. Durrill and R. G. Griskey, A. I. Ch. E. J. 12, 1147 共1965兲.
2
G. B. Okonishnikov and V. P. Skripov, Vysokomol. Soedin., Ser. B 25, 890 共1973兲.
3
J. M. H. Fechter, H. B. Hopfenberg, and W. Koros, J. Polym. Eng. Sci. 21, 925 共1981兲.
4
W. J. Koros, G. N. Smith, and V. Stannett, J. Appl. Polym. Sci. 26, 159 共1981兲.
5
E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. Stannett, J. Membr. Sci. 13, 161 共1983兲.
E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. Stannett, J. Membr. Sci. 18, 53 共1984兲.
W. J. Koros and E. S. Sanders, J. Polym. Sci., Polym. Symp. 72, 142 共1985兲.
8
E. S. Sanders and W. J. Koros, J. Polym. Sci., Polym. Phys. Ed. 24, 175 共1986兲.
9
I. S. Liau and M. A. McHugh, Supercritical Fluid Technology, edited by J. M. L. Penninger et al. 共Elsevier, New York, 1985兲, p.
415.
10
R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B: Polym. Phys. 25, 2497 共1987兲.
11
P. C. Raymond and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 28, 2103 共1990兲.
6
7
FIG. 4. 共a兲 共䊉兲 Ref. 共1兲, 共4兲, 共5,6兲, 共7,8兲; 共䊊兲 Ref. 共2兲; 共䊏兲 Ref. 共3兲; 共⽧兲 Ref. 共9兲; 共䊐兲 Ref. 共10兲.
Reasonable agreement can be seen between the temperature dependences reported by different authors 共Refs. 2, 9, and 10兲. However,
a significant and apparently systematic discrepancy 共by a factor of 2兲 is observed between the values obtained at 308 K by pressure decay
method 共Refs. 3 and 5–8兲 and gravimetric method 共Refs. 2 and 10兲. Further studies are necessary to explain this result.
TABLE 1. Dual mode sorption parameters for the system PMMA–carbon dioxide at 308 K.
kD/cm3共STP兲 cm⫺3 atm⫺1
1.140
0.916
1.068
1.200
⬘ /cm3共STP兲 cm⫺3
CH
14.90
12.59
18.00
15.60
b/atm
⫺1
0.218
0.236
0.186
0.172
Critical Evaluation:
They are in reasonable agreement. The predictions of sorption isotherms using them are presented in Table 2.
Ref.
4
5,6
7,8
11
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 2. Concentrations C/(cm3共STP兲 cm⫺3) of CO2 dissolved in PMMA at 308 K
3.5. Poly„Methyl Methacrylate…—Carbon Dioxide, Other Gases
Components:
共1兲 Helium; He; 关7440-59-7兴 Neon; Ne; 关7440-01-9兴 Argon;
Ar; 关7440-37-1兴 Krypton; Kr; 关7439-90-9兴 Nitrogen; N2;
关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
Original Measurements:
P. L. Durill, Ph.D. dissertation. Virginia Polytech. Inst., 1965.
P. L. Duriff, R. G. Griskey, AIChE J. 12, 1147 共1965兲.
Variables:
T/K: 461
p/MPa: 0.26– 1.9 共2.6–19 atm兲
Prepared By:
A. K. Bokarev
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
Original Measurements:
G. B. Okonishnikov and V. P. Skripov, Vysokomol. Soedin.,
Ser. B. 25, 890 共1973兲.
Variables:
T/K⫽291– 353
p/MPa⫽0.4– 6.0
Prepared By:
S. M. Shishatskii
Experimental Data:
Linear sorption isotherms were found in the pressure range shown.
Experimental Data
Henry’s law solubility constants S for gases in PMMA
Solubility coefficients, S, for carbon dioxide in PMMA
Pressure/atm
S/(cm3共STP兲/g atm)
He
Ne
Ar
Kr
N2
CO2
3.8–7.2
2.7
3.2–7.4
2.6–4.6
5.7–15.0
4.0–19.0
0.066
0.126
0.105⫾0.063
0.122
0.045⫾0.028
0.260⫾0.024
Auxiliary Information
MethodÕApparatusÕProcedure
The equipment and a manometrical procedure for solubility
measurements were similar to those of Lundberg et al.1
Source and Purity of Materials:
PMMA 共Lucite兲 used is a product of du Pont de Nemours Co.:
␳ ⫽1.20 g/cm3.
Gases from Air Reduction Co., had a minimum purity:
CO2-99.5%; N2-99.90%; Ar-99.997%. He-99.99%.
Gases 共Matheson Co兲, included as impurities: Ne-14 ppm He,
Kr-12 ppm N2 and 23 ppm Xe.
Estimated Error:
␦ C/C⭐8%.
References:
J. L. Lundberg, M. B. Wilk, and M. J. Huyett, Appl. Phys. 31,
1131 共1960兲.
T/K
291
295.7
313
333
353
10 S/(g/g atm)
4.4
3.9
2.4
1.5
1.05
3
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were made using a McBain spring
balance described in Ref. 1. A correction for buoyancy and for
sample’s swelling were introduced.
Source and Purity of Materials:
ST-1-110 grade PMMA studied did not contain any plasticizers.
No data are given on the purity of CO2 taken from a cylinder.
Estimated Error:
No information given.
References:
A. I. Sakharov, Balance in Physicochemical Studies 共in
Russian兲, 共Nauka, Moscow, 1968兲.
1275
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
Original Measurements:
J. M. H. Fechter, H. B. Hopfenberg, and W. J. Koros, Polym.
Eng. Sci. 21, 925 共1981兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
Original Measurements:
W. J. Koros, G. N. Smith, and V. Stannett, J. Appl. Polym. Sci.
26, 159 共1981兲.
Variables:
T/K⫽293– 313
p/kPa⫽13– 93
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽308– 353
p/MPa⫽0 – 2.2
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for carbon dioxide in PMMA at various temperatures
Experimental Data:
Sorption isotherms of carbon dioxide in:
共I兲 ‘‘as received’’ PMMA microspheres with 14530 Å diameter at 303, 308, and 313 K,
共II兲 preswollen PMMA microspheres with 5436 Å diameter at 303 K.
共The original data were represented graphically兲
T⫽303 K
T⫽308 K
T/K
k D /cm3共STP兲cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
308
328
353
1.14
0.74
0.505
14.9
12.0
7.13
0.218
0.116
0.0683
T⫽313 K
Sorption enthalpies:
13.02
26.23
39.81
52.85
66.07
79.65
92.88
0.15
0.27
0.36
0.45
0.54
0.62
0.71
13.17
26.17
39.71
53.09
66.46
79.83
93.02
0.17
0.29
0.41
0.51
0.60
0.70
0.80
Pressure/kPa
Pressure/kPa
Sorption
(g 1* /(100 g * ) 2 )
Pressure/kPa
Sorption
(g 1* /(100 g * ) 2 )
13.03
26.78
39.83
53.05
66.28
79.51
92.73
0.12
0.22
0.31
0.39
0.47
0.54
0.62
13.22
26.80
39.67
52.90
66.31
79.72
93.13
0.09
0.19
0.26
0.33
0.39
0.46
0.52
⌬H D ⫽⫺3.9 kcal mol⫺1; ⫺16.3 kJ mol⫺1
⌬H b ⫽⫺5.6 kcal mol⫺1; ⫺23.4 kJ mol⫺1
PATERSON, YAMPOL’SKII, AND FOGG
Sorption
(g 1* /(100 g * ) 2 )
共I兲
共II兲
Auxiliary Information
MethodÕApparatusÕProcedure
Measurements were made on a Cahn RG Electrobalance.
Samples of the polymer had been preswollen by exposure of
methanol vapours (p/p s ⫽0.98). After quick removal of
methanol gas sorption isotherms of carbon dioxide were
obtained.
1276
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
Source and Purity of Materials:
CO2 : purity 99.99%.
PMMA: microspheres of diameters 1453 Å 共I兲 and 5436 Å 共II兲.
M n 共I兲⫽206 000, M n 共II兲⫽137 000, glass transition temperature
共II兲 393 K.
FIG. 4. 共b兲 Sorption isotherms of carbon dioxide in PMMA.
Auxiliary Information
Estimated Error:
No information given.
MethodÕApparatusÕProcedure
The sorption equipment described in Refs. 1 and 2 was used.
The procedure involved ‘‘interval’’ sorption measurement and
standard pretreatment: equilibration with carbon dioxide at 20
atm for 6 h before measurement.
Source and Purity of Materials:
CO2 : Air Products, purity ⬎99.9%.
PMMA: Aldrich Chemical Co., M w ⫽599 000.
Estimated Error:
No information given.
References:
1
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165
共1977兲.
2
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Ethylene; C2H4; 关74-85-1兴
共3兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
Original Measurements:
E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. Stannett,
J. Membr. Sci. 13, 161 共1983兲
Variables:
Prepared By:
T/K⫽308
p/MPa⫽0 – 0.8
A. K. Bokarev
Experimental Data
TABLE 1. Sorption isotherms of pure C2H4 and pure CO2 in PMMA at 308 K. 共The original data were represented graphically兲
C2H4
CO2
CO2
Sorption
(V 1* (STP)/V *
3)
Pressure/MPa
Sorption
(V *
1 (STP)/V *
3)
Pressure/MPa
Sorption
(V *
1 (STP)/V *
3)
0.09
0.16
0.19
0.22
0.27
0.32
0.34
0.39
0.43
0.47
0.53
0.56
0.64
0.73
0.75
0.80
2.03
2.92
3.36
3.81
4.29
4.90
5.13
5.62
5.99
6.46
6.92
7.04
7.83
8.29
8.85
9.06
0.06
0.11
0.12
0.15
0.20
0.21
0.24
0.27
0.30
0.34
0.39
0.42
0.45
0.45
0.48
0.50
2.37
3.58
4.03
4.64
5.85
5.97
6.79
7.39
8.05
8.80
9.66
9.92
10.45
10.64
10.92
11.34
0.53
0.55
0.56
0.59
0.63
0.65
0.67
0.70
0.70
—
—
—
—
—
—
—
11.90
12.13
12.30
12.46
13.25
13.56
13.72
14.05
14.19
—
—
—
—
—
—
—
TABLE 2. Dual mode sorption parameters for pure component sorption of CO2 and C2H4 in PMMA at 308 K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
FIG. 5. Mixed gas sorption of CO2 /C2H4 in PMMA at 1.53⫾0.05 atm CO2.
CO2
C2H4
0.916
0.531
12.59
7.09
0.236
0.259
Auxiliary Information
The following figure concerns mixed gas sorption of CO2 and C2H4. Points are experimental data, solid lines are predictions of DMS
equation and dashed lines are prediction of DMS equation for mixed penetrants:
⬘ b1p1 /共1⫹b1p1⫹b2p2兲
C1⫽kD1p1⫹⫹CH1
⬘ b2p2 /共1⫹b1p1⫹b2p2兲.
C2⫽kD2p2⫹CH2
All the parameters for gases 共1兲 and 共2兲 are pure components sorption parameters from Table 2.
MethodÕApparatusÕProcedure
A novel apparatus to measure precisely both pure and mixed
gas sorption in glassy polymers is described. A method for
accurate calibration and operation of the equipment is
discussed, based upon complete closure of the material balance
of all gaseous components in all phases. The overall scheme
of the sorption apparatus is illustrated and the details of the
sorption cell are presented.
Source and Purity of Materials:
CO2 : Air Products, purity 99.99% 共Coleman grade兲.
C2H4 : Airco Research Triangle Park, purity 99.5% 共2.5 grade兲.
PMMA: Aldrich Chemical Co., M w ⫽600 000.
Estimated Error:
No information given.
1277
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Gas
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/MPa
Original Measurements:
E. S. Sanders and W. J. Koros, J. Membr. Sci. 18, 53 共1984兲.
Variables:
T/K⫽308
p/MPa⫽0 – 0.81
Prepared By:
Yu. P. Yampol’skii
1278
Experimental Data
TABLE 1. Sorption isotherms of pure carbon dioxide and ethylene in PMMA at 308 K 共The original data were represented graphically兲
Sorption
(V *
1 (STP)/V *
3)
Pressure/MPa
Sorption
(V 1* (STP)/V *
3)
Pressure/MPa
Sorption
(V *
1 (STP)/V *
3)
0.07
0.13
0.20
0.22
0.27
0.31
0.35
2.40
4.09
5.92
6.25
7.28
8.08
8.87
0.43
0.46
0.46
0.49
0.51
0.56
0.57
9.86
10.51
10.70
10.84
11.31
12.16
12.44
0.64
0.66
0.68
0.70
0.71
—
—
13.09
13.61
13.80
14.22
14.36
—
—
0.10
0.16
0.20
0.23
0.27
0.33
2.16
3.00
3.47
3.80
4.31
4.97
0.35
0.39
0.44
0.47
0.54
0.56
5.20
5.67
6.00
6.47
6.93
7.00
0.65
0.73
0.80
0.81
—
—
7.82
8.29
9.08
9.13
—
—
Pressure/MPa
CO2
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Ethylene; C2H4; 关74-85-1兴
共3兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
C2H4
TABLE 2. Dual mode sorption parameters for pure carbon dioxide and ethylene in PMMA at 308 K
Gas
Pressure based parameters
CO2
C2H4
Fugacity based parameters
CO2
C2H4
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.916
0.531
12.59
7.09
0.236
0.259
1.015
0.490
11.86
8.32
0.243
0.217
The two following figures 共Fig. 6 and 7兲 deal with mixed gas sorption of CO2 and C2H4. Points are experimental data, solid lines are
predictions of DMS equation and dashed lines are prediction of equation:
C1⫽KD1p1⫹C1⬘b1p1 /共1⫹b1p1⫹b2p2兲,
⬘ b2p2 /共1⫹b1p1⫹b2p2兲.
C2⫽kD2p2⫹CH2
All the parameters for gases 共1兲 and 共2兲 are pure components sorption parameters from Table 2.
FIG. 6. Mixed gas sorption of CO2 and C2H4 at 1.53 atm CO2 共a兲 and 3.64 atm CO2 共b兲.
Auxiliary Information
MethodÕApparatusÕProcedure
Apparatus specifically designed to measure mixed gas sorption
was described in Ref. 1. It consisted of four chambers: one
chamber contained the polymer, three others were used to
meter gases accurately 共individual or mixtures兲 into the first
one or for sampling gases directly into a gas chromatograph.
All chambers were provided with pressure transducers 共Gould
Model PA 822兲. The method is based on the concept of
maintaining material balance. For both pure gases and
mixtures. PVT behavior was taken into account.
Source and Purity of Materials:
CO2 : Air Products, purity 99.99%.
C2H4 : Airco, purity 99.5%.
PMMA: Aldrich Chemical Co., M v ⫽600 000, glass transition
temperature 393 K.
Estimated Error:
Relative precision of pressures: ⫾0.3%.
Precision in T: ⫾0.01 K.
References:
1
E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. T.
Stannett, J. Membr. Sci. 13, 161 共1983兲.
IUPAC-NIST SOLUBILITY DATA SERIES
1279
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
FIG. 7. Mixed gas sorption of CO2 and C2H4 at 3.93 atm C2H4 共a兲 and 2.06 atm C2H4 共b兲.
Original Measurements:
W. J. Koros and E. S. Sanders, J. Polym. Sci. Polym. Symp. 72,
142 共1985兲. E. S. Sanders and W. J. Koros, J. Polym. Sci.,
Polym. Phys. Ed. 24, 175 共1986兲.
Variables:
T/K⫽308
p/MPa⫽0–2.0
Prepared By:
A. K. Bokarev
1280
Experimental Data
Dual mode sorption parameters for pure component sorption of CO2, C2H2, and N2O in PMMA
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
* /cm3共STP兲 cm⫺3
CH
b/atm⫺1
CO2
C 2H4
N 2O
0.944
0.461
1.068
19.68
12.40
18.00
0.158
0.189
0.186
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Ethylene; C2H4; 关74-85-1兴 Nitrous oxide; N2O;
关10024-97-2兴
共3兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
FIG. 8. Sorption isotherms for pure gases in PMMA at 308 K.
The following figures 共Figs. 9–11兲 refer to mixed gas sorption of CO2 /C2H4 and CO2 /N2O. Points are experimental data, solid lines are
predictions of DMS equation and dashed lines are prediction of equation:
⬘ b1p1 /共1⫹b1p1⫹b2p2兲,
C1⫽kD1p1⫹CH1
⬘ b2p2 /共1⫹b1p1⫹b2p2兲.
C2⫽kD2p2⫹CH2
All the parameters for gases 共1兲 and 共2兲 are pure components sorption parameters from Table 1.
FIG. 9. High-pressure mixed-gas sorption of CO2 /NO2 at 5.00 atm N2O.
IUPAC-NIST SOLUBILITY DATA SERIES
FIG. 11. High-pressure mixed-gas sorption of CO2 /C2H4 at 4.87 atm C2H4.
1281
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
FIG. 10. High-pressure mixed-gas sorption of CO2 /C2H4 at 5.05 atm CO2.
MethodÕApparatusÕProcedure
An apparatus for precise measurement of both pure and mixed
gas sorption in glassy polymers was used. Details in Ref. 1.
Source and Purity of Materials:
CO2: Air Products; purity 99.99% 共Coleman grade兲.
C2H4: Airco Research Triangle Park; purity 99.5% 共2.5 grade兲.
N2O: Airco Research Triangle Park; purity 99.5% 共4.5 grade兲.
PMMA: Aldrich Chemical Co.; M w ⫽600 000.
Estimated Error:
No information given.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
Original Measurements:
I. S. Liau and M. A. McHugh, Supercritical Fluid Technology.
edited by J. M. L. Penninger, M. Radosz, M. A. McHugh, and V.
J. Krukonis 共Elsevier, Amsterdam, 1985兲, pp. 415–434.
Variables:
T/K⫽315– 341.2
p/MPa⫽0 – 26.2
Prepared By:
A. K. Bokarev
1282
Experimental Data
Sorption isotherms of carbon dioxide in poly共methyl methacrylate兲.
References:
1
E. S. Sanders, W. J. Koros, B. Hopfenberg, and V. Stannett, J.
Membr. Sci. 13, 161 共1983兲.
2
W. J. Koros, J. Polym. Sci., Polym. Phys. Ed. 18, 981 共1980兲.
T⫽315 K
T⫽331.2 K
T⫽341.2 K
Weight fraction
Pressure/MPa
Weight fraction
Pressure/MPa
Weight fraction
Pressure/MPa
2.78
4.52
5.52
7.71
9.16
10.21
14.74
17.57
17.73
19.13
23.77
25.03
25.94
26.89
27.45
27.94
28.40
28.77
0.67
1.23
1.66
2.38
3.10
4.71
5.78
6.89
7.30
8.87
11.63
13.41
14.86
15.91
17.97
21.74
23.48
25.95
2.94
8.67
12.51
12.67
18.29
18.81
22.01
23.98
24.30
25.41
26.78
—
—
—
—
—
—
—
1.36
4.12
6.12
7.13
9.28
11.59
14.28
17.83
19.57
21.88
24.91
—
—
—
—
—
—
—
3.99
14.06
15.50
18.11
20.76
24.30
26.51
30.16
30.62
32.74
—
—
—
—
—
—
—
—
1.96
7.40
8.12
11.23
12.79
15.36
17.86
20.67
22.37
26.16
—
—
—
—
—
—
—
—
Auxiliary Information
MethodÕApparatusÕProcedure
An apparatus similar to that described in Ref. 1 was used for
pressure equilibrium sorption of supercritical fluid solvent into
solid polymers up to 300 atm. Experimental apparatus
included: gas/liquid compressor 共Superpressure Inc., Model
46-14025-1兲, pressure gauges 共Dresser Industries, Models
Z15R, Z15T兲, holding tank 共316 stainless steel, volume of
123.33⫾0.28 cm3兲, and high pressure view cell. The
temperature was measured using a platinum resistance element
共Degussa, Inc.兲.
Source and Purity of Materials:
CO2: Linde Co.
PMMA: M w ⫽60 600, M n ⫽33 200, glass transition temperature
378 K.
Estimated Error:
Relative precision of solubilities ⬍3%.
Precision in T: ⫾0.2 K.
References:
1
S. Ozava, S. Kusumi, and Y. Ogino, Proceeding of the Fourth
Int. Conference on High Pressure, Kyoto, Japan, 1974.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
3.6. Poly„Ethyl Methacrylate…—Carbon Dioxide, Other Gases
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
Original Measurements:
R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B:
Polym. Phys. 25, 2497 共1987兲.
Variables:
T/K⫽305.9– 332.0
p/MPa⫽0 – 10.4
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Sorption isotherms of carbon dioxide in PMMA at elevated pressures. Sorption⫽vol. of gas at STP/mass of unswollen polymer
3
⫺1
共cm 共STP兲 g 兲. 共The original data were represented graphically兲
T⫽305.9 K
T⫽315.2 K
T⫽332.0 K
Sorption
共V *
1 共STP兲/g *
2兲
Pressure/MPa
Sorption
共V *
1 共STP兲/g *
2兲
Pressure/MPa
Sorption
共V *
1 共STP兲/g *
2兲
0.60
1.30
2.10
2.92
3.76
4.61
5.49
6.47
7.41
8.35
9.39
10.40
—
11.13
21.51
33.43
46.65
58.32
70.00
83.73
103.41
119.47
119.56
119.67
121.57
—
0.64
1.34
2.16
2.92
3.74
4.50
5.38
6.23
7.25
8.12
8.89
9.66
10.38
7.79
18.42
28.55
36.86
47.25
54.53
65.70
77.37
93.18
107.44
113.18
120.21
135.99
1.30
2.12
3.00
3.83
4.69
5.57
6.28
7.31
8.08
8.88
9.67
10.37
—
13.78
22.88
29.40
37.99
44.25
50.78
58.06
70.27
83.22
94.89
105.79
113.33
—
Evaluator:
Yu. P. Y. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Three independent studies1–3 have been reported on sorption of carbon dioxide in PEMA. In all three cases, a high molecular weight
1
polymer was used. Koros et al. observed, in the pressure range 0–2 MPa, a dual mode sorption shapes of the isotherms concave to the
pressure axis. However, at higher pressures, the isotherms change to linear or even nonlinear form convex to the pressure axis2,3 that was
explained in terms of the effect of plastisization exerted by carbon dioxide.
Figure 12 shows the temperature dependence of the pressure p g at which the glass transition in the polymer takes place, as well as
the corresponding concentration C g of carbon dioxide. It is seen that the data of Refs. 2 and 3 are in a good agreement. The both curves
reach the temperature axis as it can be anticipated, in the vicinity of the glass transition temperature for the pure PEMA.
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/MPa
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲
Auxiliary Information
MethodÕApparatusÕProcedure
A gravimetric method was used. The polymer samples were
suspended from a quartz spring. Correction for buoyancy were
introduced using CO2 densities up to higher pressures.
Source and Purity of Materials:
CO2: Linde Co., purity 99.99%.
PMMA: Scientific Polymer Products, M w ⫽90 000, glass
transition temp. 378 K.
FIG. 12. Temperature dependence of 共a兲 p g /MPa and 共b兲 C g /(cm3共STP兲 cm⫺3).
1283
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Estimated Error:
No information given.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲
Original Measurements:
W. J. Koros, G. N. Smith, and V. Stannett, J. Appl. Polym. Sci.
26, 159 共1981兲.
Variables:
T/K⫽303– 328
p/MPa⫽0 – 2.1
Prepared By:
Yu. P. Yampol’skii
1284
Experimental Data
Dual mode sorption parameters for carbon dioxide in PEMA
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
303
313
328
1.28
1.14
0.932
8.14
3.78
0.996
0.193
0.204
0.246
Sorption enthalpies: ⌬H D ⫽⫺2.6 kcal mol⫺1; ⫺10.9 kJ mol⫺1 ; ⌬H b ⫽⫹2.0 kcal mol⫺1; ⫹8.4 kJ mol⫺1
FIG. 13. Temperature dependence of the solubility coefficients.
The least squares treatment of the data gave the following equation:
log共 S/cm3共STP兲 cm⫺3 atm⫺1兲 ⫽⫺4.353⫹1.433/共 T/K兲 .
The corresponding enthalpy of sorption ⌬H s ⫽⫺27.5 kJ/mol.
It can be recommended for the prediction of the initial slope of the isotherms. For the pressure of carbon dioxide up to 2 MPa the dual
mode sorption parameters reported by Koros et al.1 can be used. For the higher pressure, the works of Chiou and Paul2 and Kamiya
et al.3 give rather close values of solubility, but the sorption isotherm obtained in Ref. 3 should be, tentatively, recommended since they
cover the wider range of pressure and temperature.
References:
1
W. J. Koros, G. N. Smith, and V. Stannett, J. Appl. Polym. Sci. 26,159 共1981兲.
J. S. Chiou and D. R. Paul, J. Membr. Sci. 45, 167 共1989兲.
Y. Kamiya, K. Mizoguchi, T. Hirose, and Y. Naito, J. Polym. Sci., Part B: Polym. Phys. 27, 879 共1989兲.
2
3
FIG. 14. Sorption isotherms of carbon dioxide in PEMA.
Auxiliary Information
MethodÕApparatusÕProcedure
The sorption equipment described in Refs. 1 and 2 was used.
The procedure involved ‘‘interval’’ sorption measurement and
standard pretreatment: equilibration with carbon dioxide at 20
atm for 6 h before measurement.
Source and Purity of Materials:
CO2 : Air Products; purity ⬎99.9%.
PEMA: Aldrich Chemical Co., M w ⫽309 000.
Estimated Error:
No information given.
References
1
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165
共1977兲.
2
W. J. Koros, and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed.
14, 1903 共1976兲
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Figure 13 shows Van’t Hoff plot for the solubility coefficients taken from the graphs2,3 or calculated by the dual mode sorption
parameters. The values reported in all three works are in good agreement.
TABLE 3. Sorption isotherms of various gases in PEMA at 308 K 共The original data were represented graphically兲
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon
dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲
Original Measurements:
J. S. Chiou and D. R. Paul, J. Membr. Sci. 45. 167 共1989兲.
Variables:
T/K⫽298– 318
p/MPa⫽0 – 3.8
Prepared By:
Yu. P. Yampol’skii
Pressure/MPa
Sorption
共V 1* (STP兲/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
0.33
0.48
0.61
0.94
1.07
1.22
1.51
1.40
1.61
1.75
1.98
2.04
2.27
2.45
1.68
1.94
2.05
2.25
2.42
2.66
2.77
2.79
2.85
3.29
3.43
3.68
—
—
3.21
3.21
3.69
3.82
4.08
—
—
1.52
1.82
2.14
2.23
2.60
3.44
4.15
4.63
5.00
5.57
2.83
3.09
3.20
3.54
—
6.01
6.42
6.71
7.34
—
1.03
1.28
1.42
1.62
2.00
2.70
3.09
3.47
3.75
4.47
2.07
2.33
2.53
2.73
2.76
4.69
5.2
5.28
5.66
5.90
1.56
1.62
1.89
2.11
2.25
2.32
2.63
0.95
0.95
1.10
1.23
1.34
1.39
1.54
2.83
2.91
3.16
3.39
3.53
3.67
3.78
1.62
1.73
1.86
2.03
1.99
2.21
2.21
Ar
0.27
0.39
0.50
0.77
0.85
1.04
1.26
Experimental Data
TABLE 1. Dual mode sorption parameters for methane and argon in PEMA
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
CH4
298
308
313
308
0.183
0.165
0.144
0.0902
2.87
2.24
1.87
1.20
0.0677
0.0536
0.0422
0.0405
Ar
Solubility coefficient for N2 at 308 K: 0.058 cm3共STP兲 cm⫺3 atm⫺1 共calculated by compiler兲.
TABLE 2. Sorption isotherms of methane in PEMA at 298 K 共a兲 and 318 K 共b兲 共The original data were represented graphically兲
共a兲
共b兲
Sorption
共V *
1 (STP兲/V *
2)
Pressure/MPa
Sorption
(V *
1 (STP)/V *
2)
Pressure/MPa
Sorption
(V *
1 (STP)/V *
2)
0.20
0.42
0.64
0.82
1.02
1.25
0.26
0.27
0.55
0.66
0.81
0.97
1.24
0.73
1.41
2.02
2.55
3.03
3.62
0.55
0.59
1.12
1.40
1.60
1.91
2.45
1.43
1.63
1.85
2.06
2.28
2.47
1.37
1.43
1.74
1.96
2.19
2.29
2.50
4.11
4.50
5.05
5.62
5.95
6.19
2.65
2.81
3.29
3.62
4.16
4.14
4.51
2.71
2.90
3.33
3.39
—
—
2.67
2.76
3.00
3.29
3.30
3.37
3.67
6.85
7.18
8.10
8.27
—
—
4.89
4.99
5.39
5.83
5.89
6.42
6.42
0.25
0.70
0.51
1.29
0.75
1.89
1.02
2.44
1.34
3.20
CH4 共films conditioned in 30 atm of CO2兲
0.33
0.90
0.52
1.38
0.61
1.62
0.77
2.02
0.92
2.30
N2
0.28
0.17
0.34
0.26
0.62
0.41
0.68
0.46
0.90
0.59
1.05
0.61
1.45
0.87
FIG. 15. Sorption isotherms of carbon dioxide in PEMA at 288, 298, 308, and 318 K.
1285
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Pressure/MPa
CH4
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
MethodÕApparatusÕProcedure
Sorption isotherms were measured by the pressure decay
method using a dual-volume sorption cell.
Source and Purity of Materials:
PEMA: DuPont Co. 共Elvacite 2042兲.
M w ⫽438 000, glass transition temp. 342 K 共DSC method兲.
Estimated Error:
No information given.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲
Original Measurements:
Y. Kamiya, K. Mizoguchi, T. Hirose, and Y. Naito, J. Polym.
Sci., Part B: Polym. Phys. 27, 879 共1989兲.
Variables:
T/K⫽288
p/MPa⫽0 – 5.1 (50 atm)
Prepared By:
A. K. Bokarev
1286
Experimental Data
The isotherms were treated by the equation:
⬘ b p 关共 1⫺C * /C g 兲 / 共 1⫹b p 兲兴 ,
C⫽C D ⫹C H ⫽ 关 k D exp共 sC * 兲兴 p⫹C H0
⬘ , and b have the usual meaning; s is the parameter characterizing the concentration dependence of the
where the parameters k D , C H0
ordinary dissolution, that is, s⫽0 and s⬎0 correspond to Henry’s law and Flory–Huggins dissolution, respectively. C g is the solute
concentration corresponding to the glass transition and
⬘ b p/ 共 1⫹b p 兲兴 / 关 1⫹ f C H0
⬘ b p/C g 共 1⫹b p 兲兴 ,
C * ⫽C D ⫹ f C H ⫽ 关 k D p⫹ f C H0
where f is the ratio of the plastisizing ability of a Langmuir species 共H兲 to that of an ordinary dissolved species 共D兲.
TABLE 1. Parameters for ordinary dissolution 共Flory–Huggins’s兲 and for Langmuir isotherms
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
C H0
b/atm⫺1
103 S/cm3共STP兲 cm⫺3
C g /cm3共STP兲 cm⫺3
288
297
308
318
328
338(T g )
348
358
2.11
1.90
1.42
1.15
0.97
0.84
0.76
0.67
28.9
22.5
15.8
9.5
3.5
0
0
0
0.097
0.065
0.055
0.045
0.022
0
0
0
3.0
2.3
2.6
2.8
3.1
2.4
1.9
3.1
⫺0.17
⫺0.34
⫺0.28
⫺0.27
⫺0.22
⫺0.40
⫺0.51
⫺0.19
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
TABLE 2. Sorption and desorption isotherms of carbon dioxide in PEMA at 共a兲 288 K, 共b兲 297 K, 共c兲 308 K, and 共d兲 318 K 共The original
data were represented graphically兲
Pressure/MPa
共a兲 Sorption
0.11
0.21
0.61
1.10
Desorption
0.21
0.36
0.61
0.82
共c兲 Sorption
0.21
0.50
0.71
0.89
Desorption
0.31
0.43
0.71
1.06
Solubility
(V 1* (STP)/V 2* )
Pressure/MPa
Solubility
(V 1* (STP)/V 2* )
3.96
7.92
19.99
30.75
1.58
2.06
2.23
2.56
42.26
50.19
54.91
64.90
3.04
3.54
3.77
—
79.99
99.79
109.59
—
9.24
13.76
21.12
26.97
1.08
1.34
1.82
2.32
32.07
36.97
46.79
59.05
2.82
3.29
—
—
71.88
90.17
—
—
Pressure/MPa
共a兲 Sorption
0.30
0.70
1.08
Desorption
0.14
0.51
0.90
共b兲 Sorption
1.23
2.23
Desorption
0.31
0.70
Solubility
共V 1* (STP)/V 2* )
Pressure/MPa
Solubility
(V 1* (STP)/V 2* )
Pressure/MPa
Solubility
(V 1* (STP)/V 2* )
3.59
7.00
10.97
1.49
2.26
3.01
14.38
23.27
31.59
4.03
4.98
—
43.88
55.79
—
2.08
5.30
8.89
1.28
2.05
3.21
12.49
21.19
34.24
4.40
—
—
48.42
—
—
10.04
19.50
3.43
5.01
30.29
46.56
—
—
—
—
2.65
5.68
1.75
2.84
15.34
25.37
4.26
—
38.99
—
6.04
16.79
31.33
2.23
4.21
4.90
46.62
99.07
129.61
5.02
—
—
122.46
—
—
3.40
9.24
13.58
20.76
1.10
1.29
1.71
2.03
26.23
27.37
35.67
44.73
2.60
3.46
3.98
—
54.55
77.19
88.89
—
共c兲 Sorption
0.37
1.09
1.58
1.83
2.65
8.34
11.37
13.64
2.08
2.57
3.06
3.53
16.10
19.70
23.68
28.22
4.02
4.16
5.01
—
32.20
33.34
41.29
—
4.34
9.06
10.58
14.54
1.29
1.68
1.88
2.64
20.21
25.69
28.52
40.80
3.21
3.67
4.92
4.97
50.24
59.68
87.61
88.56
共d兲 Sorption
0.15
0.60
0.62
1.10
1.51
3.61
4.55
7.02
1.58
2.08
2.56
3.04
10.43
14.22
17.63
21.23
3.27
3.77
4.26
5.02
22.94
26.54
30.14
36.20
6.23
7.18
12.65
17.56
1.47
2.05
2.36
2.93
22.86
31.36
35.89
45.52
3.38
4.03
4.38
—
55.34
66.85
75.34
—
5.10
10.21
1.58
2.56
18.91
31.76
3.55
5.02
45.74
69.54
8.31
13.42
2.07
3.06
25.33
38.56
4.27
—
57.26
—
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption and desorption isotherms were measured with an
electronic microbalance 共Cahn model 2000兲 placed in a
high-pressure chamber in Ref. 1
Source and Purity of Materials:
CO2: purity 99.99%.
PEMA: prepared by radical polymerization; density 1.120 g/cm3
at 298 K 共flotation method兲, glass transition temperature of
penetrant-free PEMA 334 K.
Estimated Error
No information given.
References:
1
Y. Kamiya, K. Mizoguchi, T. Hirose, and Y. Naito. J. Polym.
Sci., Polym. Phys. Ed. 24, 535 共1986兲.
1287
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
共d兲 Sorption
0.36
0.86
Desorption
0.61
1.09
Pressure/MPa
IUPAC-NIST SOLUBILITY DATA SERIES
共b兲 Sorption
0.21
0.69
1.47
Desorption
0.11
0.29
0.49
0.91
Solubility
共V 1* (STP)/V 2* )
TABLE 3. Sorption and desorption isotherms of carbon dioxide in PEMA at 共a兲 328 K, 共b兲 338 K, 共c兲 348 K, and 共d兲 358 K 共The original
data were represented graphically兲
Original Measurements:
U. B. Goradia and H. G. Spencer, J. Appl. Polym. Sci. 33, 1525
共1987兲.
Variables:
T/K: 288–353
p/kPa: 0–79.74
Prepared By:
A. K. Bokarev
Components:
共1兲 Argon: Ar; 关7440-37-1兴
共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲
Original Measurements:
Y. Kamiya, K. Mizoguchi, Y. Naito, and D. Bourbon, Int.
Congress on Membranes 共ICOM-90兲, Chicago, 1990, pp. 1382–
1384.
Variables:
T/K⫽278.2– 358.2
p/MPa⫽0 – 5.0 (0 – 50 atm)
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Apparent Henry’s law solubility coefficient
Experimental Data
TABLE 1. Dual mode sorption parameters for argon in PEMA
k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1
333
333*
342
348
353
2.10(⫹3%)
2.06(⫹3%)
2.44(⫹6%)
2.27(⫹7%)
1.96(⫹9%)
*Sorption experiment with annealed samples.
TABLE 2. Dual mode sorption model parameters
T/K
k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b 102 /cm Hg⫺1
288
303
318
3.02(⫾7%)
2.73(⫾10%)
2.24(⫾9%)
4.83(⫾10%)
3.10(⫾14%)
1.77(⫾15%)
2.10(⫾11%)
1.20(⫾17%)
1.05(⫾19%)
Auxiliary Information
Source and Purity of Materials:
Atactic PEMA obtained from Polyscience, Inc., as a primary
standard, had an M w of 350 000 with M w /M n ⫽2.2; T g
⫽338 K.
Estimated Error:
References:
1
J. A. Yavorsky and H. G. Spencer, J. Appl. Polym. Sci. 31, 501
共1986兲.
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
278.4
283.2
288.2
298.2
308.2
318.2
328.2
338.2
343.2
348.2
353.2
—
—
—
—
—
—
0.104
0.094
0.091
0.088
0.089
5.23
4.21
3.55
2.75
2.23
2.36
3.49
1.40
0.21
—
—
0.024
0.023
0.023
0.020
0.019
0.014
0.006
0.006
0.020
—
—
PATERSON, YAMPOL’SKII, AND FOGG
T/K
MethodÕApparatusÕProcedure
A low pressure, finite volume, sorption apparatus previously
described1 was used at pressures up to 60 cm Hg.
1288
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲
TABLE 2. Sorption isotherms of argon in PEMA 共The original data were represented graphically兲
T⫽278.4 K
T⫽298.2 K
T⫽328.2 K
T⫽358.2 K
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
0.51
0.54
0.56
0.99
1.02
1.04
1.51
2.01
2.01
2.01
2.51
3.01
3.02
3.98
3.98
3.98
4.90
4.90
—
—
—
—
—
—
—
—
—
—
1.01
0.99
1.05
1.86
1.81
1.85
2.61
3.47
3.39
3.37
4.16
4.78
4.70
6.01
5.94
5.89
7.13
7.10
—
—
—
—
—
—
—
—
—
—
0.34
0.39
0.85
1.10
1.10
2.08
2.08
3.07
3.07
3.32
4.05
4.11
5.04
5.03
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0.28
0.33
0.76
0.92
0.99
1.81
1.85
2.67
2.71
2.91
3.49
3.56
4.33
4.39
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0.51
0.52
0.10
1.01
1.50
1.49
1.99
2.00
2.96
2.96
3.95
3.97
4.95
4.95
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0.54
0.49
1.07
1.05
1.58
1.54
2.10
2.06
3.12
3.05
4.06
4.02
5.07
5.02
—
—
—
—
—
—
—
—
—
—
—
—
—
—
0.51
0.52
1.00
1.01
0.99
1.50
1.50
1.99
2.00
1.98
1.99
2.48
2.48
2.99
3.02
2.98
2.99
2.97
3.47
3.49
3.95
3.96
3.97
4.37
4.49
4.90
4.96
4.95
0.74
0.67
1.43
1.35
1.29
2.08
1.92
2.75
2.69
2.60
2.52
3.23
3.08
3.85
3.85
3.74
3.67
3.61
4.33
4.17
4.90
4.81
4.69
5.28
5.22
5.84
5.87
5.72
Auxiliary Information
Source and Purity of Materials:
Ar: purity 99.999%.
PEMA: glass transition temperature 334 K.
Variables:
T/K: 259.4–315.4
p/kPa: 0–67
Prepared By:
A. K. Bokarev
Experimental Data
Sorption isotherms of ethane are linear in the range 259–315 K. Solubility coefficients can be described by van’t Hoff equation
S⫽5.25⫻10⫺5 ⫺exp共 ⫺⌬H s /RT 兲 cm3共STP兲/cm3 cm Hg,
where ⌬H s ⫽⫺14.9 kJ/mol.
Sorption isotherms of butane are linear in the range 283–313 K: at lower temperatures they are convex to the pressure axis. The
isotherms were represented by exponential relation
C⫽S 共 0 兲 p⫺exp共 ␴ •c 兲 ,
where S(0) is the Henry’s law solubility coefficient and ␴ is a constant which depends on temperature. The parameters of this equation
are given below:
T/K
S(0)/cm3共STP兲 cm⫺3 共cm Hg兲⫺1
␴ /cm⫺3 cm⫺3共STP兲
273
283
293
303
313
0.432
0.336
0.252
0.176
0.179
0.0128
0.0051
0
0
0
S共0兲 can be described by the van’t Hoff equation
S 共 0 兲 ⫽5.24⫻10⫺4 exp共 ⫺⌬H g /RT 兲 cm⫺3共STP兲 cm⫺3 共cm Hg兲⫺1, where ⌬H s ⫽⫺20.6 kJ/mol.
Auxiliary Information
MethodÕApparatusÕProcedure
The solubility was measured by a gravimetric method. The
apparatus included a Cahn microbalance, Model 2000 RG.
Source and Purity of Materials:
PBMA 共Scientific Polymer Products of Ontario, NY兲 had a
density of 1.06 g/cm3 at 299 K and glass transition temperature
共DSC兲 in the temperature range from 295 to 308 K.
The minimum purity of ethane and n-butane 共Linde Division of
Union Carbide Corp.兲 were 99.0%.
Estimated Error:
No information given.
Estimated Error:
No information given.
1289
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
Sorption isotherms were determined gravimetrically with an
electronic microbalance Cahn 2000.
Original Measurements:
S. A. Stern, U. M. Vakil, and G. R. Mauze, J. Polym. Sci., Part
B: Polym. Phys. 27, 405 共1989兲.
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/MPa
Components:
共1兲 Ethane; C2H6; 关74-84-0兴 n-butane; C4H10; 关106-97-8兴
共2兲 Poly共n-butyl methacrylate兲 共PBMA兲; 关9003-63-8兴 共VIII兲
Components:
共1兲 Argon; Ar; 关7440-37-1兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Only three papers1–3 have been published for the system PS–argon. The work of Schulz and Gerrens1 is inconsistent and should be
3
excluded from further consideration. Vieth et al. reported sorption isotherms and dual mode sorption parameters for the solubility in
oriented and unoriented PS at the ambient temperature, whereas Durrill2 studied the solubility in PS above its glass transition temperature.
Pressure dependence of solubility is given below based on the parameters of sorption isotherms obtained by Vieth et al.3
p/MPa
C/cm3共STP兲 cm⫺3
0.5
1.0
1.5
2.0
1.2
2.2
3.2
4.0
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Critical Evaluation:
Four investigations1–4 have been reported for the solubility of nitrogen in PS. The work by Scultz and Gerrens2 seems to be
unreliable: the pressure of the measurement is not indicated, besides there is some inconsistency among the solubility coefficients for
various gases (N2 ,He, H2). The only paper reported the solubility for the ambient temperature is the paper of Vieth et al.,4 and its results
can be, tentatively, recommended for this most important range of temperature.
Two papers1,3 deal with solubility at higher temperature above T g of PS and at higher pressure. The results of them are in disagreement. Tentatively, one can give the preference to the results of Durrill.3 Further careful work is needed before really reliable values can
be advanced as recommended for this system.
The values of solubility at different pressures and 298 K given below are based on dual mode sorption parameters reported in Ref. 4.
C/cm3共STP兲 cm⫺3
0.5
1.0
1.5
2.0
0.6
1.2
1.7
2.3
1
References:
11
D. M. Newitt and K. E. Weale, J. Chem. Soc. 1541 共1948兲.
V. Schulz and H. Gerrens, Z. Phys. Chem. 7, 182 共1956兲.
P. L. Durrill, dissertation, Virginia Polytechnic Institute, 1965.
4
W. R. Vieth, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22, 360 共1966兲.
2
3
PATERSON, YAMPOL’SKII, AND FOGG
p/MPa
Combined consideration of the results from Refs. 2 and 3 results in the enthalpy of sorption of argon in PS equal to ⫺7.1 kJ/mol.
References:
G. V. Schulz and H. Gerrens, Z. Phys. Chem. 7, 182 共1956兲.
2
P. L. Durrill, dissertation, Virginia Polytechnic Institute, 1965.
3
W. R. Vieth, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22, 360 共1996兲.
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
1290
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.7. Polystyrene—Various Gases
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994.
Critical Evaluation:
Nine experimental studies are available for the solubility of carbon dioxide in PS. In several papers this system was studied in the
range of glassy state of this polymer and at pressures as high as 7.0 MPa.3,4,6–9 Newitt et al.1 and Durrill2 have studied the solubility at
higher temperatures and pressures. Chiou, Maeda, and Paul5 have investigated sorption in plasticized PS.
Different samples of PS having molecular mass in the range 36 000–850 000 were studied in the range of temperature 293–393 K.
Up to 333 K sorption isotherms are concave to the pressure axis, i.e., agree with the dual mode sorption model, above this temperature
they are linear possibly due to the plasticization effect exerted by carbon dioxide on PS.
A summary of the dual mode sorption parameters as well as the apparent solubility coefficients S are given in Table 1.
TABLE 1. The dual mode sorption parameters at different temperatures
kD
⬘
CH
b
⬘b
S⫽k D ⫹C H
Ref.
293
303
308
308
313
313
323
333
0.801
0.713
0.535
0.50
0.586
0.80
0.70
0.66
13.0
11.0
8.6
9.2
8.8
8.3
6.0
5.0
0.184
0.134
0.194
0.16
0.092
0.14
0.15
0.11
3.19
2.19
2.20
1.97
1.40
1.96
1.60
1.21
7
7
9
4
7
6
6
6
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1.
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H
The parameters k D and b decrease with temperature but do not form an overall smooth dependence. Accordingly, it is not included
into this critical evaluation and, for the temperatures 293–313 K, the results of Sada et al.7 and, for the range 313–333 K, the results of
Carfagna et al.6 should be recommended.
⬘ and S found by different authors4,6,7,9 are in good agreement and form, within experimental scatter, a smooth
The values of C H
temperature dependence 共Figs. 16 and 17兲. The results of Vieth et al.3 reveal a deflection from these and were excluded from the group
of recommended values.
FIG. 17. Temperature dependence of apparent solubility coefficient S/共cm3共STP兲 cm⫺3 atm⫺1兲.
⬘ intersects the horizontal axis at about 360 K, i.e., somewhat lower than accepted glass transition
Temperature dependence of C H
temperature of PS 共about 373 K兲.
Temperature dependence of the apparent solubility coefficient can be given by the equation
log共 S/cm3共STP兲 cm⫺3 atm⫺1兲 ⫽⫺2.840⫹970.0/共 T/K兲 .
Enthalpy of sorption is equal to ⫺18.6 kJ/mol.
The interval of higher pressures has been investigated by Wissinger and Paulaitis.8 They found nearly linear sorption isotherms,
probably, owing to the plasticization effects. The solubilities found in Ref. 6 and 8 for 3.0 MPa, where the pressure ranges of two works
overlap, are in good agreement. So for higher pressure the results of Ref. 8 may be recommended.
All the results considered above concern high molecular mass PS 共M M about 105兲. Toi and Paul4 studied the effects of the molecular
mass of PS on the solubility and the parameters of the dual mode sorption isotherms. The increase in molecular mass from 3 600 to
⬘ , while two other parameters remain
850 000 results in the increase in the solubility at any given pressure as well as in the values of C H
intact.
3
The solubility in PS stretched or biaxially oriented was studied by Vieth et al. and Carfagna et al.6 It was shown that the
deformation tends to decrease the solubility. Meanwhile, no quantitative recommendation can be made basing on the results of these
papers.
The range of rubbery state of PS was investigated much less thoroughly.1,2 The results of Newitt and Weale1 and of Durrill2 do not
agree with each other. The results of Ref. 2 may be preferred at least tentatively. Further studies are needed to resolve this range of
conditions.
K. Toi and D. R. Paul, Macromolecules 15, 1104 共1982兲.
J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 30, 4019 共1985兲.
6
C. Carfagna, L. Nicodemo, L. Nicolais, and G. Campanile, J. Polym. Sci., Part B: Polym. Phys. 24, 1805 共1986兲.
7
E. Sada, H. Kumazawa, H. Yakushji, Y. Bamba, K. Sakata, and S-T. Wang, Ind. Eng. Chem., Res. 26, 433 共1987兲.
8
R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B: Polym. Phys. 25, 2497 共1987兲.
9
P. C. Raymond and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 28, 2079 共1990兲.
4
5
⬘ /共cm3共STP兲 cm⫺3兲.
FIG. 16. Temperature dependence of Langmuir adsorption parameter C H
1291
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
References:
1
D. M. Newitt and K. E. Weale, J. Chem. Soc. 1541 共1948兲.
2
P. L. Durrill, dissertation, Virginia Polytechnic Institute, 1965.
3
W. R. Veith, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22, 360 共1966兲.
IUPAC-NIST SOLUBILITY DATA SERIES
T/K
1292
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
C/cm3共STP兲 g⫺1
p/atm
100
200
8.3
16
100
200
300
400
500
600
20
24
26
28
100
200
300
p/atm
T⫽398.6 K
Critical Evaluation:
A number of studies have been published for the system PS–methane. Sorption isotherms in the range of pressure 0–3 MPa at the
temperatures 293–323 K, i.e., in the glassy state have been reported by several authors.3,4,6–8 Lundberg et al.1,2,5 have studied this system
at much higher pressures and at temperatures above the glass transition of this polymer. These two sets of data should be considered
separately.
A summary of the parameters of the dual mode sorption model for this system are presented in Table 1 at different temperatures. The
⬘ and S values decrease with temperature monotonously while
apparent solubility coefficients S are shown as well. It is seen that the C H
⬘
temperature dependence for two other parameters k D and b is not evident. The linear extrapolation of the temperature dependence of C H
indicates that Langmuir capacity parameter vanishes at the temperature somewhat lower than the glass transition temperature of PS.
1–8
TABLE 1. Dual mode sorption parameters at different temperatures
T/K
kD
⬘
CH
b
⬘b
S⫽k D ⫹C H
Ref.
293
298
298
303
303
308
308
313
318
323
0.305
0.193
0.16
0.277
—
0.175
0.135
0.244
0.165
—
5.00
3.25
7.4
4.93
—
2.53
3.28
3.63
1.98
—
0.0811
0.164
0.108
0.0623
—
0.146
0.061
0.0439
0.112
—
0.7105
0.726
0.9592
0.584
0.5244
0.5444
0.335
0.4034
0.3868
0.3344
7
4
3
7
6
4
8
7
4
6
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1.
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H
Smoothed concentration of methane dissolved at different temperatures and pressures are shown in Table 2. The solubility coefficients
obtained in high pressure 共0–3.0 MPa兲4,7,8 and low pressure 共up to 7 kPa兲6 ranges are in reasonable agreement.
TABLE 2. Smoothed data for solubility C/共cm3共STP兲cm⫺3兲 of methane in PS
Pressure/MPa
T/K
1.0
2.0
3.0
Ref.
293
298
308
318
5.3
3.9
3.0
2.7
9.2
6.3
5.0
4.7
12.7
8.5
6.8
6.5
7
4
4, 8
4
⬘ , b兲 go
The results of Vieth et al.3 show that biaxial orientation leads to the decrease in solubility. All three model parameters 共k D , C H
down as well.
1,2
5
For the range of higher pressures and temperatures the earlier results have been proved later to be somewhat erroneous. Recalculated data are presented in Ref. 5 and can be recommended.
Smoothed values of solubility are presented below for different pressures and temperatures.
C/cm3共STP兲 g⫺1
T⫽428.6 K
T⫽461.6 K
References:
1
J. L. Lundberg, B. M. Wilk, M. J. Huyett, J. Polym. Sci. 57, 165, 275 共1962兲.
2
J. L. Lundberg, B. M. Wilk, and M. J. Huyett, Ind. Eng. Chem., Fundam. 2, 37 共1963兲.
3
W. R. Vieth, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22, 360 共1966兲.
4
W. R. Vieth, C. S. Frangoulis, and J. A. Rionda, J. Colloid Interface Sci. 22, 454 共1966兲.
5
J. L. Lundberg, E. J. Mooney, and C. E. Rogers, J. Polym. Sci.: Part A 7, 947 共1969兲.
J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci. 20, 21 共1980兲.
E. Sada, H. Kumazawa, H. Yakushiji, Y. Bamba, K. Sakata, and S-T. Wang, Ind. Eng. Chem., Res. 26, 433 共1987兲.
8
P. C. Raymond and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 28, 2079 共1990兲.
6
7
12
21
30
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 3. Solubility of methane in PS at high pressure and temperature
Components:
共1兲 Methane; CH4; 关74-82-8兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
T/K
408
423
448
473
498
S102
1.56
1.33
1.06
0.88
0.76
References:
1
L. I. Stiel and D. F. Harnish, AIChE J. 22, 117 共1976兲.
2
J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci. 20, 21 共1980兲.
3
M. Ohzono, Y. Iwai, and Y. Arai, Kagaku Kogaku Ronbunshu 10, 536 共1984兲.
4
J. A. Yavorsky, dissertation, Clemson University, 1984.
5
Y. Iwai, M. Ohzono, and Y. Arai, Chem. Eng. Commun. 34, 225 共1985兲.
M. E. Stewart, H. B. Hopfenberg, W. J. Koros, and N. R. McCoy, J. Appl. Polym. Sci. 34, 721 共1987兲.
6
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Three experimental studies1–3 are available for the solubility of 2-methylpropane in PS. The results have been obtained by means of
inverse gas chromatography.
Solubility coefficients S/共cm3共STP兲 g⫺1 atm⫺1兲 from these papers are compared below:
T/K
Ref.
423
448
473
498
1
2, 3
1.20
0.77
0.86
0.66
0.65
0.58
0.52
0.50
It is evident that there is a reasonable agreement between the data at higher temperatures, but at the lower temperature the discrepancy
becomes significant. Further research is desirable to resolve this system.
References:
1
L. I. Suel and D. F. Harnish, AIChE. J. 22, 117 共1976兲.
2
M. Ohzono, Y. Iwai, and Y. Arai, Kagaku Kogaku Ronbunshu 10, 536 共1984兲.
3
Y. Iwai, M. Ohzono, and Y. Arai, Chem. Eng. Commun. 34, 225 共1985兲.
1293
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Critical Evaluation:
The papers where solubility data have been reported for the system PS–propane can be partitioned into two groups. Barrie et al.,2
4
6
Yavorsky, and Stewart et al. have studied sorption isotherms by gravimetric or volumetric methods at the temperatures 293–353 K and
in the pressure range 0–5 kPa. Inverse gas chromatography was employed in measurement solubility at higher temperatures.4–6 So these
two groups of works cover the different intervals of conditions and should be considered separately.
In the lower temperature range, the dual mode sorption parameters for the sorption in glass PS have been reported only in Refs. 2 and
⬘ values than those reported by Yavorsky.4 There are some regular
4 Barrie et al. found much higher values of b and the smaller C H
⬘ b. On the other hand, the data of Barrie et al.2 agree reasonably with the
discrepancies in the apparent solubility coefficients S⫽k D ⫹C H
sorption isotherms reported in Ref. 6. Bearing in mind this, and the greater scatter of the points in the sorption isotherms obtained by
Yavorsky4 the results of Barrie et al. should be tentatively recommended for the temperature range 293–333 K.
⬘ reported in Ref. 2 go down with temperature and vanish at about 360 K, i.e., below the
The values of Langmuir capacity constant C H
glass transition temperature of PS.
In the high temperature range, the data of Iwai et al.3,5 and Stiel and Harnish1 agree quite reasonably. Average solubility coefficients
S/共g Mpa⫺1 g⫺1兲 based on these results are given below:
Components:
共1兲 2-Methylpropane; C4H10; 关75-28-5兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
The solubility coefficients measured at higher temperatures2 were recalculated to convert them into the same units as in Ref. 3, i.e.,
3
共cm 共STP兲/cm atm兲. Volumetric thermal expansion coefficients4 2⫻10⫺4 K⫺1 at T⬍T g 共䊉兲 and 6⫻10⫺4 K⫺1 at T⬎T g 共䊊兲 were used
in the calculation. It is seen that the slopes of the linear dependences and, hence, the enthalpies of sorption change when passing from
glassy to rubbery state of PS. The point reported by Durrill and Griskey was not included, tentatively, into the calculation. The enthalpies
of sorption corresponding the glassy and rubbery states are equal to ⫺34.2 and ⫺15.4 kJ/mol, respectively.
3
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴
Ethyne; C2H2; 关74-86-2兴 Hydrogen; H2; 关1333-74-0兴 Carbon
dioxide; CO2; 关124-38-9兴
共2兲 Polystyrene; 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
D. M. Newitt and K. E. Weale, J. Chem. Soc. 1541 共1948兲.
Variables:
T/K: 347–464
p/MPa: 8.0–30.0
Prepared By:
A. K. Bokarev
Experimental Data
TABLE 1. Solubility C/cm3共STP兲/cm3 of gases in PS at 443 K
p/atm
C
Gas
p/atm
C
H2
80
142
224.5
233
243
306.5
2.89
5.35
8.48
9.42
9.66
11.95
N2
118
182
187
232
282.5
287
2.95
5.02
5.57
6.15
7.93
7.77
CO2
50
51
3.04
2.82
C2H2
49
77.55
92.5
5.27
8.05
9.75
References:
1
P. L. Durrill and R. G. Griskey, AIChE J. 12, 1147 共1966兲.
2
L. I. Stiel and D. F. Harnish, AIChE J. 22, 117 共1976兲.
3
J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci. 20, 21 共1980兲.
4
Polymer Encyclopaedia 共in Russian兲 共Sov. Encycl. Publishers, Moscow, 1977兲, Vol. 3, p. 534.
Gas
T/K
S
Gas
T/K
S
N2
347
409
422
443
464
0.035
0.033
0.031
0.0275
0.026
H2
290
322
345
399
415
443
459.5
0.065
0.061
0.060
0.047
0.042
0.037
0.034
The data fitted the following van’t Hoff equations:
log共 S/cm3共STP兲/cm3 atm兲⫽⫺2.4⫹1900/4.58 共 T/K兲
for H2:
log共 S/cm 共STP兲/cm atm兲⫽⫺2.4⫹1700/4.58 共 T/K兲
for N2.
3
3
Auxiliary Information
MethodÕApparatusÕProcedure
Manometric method of measurement of solubility was used.
Source and Purity of Materials:
PS from B. X. Plastics Ltd. was studied. No characteristics of the
polymer given.
Estimated Error:
Nothing specified.
PATERSON, YAMPOL’SKII, AND FOGG
Gas
TABLE 2. Temperature dependence of solubility coefficient S/cm3共STP兲/cm3 atm
FIG. 18. The solubility of chlorodifluoromethane 共Freone 22兲 in PS was measured only in three papers.1–3 Barrie et al.3 studied this
system using a gravimetric technique in the temperature range 293–333 K. At much higher temperatures, this system was investigated by
means of inverse gas chromatography.2 The figure shows the temperature dependence T/K of the solubility coefficient
S/共cm3共STP兲 g⫺1 atm⫺1兲.
1294
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Chlorodifluoromethane; CHClF2; 关75-45-6兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Components:
共1兲 Helium; He; 关7440-59-7兴 Nitrogen; N2; 关7727-37-9兴 Argon;
Ar; 关7440-37-1兴 Carbon dioxide; CO2; 关124-38-9兴
Chlorodifluoromethane 共R22兲; CHFCl2; 关75-45-6兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
P. L. Durill, Ph.D. dissertation, Virginia Polytech. Inst., 1965.
P. L. Durill and R. G. Griskey, AIChE J. 12, 1147 共1965兲.
Variables:
T/K: 461
p/MPa: 0.3–1.9 共3–19 atm兲
Prepared By:
A. K. Bokarev
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon
dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Variables:
Prepared By:
T/K⫽298
p/MPa⫽0–2.1 共0–20 atm兲
A. K. Bokarev
Experimental Data
TABLE 1. Dual mode sorption parameters for various gases in polystyrene at 298 K
Experimental Data
Henry’s law solubility coefficients S of gases in PS
Pressure/atm
S/共cm3共STP兲/g atm兲
He
N2
Ar
CO2
CHFCl2
2–13.6
3.1–7.0
3.3–7.4
7.4–19.1
5.8–8.1
0.029⫾0.020
0.0488
0.093⫾0.004
0.223⫾0.015
0.388
Auxiliary Information
Source and Purity of Materials:
PS used is a product of Monsanto Co. M w ⫽450 000; T g
⫽354 K; ␳ ⫽1.05 g/cm3.
Gases from Air Reduction Co., had a minimum purity:
CO2-99.5%;
N2-99.90%;
Ar-99.997%;
He-99.99%;
R22 共Allied Chemical Co.兲-99.9%.
Estimated Error:
␦ C/C⭐8%.
References:
1
J. L. Lundberg, M. B. Wilk, and M. J. Huyett, Appl. Phys. 31,
1131 共1960兲.
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
Gas
Oriented
Unoriented
Oriented
Unoriented
Oriented
Unoriented
N2
Ar
CH4
CO2
0.02
0.06
0.13
0.57
0.025
0.065
0.160
0.650
6.65
7.55
5.58
6.05
8.3
9.1
7.4
7.7
0.015
0.021
0.080
0.400
0.013
0.021
0.108
0.370
1295
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
MethodÕApparatusÕProcedure
The equipment and a manometrical procedure for solubility
measurements were similar to those of Lundberg et al.1
Original Measurements:
W. R. Vieth, P. M. Tam, and A. S. Michaels, J. Colloid Interface
Sci. 22, 360 共1966兲.
First runs
Second runs
Oriented
Unoriented
Oriented
0.98
1.68
2.17
2.75
3.25
3.32
0.54
0.99
1.50
1.84
2.06
—
0.14
0.27
0.41
0.55
0.69
0.86
1.02
1.17
1.37
1.55
1.73
3.07
4.63
6.19
7.54
8.77
9.84
10.86
11.97
13.12
14.39
15.33
0.34
0.51
0.78
1.05
1.34
1.63
1.90
0.47
0.99
1.53
1.99
Variables:
T/K: 298–348
p/kPa: 0–26
Prepared By:
A. K. Bokarev
Unoriented
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
1.23
1.97
2.71
3.20
3.48
—
0.56
1.05
1.42
1.77
2.10
—
1.60
2.42
3.20
3.73
4.30
—
0.43
1.01
1.70
2.09
—
—
1.23
2.34
3.57
4.10
—
—
0.17
0.34
0.51
0.68
0.88
1.08
1.32
1.54
1.77
—
—
3.36
5.57
7.42
8.89
10.29
11.56
12.91
14.47
15.53
—
—
0.35
0.69
1.04
1.35
1.75
1.98
—
—
—
—
—
6.35
9.88
13.12
15.04
18.40
19.88
—
—
—
—
—
0.29
0.83
1.39
1.89
—
—
—
—
—
—
—
5.82
11.39
15.70
18.89
—
—
—
—
—
—
—
1.80
2.54
3.36
4.14
4.88
5.49
6.19
0.43
0.85
1.26
1.77
2.02
—
—
2.38
3.57
4.67
5.78
6.27
—
—
0.48
0.93
1.36
1.79
2.06
—
—
3.40
5.16
6.60
7.87
8.44
—
—
0.48
0.97
1.59
2.03
—
—
—
3.40
5.25
7.21
8.24
—
—
—
0.66
1.07
1.56
1.93
0.60
1.08
1.57
2.06
0.82
1.15
1.64
1.97
0.58
1.09
1.55
2.09
0.98
1.48
1.89
2.42
0.49
0.86
1.33
1.85
0.78
1.19
1.64
2.21
0.42
0.79
1.12
1.43
1.78
2.04
Pressure/MPa
Original Measurements:
H. Odani, K. Taira, N. Nemoto, and M. Kurata, Bull. Inst. Chem.
Res., Kyoto Univ. 57, 4, 226 共1979兲.
Ar
CO2
CH4
N2
Auxiliary Information
MethodÕApparatusÕProcedure
A direct measurement of the solubility was made with a
volumetric apparatus. With the film sample placed in the
sorption bomb, the sorption system is evacuated and flushed
with gas several times. The system is then evacuated to 0.02
mm Hg. Gas is then introduced rapidly, and the initial pressure
recorded. Sorption takes place instantaneously and proceeds
until the equilibrium pressure is established.
Source and Purity of Materials:
Gases: minimum purity 99.99%.
Biaxially oriented PS film: Dow Chemical Co., density 1.0490
g/cm3.
Cast annealed PS film: prepared from a solution of about 20% by
weight of oriented PS in methylene dichloride, density 1.0474
g/cm3.
Estimated Error:
Relative precision of solubilities: CO2 8.1%; CH4 6.3%; Ar
10.5%; N2 15%.
Experimental Data
Equilibrium solubility coefficient at 298 K and heats of solution of gases in polystyrene
Gas
S 103 /cm3共STP兲 cm⫺3 cm Hg⫺1
⌬H s /kJ mol⫺1
0.17
5.03
17.8
89.0
2.29
—
⫺13.6
⫺17.5
⫺23.2
⫺13.8
Helium; He; 关7440-59-7兴
Argon; Ar; 关7440-37-1兴
Krypton; Kr; 关7439-90-9兴
Xenon; Xe; 关7440-63-3兴
Nitrogen; N2; 关7727-37-9兴
Auxiliary Information
MethodÕApparatusÕProcedure
The solubility has been measured by a volumetric method.
Measurements were performed using an apparatus similar to
that employed by Meares.1
Source and Purity of Materials:
Anionically polymerized PS sample having M w ⫽106 000 was
used.
He, Ar, Kr, Xe and N2 were obtained from Takachiho Kagaku
Kogyo, Co. Ltd., and the purity of each gas exceeded 99.995%
by volume.
Estimated Error:
No information.
References:
1
P. Meares, Trans. Faraday Soc. 54, 40 共1958兲.
PATERSON, YAMPOL’SKII, AND FOGG
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Sorption
(V 1* (STP)/V 2* )
Components:
共1兲 Various gases 共He, Ar, Kr, Xe, N2兲
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
1296
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 2. Solubility isotherms of various gases in polystyrene at 298 K 共The original data were represented graphically兲
Components:
共1兲 Methane; CH4; 关74-82-8兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
J. L. Lundberg, B. M. Wilk, and M. J. Huyett, Ind. Eng. Chem.,
Fundam. 2, 37 共1963兲.
J. L. Lundberg, E. J. Mooney, and C. E. Rogers, J. Polym. Sci.
Part A-2 7, 947 共1969兲.
Variables:
T/K⫽373–461
p/MPa⫽4.9–67
Prepared By:
Yu. P. Yampol’skii
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
K. Toi and D. R. Paul, Macromolecules 15, 1104 共1982兲.
Variables:
T/K⫽308– 328
p/MPa⫽0 – 2.3 (0 – 22 atm)
M v ⫽3600– 850 000
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Molecular masses and polydispersity of PS studied
Experimental Data
Solubility of methane in PS
p/atm
C/cm3共STP兲 cm⫺3
373.35
320
22.5
398.55
50
217
300
333
347
433
467
537
590
667
4.5
16.5
22
21
24
24
25
27
28
29
428.57
50
163
243
5
14
23
461.55
67
120
200
250
313
8
14
21
25
30
MM
M w /M n
PS-I
PS-I
PS-I
PS-I
PS-II
M v ⫽3600
M v ⫽9100
M v ⫽17 400
M v ⫽850 000
M n ⫽90 000
⬍1.06
⬍1.06
⬍1.06
⬍1.06
2.8
TABLE 2. Dual mode sorption parameters for carbon dioxide at 308 K 共Read off the plots by the compiler兲
MM
3600
9100
17 400
850 000
90 000
T g /K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
345
359
371
374
374
0.38
0.46
0.45
0.50
0.51
5.0
7.5
8.0
9.2
9.5
0.17
0.20
0.17
0.16
0.17
Auxiliary Information
MethodÕApparatusÕProcedure
The method of ‘‘interval’’ sorption was used. Pressure
decrease due to sorption in a closed system of known volume
was measured with a pressure transducer. Polymer samples
were put between two disks of sintered glass. No correction
for the swelling of the sample was introduced.
Source and Purity of Materials:
PS had M w ⫽500 000.
Purity of methane was ⬎99.0%.
Estimated Error:
␦ T⫽⫾0.02 K
␦ p⫽⫾0.5 atm
␦ C/C⬍5%
1297
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Digitized by the compiler from the original figure.
Type
IUPAC-NIST SOLUBILITY DATA SERIES
T/K
T⫽308 K
T⫽318 K
T⫽328 K
Sorption
共V 1* (STP)/V 2* 兲
Pressure/MPa
Sorption
共V 1* (STP)/V 2* 兲
Pressure/MPa
Sorption
共V 1* (STP)/V 2* 兲
0.08
0.13
0.17
0.22
0.28
0.36
0.40
0.52
0.60
0.72
0.80
0.89
0.99
1.18
1.36
0.92
1.42
1.72
2.18
2.76
3.18
3.56
4.27
4.73
5.45
5.78
6.70
7.17
7.92
8.89
0.08
0.13
0.18
0.20
0.33
0.37
0.41
0.46
0.53
0.63
0.73
0.81
0.91
1.01
1.22
0.63
0.92
1.17
1.38
2.14
2.27
2.48
2.94
3.31
3.65
3.90
4.37
4.91
5.54
6.26
0.10
0.14
0.24
0.31
0.38
0.43
0.52
0.63
0.74
0.82
1.01
1.21
1.40
1.60
1.75
0.42
0.71
1.13
1.43
1.60
1.85
2.40
2.73
3.16
3.45
4.25
5.01
5.64
6.44
7.07
1.55
1.76
1.91
2.01
2.09
2.17
2.29
—
9.56
10.74
11.41
11.75
12.21
12.51
13.01
—
1.41
1.56
1.76
1.96
2.03
2.13
2.20
2.29
7.06
7.73
8.53
9.25
9.79
10.09
10.34
10.93
1.93
2.02
2.11
2.18
—
—
—
—
7.75
8.21
8.67
8.80
—
—
—
—
FIG. 19. Sorption isotherms of carbon dioxide in various monodisperse polystyrenes at 308 K.
MethodÕApparatusÕProcedure
The method of sorptions measurement was the same as
described in Refs. 1 and 2. Prior to determination of the
sorption isotherms the films cast from trichloroethylene
solution and free from the solvent were conditioned for 1 d at
24 atm of CO2.
Source and Purity of Materials:
Monodispersed PS-I: Pressure Chemical Co., Polydispersed
PS-II: Cosden Oil and Chemical Co.
Their viscosity molecular masses, M w /M n ratios and T g values
are given above.
Estimated Error:
No information given.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
2
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
PATERSON, YAMPOL’SKII, AND FOGG
Pressure/MPa
Auxiliary Information
1298
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 3. Effect of temperature on sorption of CO2 in monodisperse polystyrenes with M v ⫽3600 共The original data were represented
graphically兲
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
共3兲 Mineral oil Phosphoric acid, tri共methyl phenyl兲 ester
共tricresyl phosphate, TCP兲; 共CH3C6H4兲3PO; 关1330-78-5兴
Original Measurements:
J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 30,
4019 共1985兲.
Variables:
T/K⫽298– 338
p/MPa⫽0 – 3.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B:
Polym. Phys. 25, 2497 共1987兲.
Variables:
T/K⫽308.2– 338.2
p/MPa⫽0 – 7.3 (0 – 70 atm)
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Sorption isotherms of carbon dioxide in polystyrene at different temperatures. 共The original data were represented graphically兲
T⫽308.2 K
T⫽323.2 K
T⫽338.2 K
Sorption
共V 1* (STP)/V 2* 兲
Pressure/MPa
Sorption
共V 1* (STP)/V 2* 兲
Pressure/MPa
Sorption
共V 1* (STP)/V 2* 兲
0.51
1.02
1.57
2.06
2.92
3.78
4.55
5.52
6.38
7.29
—
6.04
9.38
13.31
15.98
23.44
31.73
36.32
42.67
48.36
57.32
—
0.52
1.05
1.57
2.17
2.68
3.19
3.68
4.22
4.71
5.17
5.57
4.86
6.94
10.03
14.88
17.46
20.89
23.64
25.64
29.23
31.31
35.67
0.42
0.80
1.24
1.65
2.04
2.47
2.87
3.33
3.69
4.01
4.32
4.19
5.94
7.60
10.61
11.35
14.53
16.44
18.01
19.51
21.68
24.11
Auxiliary Information
MethodÕApparatusÕProcedure
A gravimetric method was used. The polymer samples were
suspended from a quartz spring. A correction for buoyancy
was introduced using the densities of carbon dioxide up to
high pressures.
FIG. 20. Effect of temperature on sorption isotherms of carbon dioxide in PS containing 3% by mass of mineral oil 共a兲 and 10% by mass
of TCP 共b兲.
MethodÕApparatusÕProcedure
Sorption isotherms were obtained using dual-volume
dual-transducer cell design based on the pressure decay
principle.
Estimated Error:
No information given.
Source and Purity of Materials:
PS: M n ⫽90 000, M w /M n ⫽2.8.
PS containing 3% of mineral oil: T g ⫽360 K.
PS containing 10% of TCP: T g ⫽343 K.
The samples were conditioned at the highest CO2 pressure before
measurement.
Estimated Error:
No information given.
1299
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
Source and Purity of Materials:
CO2: Linde, purity 99.99%.
Polystyrene: Scientific Polymer Products, M w ⫽250 000, glass
transition temp. 373 K.
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/MPa
Original Measurements:
C. Carfagna, L. Nicodemo, L. Nicolais, and G. Campanile, J.
Polym. Sci., Part B: Polym. Phys. 24, 1805 共1986兲.
TABLE 2. Sorption isotherms of carbon dioxide in oriented PS films at various temperatures 共The original data were represented graphically兲
Pressure/MPa
Variables:
T/K⫽300– 393
p/MPa⫽0 – 3.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Dual mode sorption parameters for CO2 in polystrene at various temperatures
T/K
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.698
0.463
0.296
0.307
0.453
0.425
8.132
6.839
5.273
2.956
—
—
0.388
0.298
0.227
0.157
—
—
0.744
0.712
0.659
0.577
0.477
0.417
8.341
5.990
5.004
—
—
—
0.131
0.151
0.112
—
—
—
Pressure/MPa
Sorption
共V 1* (STP)/V 2* 兲
Pressure/MPa
Sorption
共V 1* (STP)/V 2* 兲
Pressure/MPa
Sorption
共V 1* (STP)/V 2* 兲
1.44
6.10
7.84
8.70
0.96
1.02
1.20
1.37
13.63
13.85
15.62
16.59
1.43
1.84
1.93
2.16
16.08
19.72
20.56
21.61
2.28
2.37
2.92
—
22.04
23.60
26.67
—
2.06
2.87
4.29
4.78
5.18
0.43
0.49
0.61
0.82
0.93
5.54
6.38
7.31
9.04
9.83
1.15
1.23
1.61
1.80
2.06
10.88
11.27
13.29
13.71
15.29
2.15
2.34
2.89
—
—
15.59
16.51
18.49
—
—
1.29
2.62
3.06
4.29
5.48
1.01
1.22
1.37
1.51
1.74
7.01
7.16
8.17
8.64
8.79
1.82
1.92
2.03
2.14
2.22
9.54
9.43
10.23
9.84
10.65
2.33
2.55
2.64
2.89
—
10.90
11.22
11.79
12.61
—
0.57
0.79
1.19
1.62
2.24
2.63
0.58
0.67
0.80
0.95
1.04
1.10
2.97
3.50
3.57
4.54
4.79
4.65
1.15
1.23
1.35
1.43
1.53
1.72
4.50
5.44
6.05
6.13
6.38
6.93
2.02
2.34
2.53
2.93
—
—
7.78
8.68
9.23
10.25
—
—
0.34
1.31
2.34
3.25
1.15
1.41
1.62
1.56
4.68
5.54
6.09
6.69
1.80
1.88
2.01
2.31
6.78
8.08
8.19
9.32
2.74
—
—
—
11.59
—
—
—
0.99
1.29
0.72
0.79
2.54
3.16
0.88
1.70
3.19
6.57
2.43
—
9.39
—
PATERSON, YAMPOL’SKII, AND FOGG
Oriented film
300.8
313
323
333
352
373
Unoriented film
313
323
333
353
373
393
k D /cm3共STP兲 cm⫺3 atm⫺1
T⫽300.8 K
0.04
0.31
0.46
0.45
T⫽313 K
0.13
0.17
0.30
0.33
0.39
T⫽323 K
0.11
0.28
0.33
0.55
0.71
T⫽333 K
0.10
0.16
0.21
0.31
0.40
0.48
T⫽353 K
0.13
0.27
0.59
0.82
T⫽373 K
0.30
0.41
Sorption
共V 1* (STP)/V 2* 兲
1300
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
TABLE 3. Sorption isotherms of carbon dioxide in unoriented PS films at various temperatures 共The original data were represented
graphically兲
Pressure/MPa
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
2.78
4.02
8.10
9.34
1.00
1.27
1.52
1.78
12.46
14.49
16.06
19.46
1.96
2.19
2.30
2.89
19.72
22.44
22.14
26.59
3.01
—
—
—
26.35
—
—
—
3.40
5.10
6.73
0.893
1.204
1.386
10.13
11.92
13.50
1.52
1.78
2.40
14.46
16.66
20.19
2.63
2.87
—
22.73
23.56
—
1.81
2.15
2.94
4.24
0.47
0.71
0.70
0.89
4.86
6.72
7.35
8.01
1.10
1.36
1.48
1.78
10.05
12.48
13.15
14.77
2.16
2.51
3.03
—
17.41
20.23
23.26
—
1.18
3.70
5.56
1.17
1.48
1.82
7.07
9.09
10.88
2.24
2.30
2.65
13.41
13.11
15.19
2.85
—
—
16.54
—
—
0.78
1.17
2.79
3.74
0.90
0.99
1.08
1.10
4.36
4.35
5.19
5.02
1.44
1.56
1.85
2.15
7.15
7.48
8.19
9.76
2.24
2.47
2.92
3.07
10.49
11.15
13.39
14.05
Original Measurements:
E. Sada, H. Kumazawa, H. Yakushiji, Y. Bamba, K. Sakata, and
S.-T. Wang, Ind. Eng. Chem., Res. 26, 433 共1987兲.
Variables:
T/K⫽293–313
p/MPa⫽0.2–3.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters
Gas
T/K
k D /cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm3
CH
b/atm⫺1
CO2
293
303
313
293
303
313
0.801
0.713
0.586
0.305
0.277
0.244
13.0
11.0
8.81
5.00
4.93
3.63
0.184
0.134
0.0918
0.0811
0.0623
0.0439
CH4
Auxiliary Information
MethodÕApparatusÕProcedure
Equilibrium sorption was measured by the pressure decay
method in the cell similar to that described in Ref. 1. The
pressure in the cell was continuously measured by a pressure
transducer.
Source and Purity of Materials:
PS films provided by Mitzubishi–Monsanto Chemical Co were
studied.
Estimated Error:
No information given.
References:
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed., 14, 687 共1976兲.
1
0.60
0.83
0.94
0.46
0.60
0.91
1.49
2.28
3.78
1.50
1.91
2.17
6.23
7.39
9.07
2.38
2.93
3.05
9.45
11.73
12.40
Auxiliary Information
Source and Purity of Materials:
PS atactic: Montedison Co., M w ⫽290 000, glass transition
temperature 371 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
1301
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
The sorption apparatus used was similar to that described in
Ref. 1. Experiments were performed on uniaxially drawn
samples. Unoriented samples were obtained by annealing the
extruded film at 453 K for 20 min.
IUPAC-NIST SOLUBILITY DATA SERIES
T⫽313 K
0.15
0.30
0.60
0.76
T⫽323 K
0.29
0.40
0.61
T⫽333 K
0.17
0.23
0.31
0.44
T⫽353 K
0.18
0.61
0.89
T⫽373 K
0.17
0.29
0.60
0.83
T⫽393 K
0.22
0.27
0.30
Sorption
共V 1* (STP)/V 2* )
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
P. C. Raymond and D. R. Paul, J. Polym. Sci., Part B: Polym.
Phys. 28, 2079 共1990兲.
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
H. G. Spencer and J. A. Yavorsky, J. Appl. Polym. Sci. 28, 2937
共1983兲.
Variables:
T/K⫽308
p/MPa⫽0–2.5 共0–25 atm兲
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽345–370
p/kPa⫽0–40
Prepared By:
A. K. Bokarev
Experimental Data
TABLE 1. Sorption C/cm3共STP兲/cm3 of methane and carbon dioxide in PS*
Experimental Data
Temperature dependence for the solubility coefficient S of propane in polystyrene is given by the equation: S⫽S 0 exp(⫺⌬H/RT).
CH4
CO2
5
10
15
20
25
1.5
2.6
3.6
4.4
5.3
6.7
11.1
14.6
17.6
20.0
At 353 K, the parameters are:
⌬H/kJ mol⫺1
⫺8
TABLE 2. Dual mode sorption parameters
Gas
k D /cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm3
CH
b/atm⫺1
CH4
CO2
0.135
3.28
0.061
0.535
8.63
0.194
Auxiliary Information
Source and Purity of Materials:
PS 共Cosden Oil 550兲 had a density 1.052 g/cc and the glass
transition temperature 373 K. No information on gas purity
given.
References:
Y. Maeda and D. R. Paul, Polymer 26, 2055 共1985兲.
1
ln(S/cm3共STP兲/共cm3 cm Hg))
⫺7.15
⫺4.49
Temperature dependence for solubility coefficient S of propane in polystyrene.
*Smoothed data taken from the plot by the compiler.
Estimated Error:
No information given.
ln(S0 /(cm3共STP兲/cm3 cm Hg))
T/K
ln(S/cm3共STP兲/共cm3 cm Hg))
343.6
348.4
357.1
370.3
⫺4.44
⫺4.52
⫺4.48
⫺4.59
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were carried out in a low pressure,
constant-volume cell previously described, Ref. 1.
A correction for the buoyancy was introduced.
Source and Purity of Materials:
C3H8: Matheson, purity 99.99%.
PS: Polysciences Inc., M w ⫽23 000, glass transition temperature
334 K, density 共303 K兲 1.06 g/cm3.
Estimated Error:
No information given.
References:
1
J. A. Yavorsky and H. G. Spencer, J. Appl. Polym. Sci. 25,
2109 共1980兲.
PATERSON, YAMPOL’SKII, AND FOGG
p/atm
MethodÕApparatusÕProcedure
Gas sorption measurement was performed using the same
equipment and procedure as in Ref. 1. Sorption isotherm for
methane were obtained using polymer samples which had
never been exposed to CO2. The CO2 isotherm was obtained
using the sample that had been conditioned in CO2 at 25 atm
for 24 h.
1302
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
J. A. Yavorsky, Ph.D. dissertation, Department of Chemistry and
Geology, Clemson University, 1984.
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
M. E. Stewart, H. B. Hopfenberg, W. J. Koros, and N. R.
McCoy, J. Appl. Polym. Sci. 34, 721 共1987兲.
Variables:
T/K⫽313–353
p/kPa⫽0–580
Prepared By:
A. K. Bokarev
Variables:
T/K: 303
p/kPa: 6.1–93.1
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Dual mode sorption parameters for propane in polystyrene
Experimental Data
Solubility C 共g per 100 g polymer兲 of propane in PS*
102 k D /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
102 b/cm Hg⫺1
Sample
p/mm Hg
C
Sample
p/mm Hg
C
313
333
353
2.49
1.98
1.62
3.7
4.2
3.7
1.33
0.25
0.06
PS as
received
46
149
357
558
700
0.20
0.38
0.56
0.79
1.05
PS preswollen
in C3H8
共700 mm Hg, 30 min兲
46
144
448
0.30
0.56
0.85
TABLE 2. Sorption isotherms of propane in polystyrene 共The original data were represented graphically兲
*Taken from the graph by compiler.
T⫽313 K
T⫽333 K
T⫽353 K
Auxiliary Information
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
32.64
41.20
51.07
238.32
—
—
—
—
—
1.32
1.74
2.03
7.02
—
—
—
—
—
36.97
36.44
131.88
141.62
144.81
248.83
313.34
493.11
550.73
0.40
0.69
2.73
2.78
3.51
6.02
6.08
11.34
10.27
23.76
71.27
111.78
153.75
280.14
309.51
542.21
577.30
—
0.33
0.99
1.52
2.18
3.79
4.24
7.50
8.25
—
Auxiliary Information
Source and Purity of Materials:
C3H8: Matheson, minimum purity 99.98%.
PS: Polyscience, Inc., M w ⫽190 000.
Source and Purity of Materials:
Emulsion polymerized PS 共B.F. Goodrich Co R/D center兲 had
M n ⫽440 000 and glass transition temperature 381 K.
Instrument grade propane was 99.99% pure.
Estimated Error:
No information given.
References:
1
J. M. H. Fechter, H. B. Hopfenberger, and W. J. Koros, Polym.
Eng. Sci. 21, 925 共1981兲.
Estimated Error:
⬘ ⫾29%;
Relative precision of DMS parameters: k D ⫾21%; C H
b⫾55%.
1303
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
The equilibrium solubility of gases in the polymer was
measured by a manometric technique. High pressure apparatus
共up to 930 kPa兲 with pressure transducers was employed.
MethodÕApparatusÕProcedure
Gas sorption measurements were performed using a Cahn RG
microbalance. The sorption apparatus and procedure are
discussed in Ref. 1
IUPAC-NIST SOLUBILITY DATA SERIES
T/K
Original Measurements:
Y. Iwai, M. Ohzono, and Y. Arai, Chem. Eng. Commun. 34, 225
共1985兲.
Components:
共1兲 Various organic gases
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
L. I. Stiel and D. F. Harnish, AIChE J. 22, 117 共1976兲.
Variables:
Prepared By:
Variables:
T/K⫽408– 503
Prepared By:
Yu. P. Yampol’skii
T/K⫽423–498
Yu. P. Yampol’skii
1304
Experimental Data
Infinite dilution solubility coefficients S,/共cm3共STP兲/g atm兲
Experimental Data
Values of weight fraction Henry’s constants/MPa for hydrocarbons in molten polystyrene. The experienced data follow the curves
calculated by the UNIFAC-FV model. 共The original data were represented graphically兲
Temperature
T/K
n-Butane
2-Methylpropane
Propane
Gas
408
423
448
473
498
423.2
448.2
473.2
498.2
35.96
42.33
51.81
61.53
47.49
56.46
62.58
74.33
78.79
100.53
123.04
137.76
Trichlorofluoromethane; CCl3F 关75-69-4兴
Dichlorodifluoromethane; CCl2F2 关75-71-8兴
Chlorodifluoromethane; CHClF2 关75-45-6兴
Chlorofluoromethane; CH2ClF 关593-70-4兴
Chloromethane; CH3Cl 关74-87-3兴
Propane; C3H8 关74-98-6兴
2-Methylpropane; C4H10 关75-28-5兴
3.85
1.12
0.94
2.01
3.02
0.94
0.81
1.65
2.09
0.70
0.64
1.20
1.55
0.56
0.53
—
1.17
0.45
0.44
—
—
0.90
—
1.70
0.78
1.20
1.30
0.62
0.86
—
0.51
0.65
—
0.43
0.52
Auxiliary Information
MethodÕApparatusÕProcedure
Source and Purity of Materials:
A gas chromatographic method used for the determination of
weight fraction Henry’s constants and was similar to those
described in Refs. 1 and 2. PS was coated on Chromosorb W
共AW DMSC 60/80兲. Helium was used as a carrier gas.
Estimated Error:
No information given.
References:
D. D. Liu and J. M. Prausnitz, Ind. Eng. Chem. Fundam. 15,
330 共1976兲.
2
M. Ohzono, Y. Iwai, and Y. Arai, Kagaku Kogaku Ronbunshu
10, 536 共1984兲.
1
Auxiliary Information
MethodÕApparatusÕProcedure
Solubility in the limit of infinite dilution ( p→0) was
determined by means of inverse gas chromatography PS was
coated on Fluoropak-80 support. Polymer content was in the
range 4.8%–13.1% in the columns having the length 24–71 m.
The correction for pressure drop in a column was introduced.
Source and Purity of Materials:
Molecular mass, M n , of PS⫽110 000– 115 000.
Estimated Error:
␦ T⫽1 K
␦ S/S⫽10%
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 n-Butane; C4H10; 关106-97-8兴 2-Methylpropane; C4H10;
关75-28-5兴 Propane; C3H8; 关74-98-6兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
TABLE 2. Sorption isotherms of chlorodifluoromethane in polystyrene powder
Components:
共1兲 Methane; CH4; 关74-82-8兴 Propane; C3H8; 关74-98-6兴
Chlorodifluoromethane; CHClF2; 关75-45-6兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
Original Measurements:
J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci.
20, 21 共1980兲.
Variables:
Prepared By:
T/K⫽293– 333
p/kPa⫽0 – 65.6
Yu. P. Yampol’skii
Experimental Data
⬘ b)
TABLE 1. Dual mode sorption parameters and solubility coefficients (S⫽k D ⫹C H
T/K
CH4
303
323
303*
323*
293
303
313
323
333
293*
303*
313
323
333
C3H8
CHClF2
k D 102 /
cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/cm Hg⫺1
S/cm3共STP兲 cm⫺3 cm Hg⫺1
—
—
—
—
—
—
4.69
2.82
4.39共⫾5%兲
3.30共⫾11%兲
2.93共⫾6%兲
2.46共⫾6%兲
2.29共⫾14%兲
7.34共⫾8%兲
1.01
0.735
1.32共⫾9%兲
1.36共⫾17%兲
0.90共⫾12%兲
0.70共⫾16%兲
0.51共⫾45%兲
2.16共⫾15%兲
0.18
0.071
0.209共⫾18%兲
0.136共⫾28%兲
0.127共⫾20%兲
0.106共⫾23%兲
0.108共⫾62%兲
0.18共⫾28%兲
0.0069
0.0044
0.229
0.0804
0.32共⫾9%兲
0.218共⫾11%兲
0.143共⫾8%兲
0.0984共⫾7%兲
0.0776共⫾17%兲
0.471共⫾13%兲
5.42共⫾9%兲
4.49共⫾7%兲
3.81共⫾7%兲
3.18共⫾18%兲
1.95共⫾14%兲
1.50共⫾13%兲
1.20共⫾15%兲
0.80共⫾59%兲
0.15共⫾25%兲
0.11共⫾20%兲
0.089共⫾20%兲
0.071共⫾63%兲
0.347共⫾11%兲
0.210共⫾7%兲
0.145共⫾6%兲
0.089共⫾9%兲
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
0.61
1.13
1.30
1.65
12.93
16.80
20.66
25.01
2.03
2.49
2.70
3.08
28.67
32.64
36.89
39.76
3.30
3.65
3.82
4.07
46.78
54.80
—
—
4.51
5.02
—
—
0.41
0.75
1.02
1.23
12.61
16.77
20.73
25.87
1.63
1.90
2.20
2.47
29.43
33.88
37.24
40.90
2.75
2.89
3.15
3.28
49.50
56.81
—
—
3.69
3.99
—
—
0.28
0.60
0.77
0.91
13.28
17.13
21.19
25.04
1.22
1.41
1.66
1.83
29.10
33.64
36.91
40.76
2.07
2.26
2.43
2.56
49.55
55.97
—
—
2.90
3.15
—
—
0.23
0.36
0.64
0.73
12.87
18.80
21.37
25.72
0.92
1.21
1.29
1.53
29.66
33.02
37.17
41.91
1.63
1.78
1.92
2.11
48.83
56.24
—
—
2.32
2.58
—
—
0.15
0.28
0.37
0.48
12.75
17.10
21.74
25.49
0.65
0.80
0.94
1.09
28.85
32.90
37.04
41.59
1.19
1.34
1.40
1.55
49.98
58.18
—
—
1.80
2.04
—
—
T⫽293 K
2.10
4.89
6.38
8.57
T⫽303 K
2.00
4.08
6.17
8.55
T⫽313 K
2.19
4.77
6.75
8.82
T⫽323 K
2.48
4.16
7.73
9.41
T⫽333 K
2.37
4.65
6.43
8.70
*PS films, other data refer to PS powder.
TABLE 3. Sorption isotherms of methane and propane in polystyrene film
共For Tables 2, 3, and 4, the original data were represented graphically.兲
C3H8
CH4
T⫽303 K
T⫽323 K
T⫽303 K
T⫽323 K
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
5.53
7.87
9.89
10.52
11.92
15.43
18.00
24.31
28.05
33.97
38.80
46.66
0.03
0.04
0.05
0.06
0.06
0.08
0.10
0.13
0.15
0.18
0.20
0.24
3.50
8.72
11.53
13.47
21.10
28.81
30.45
45.17
—
—
—
—
0.01
0.03
0.04
0.04
0.07
0.10
0.11
0.15
—
—
—
—
2.43
3.37
5.72
7.43
15.63
23.20
28.34
44.80
—
—
—
—
0.33
0.44
0.67
0.77
1.22
1.58
1.81
2.49
—
—
—
—
2.65
3.75
7.26
10.22
14.12
19.89
26.74
38.04
48.25
—
—
—
0.15
0.20
0.36
0.44
0.62
0.84
1.01
1.32
1.57
—
—
—
1305
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Pressure/kPa
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
Pressure/kPa
Pressure/kPa
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
0.32
0.49
0.64
6.59
8.51
12.36
0.88
0.98
1.29
16.78
24.75
33.20
1.48
1.88
2.19
42.50
52.10
65.23
2.57
2.91
3.34
0.24
0.36
0.51
6.66
8.88
12.63
0.68
0.84
1.04
17.43
24.82
32.97
1.26
1.59
1.87
41.22
52.33
65.56
2.11
2.42
2.78
0.19
0.26
0.35
6.64
8.37
12.88
0.48
0.58
0.76
16.72
24.97
33.21
0.90
1.17
1.41
41.84
54.48
65.40
1.63
1.94
2.20
0.13
0.19
0.27
6.82
8.45
12.39
0.35
0.43
0.55
16.7
24.94
33.08
0.70
0.90
1.10
42.76
52.43
65.55
1.32
1.54
1.79
0.10
0.16
0.22
6.53
8.45
12.47
0.28
0.35
0.47
16.78
25.60
33.26
0.56
0.78
0.93
41.11
52.99
63.23
1.11
1.32
1.51
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共p-methoxystyrene兲; 关24936-44-5兴 共X兲
Original Measurements:
A. C. Puleo, N. Muruganandam, and D. R. Paul, J. Polym. Sci.,
Part B: Polym. Phys. 27, 2385 共1989兲.
Variables:
T/K⫽308
p/MPa⫽0.2– 2.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Dual mode sorption parameters for carbon dioxide at 308 K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.873
0.536
3.03
14.08
0.502
0.123
1st cycle
2nd cycle
TABLE 2. Sorption isotherms of carbon dioxide at 308 K 共The original data were represented graphically兲
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption isotherms were measured using an electronic vacuum
microbalance 共Sartorius, Model 4102兲 as described in Ref. 1.
Source and Purity of Materials:
CHClF2: purity ⬎99.5%.
Hydrocarbon gases: purity ⬎99.9 mol %.
Emulsion polymerized PS: B. F. Goodrich Research Center;
dispersed form 共particles size 0.53 ␮m兲 or film cast from
methylene chloride.
PS: glass transition temperature 374 K.
1st cycle
2nd cycle
Pressure/MPa
Sorption (V 1* (STP)/V 2* )
Pressure/MPa
Sorption (V 1* (ST P)/V 2* )
0.27
0.54
0.87
1.28
1.63
1.96
4.09
7.04
9.95
13.61
16.63
19.41
0.21
0.66
1.06
1.44
1.79
1.96
3.96
9.55
13.53
16.56
19.02
20.54
Auxiliary Information
MethodÕApparatusÕProcedure
The apparatus and procedure in sorption measurements were
the same as those described in Ref. 1.
Source and Purity of Materials:
Polymer: prepared according to Ref. 2; glass transition
temperature 378 K, M w ⫽980 000, density 1.118 g/cm3.
Estimated Error:
Indicated in Table 1.
Estimated Error:
No information given.
References:
1
J. A. Barrie and D. Machin, J. Macromol. Sci.-Phys. B. 3, 645
共1969兲.
References:
1
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165
共1977兲.
2
H. K. Hall and M. A. Howey, Polym. Bull. 12, 427 共1984兲.
PATERSON, YAMPOL’SKII, AND FOGG
T⫽293 K
1.37
2.54
4.37
T⫽303 K
1.36
2.62
4.35
T⫽313 K
1.64
2.99
4.34
T⫽323 K
1.45
2.79
4.33
T⫽333 K
1.44
2.50
4.49
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Sorption
(V 1* (STP)/V 2* )
1306
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 4. Sorption isotherms of propane in polystyrene powder
3.8. Poly„Vinyl Cyclohexane Carboxylate…—Carbon Dioxide
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共p-acetoxystyrene兲; 关24979-78-0兴 共XI兲
Original Measurements:
A. C. Puleo, N. Muruganandam, and D. R. Paul, J. Polym. Sci.,
Part B: Polym. Phys. 27, 2385 共1989兲.
Variables:
T/K⫽308
p/MPa⫽0.2– 2.0
Prepared By:
Yu. P. Yampol’skii
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共vinyl cyclohexane carboxylate兲 共PVCH兲; 关29316-32-3兴
共XII兲
Variables:
T/K⫽278– 358
p/kPa⫽0 – 100
Experimental Data
TABLE 1. Dual mode sorption parameters for carbon dioxide at 308 K
k D /cm 共STP兲 cm
3
1st cycle
2nd cycle
⫺3
atm
⫺1
⬘ /cm 共STP兲 cm
CH
3
1.24
0.769
b/atm
5.65
16.82
0.431
0.221
1st cycle
2nd cycle
Pressure/MPa
Sorption 共V 1* (STP)/V 2* 兲
Pressure/MPa
Sorption 共V 1* (STP)/V 2* 兲
0.35
0.67
0.95
1.19
1.41
1.56
1.94
7.15
11.15
14.71
18.03
20.92
22.89
27.00
0.17
0.38
0.65
0.93
1.24
1.50
1.90
5.38
9.20
13.13
16.82
20.07
23.08
26.19
Auxiliary Information
MethodÕApparatusÕProcedure
The apparatus and procedure in sorption measurements were
the same as those described in Ref. 1.
Source and Purity of Materials:
Polymer: Celanese Chemical Co., glass transition temperature
399 K, M w ⫽250 000, density 1.168 g/cm3.
References:
1
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165
共1977兲.
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
278
283
288
293
298
303
308
2.19
1.97
1.77
1.60
1.46
1.32
1.22
1.150
0.830
0.684
0.559
0.373
0.230
0.227
1.87
2.11
1.85
1.57
1.69
1.57
1.04
TABLE 2. Henry’s law parameters for carbon dioxide in rubbery PVCH
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
318
328
338
348
358
1.020
0.866
0.752
0.653
0.560
1307
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Estimated Error:
No information given.
T/K
IUPAC-NIST SOLUBILITY DATA SERIES
TABLE 2. Sorption isotherms of carbon dioxide at 308 K 共The original data were represented graphically兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Dual mode sorption parameters for carbon dioxide in PVCH
⫺1
⫺3
Original Measurements:
T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci.
34, 1657 共1987兲.
Pressure/kPa
0.24
0.50
0.73
0.97
1.34
1.31
1.78
2.11
2.38
2.36
2.54
2.73
0.22
0.42
0.63
0.81
1.17
1.26
1.49
1.76
2.01
2.20
2.46
0.20
0.37
0.73
1.01
1.26
1.59
1.80
2.06
0.19
0.34
0.48
0.75
0.89
Pressure/kPa
T⫽293 K
54.69
64.22
79.69
93.12
T⫽298 K
6.72
13.91
22.97
32.97
45.62
53.12
66.39
81.07
93.72
T⫽303 K
4.84
13.59
20.62
26.87
33.26
41.08
46.54
54.19
59.97
66.84
72.47
79.49
89.95
96.98
T⫽308 K
5.46
13.59
27.02
39.82
54.81
67.15
84.63
93.53
—
Sorption (V *
1 (STP)/V *
2)
1.14
1.30
1.59
1.80
0.12
0.26
0.43
0.62
0.82
0.96
1.16
1.40
1.57
0.09
0.21
0.31
0.46
0.49
0.64
0.70
0.84
0.92
1.01
1.10
1.17
1.30
1.40
0.05
0.18
0.38
0.56
0.75
0.92
1.12
1.24
—
Pressure/kPa
T⫽318 K
13.44
26.88
40.81
54.23
66.12
79.24
92.68
T⫽328 K
14.20
27.32
41.56
54.49
67.32
79.48
92.44
T⫽338 K
26.52
40.75
53.84
67.89
79.74
93.48
T⫽348 K
14.07
27.28
40.72
53.97
66.61
79.52
93.11
T⫽358 K
20.18
34.07
40.86
53.96
67.96
79.96
93.04
—
Sorption (V *
1 (STP)/V *
2)
0.13
0.27
0.42
0.53
0.68
0.81
0.95
0.10
0.21
0.37
0.44
0.60
0.69
0.82
0.20
0.32
0.40
0.51
0.61
0.72
0.06
0.15
0.28
0.36
0.46
0.50
0.62
0.10
0.19
0.25
0.33
0.36
0.46
0.50
—
MethodÕApparatusÕProcedure
Cahn RG electromicrobalance was used. The procedure is
described in Refs. 1 and 2. Two types of experiments were
performed: sorption in fully preevacuated sample and
‘‘interval’’ sorption experiments. No difference between the
data obtained is observed.
Source and Purity of Materials:
CO2: purity 99.99%.
PVCH: prepared from polyvinyl alcohol 共polymerization degree
n⫽2000兲 and cyclohexane carboxylic acid chloride in
anhydrous pyridine: Degree of esterification ⬎97%, M w
⫽270 000 共GPC兲, density 1.119 g/cm3, T g ⫽328 K.
Estimated Error:
No information given.
References:
1
Y. Kamiya, K. Mizoguchi, Y. Naito, and J. Hirose, J. Polym.
Sci., Part B: Polym. Phys. 24, 535 共1986兲.
2
Y. Kamiya, T. Hirose, K. Mizoguchi, and Y. Naito, J. Polym.
Sci.: Part B: Polym. Phys. 24, 1525 共1986兲.
PATERSON, YAMPOL’SKII, AND FOGG
T⫽278 K
6.89
13.77
20.19
26.61
38.03
38.81
53.04
65.71
76.18
77.90
85.24
93.22
T⫽283 K
6.73
13.14
20.18
26.59
39.57
43.95
53.48
66.14
75.21
85.68
97.71
T⫽288 K
7.19
13.45
27.52
41.11
52.99
67.53
79.24
92.68
T⫽293 K
8.75
15.32
22.04
34.23
40.95
Sorption (V *
1 (STP)/V *
2)
Auxiliary Information
1308
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 3. Sorption isotherms of carbon dioxide in PVCH in the range 278–358 K 共The original data were represented graphically兲
3.9. Poly„Vinyl Benzoate…—Various Gases
TABLE 3. Dual mode sorption parameters of gases in PVB at various temperatures
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon
dioxide; CO2; 关124-38-9兴
共2兲 Poly共vinyl benzoate兲 共PVB兲; 关24991-32-0兴 共XIII兲
Original Measurements:
Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Pol. Sci.,
Polym. Phys. Ed. 24, 535 共1986兲.
Variables:
T/K⫽298– 343
p/MPa⫽0 – 5.0
Prepared By:
A. K. Bokarev
Experimental Data
TABLE 1. Sorption and desorption isotherms of nitrogen in PVB 共The original data were represented graphically兲
T⫽308.2 K
Pressure/MPa
T⫽323.2 K
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
N2
308
323
338
0.0230
0.0217
0.0207
1.07
0.44
—
0.0222
0.0222
—
Ar
298
308
318
328
338
343
0.0597
0.0563
0.0510
0.0458
0.0510
0.0444
2.30
1.80
1.30
0.91
—
—
0.0398
0.0387
0.0382
0.0358
—
—
T⫽338.2 K
Pressure/MPa
Solubility (V 1* (STP)/V 2* )
Pressure/MPa
Solubility (V 1* (STP)/V 2* )
0.09
0.26
0.44
0.79
1.11
1.39
1.68
0.22
0.61
1.09
2.07
3.06
4.04
5.02
0.05
0.17
0.31
0.58
0.82
1.07
1.29
0.22
0.61
1.09
2.07
3.05
4.04
5.02
0.02
0.10
0.21
0.42
0.62
0.81
0.99
0.15
0.37
0.55
0.98
1.26
1.58
0.36
0.85
1.59
2.57
3.31
4.28
0.10
0.25
0.47
0.73
0.92
1.14
0.35
0.84
1.35
2.32
3.31
4.29
0.07
0.19
0.30
0.50
0.70
0.87
IUPAC-NIST SOLUBILITY DATA SERIES
Solubility (V 1* (STP)/V 2* )
Sorption
0.20
0.61
1.10
2.08
3.05
4.03
5.01
Desorption
0.36
0.85
1.33
2.56
3.54
4.52
Gas
TABLE 2. Sorption and desorotion isotherms of argon in PVB 共The original data were represented graphically兲
T⫽298.2 K
Sorption
0.11
0.60
1.09
2.12
3.09
4.13
4.52
5.02
Desorption
0.35
0.85
1.58
2.55
3.78
—
T⫽338.2 K
T⫽343.2 K
Solubility
(V *
1 (STP)/V *
2)
Pressure/MPa
Solubility
(V *
1 (STP)/V *
2)
Pressure/MPa
Solubility
(V *
1 (STP)/V *
2)
Pressure/MPa
Solubility
(V *
1 (STP)/V 2* )
0.15
0.77
1.29
2.25
3.09
3.87
4.14
4.47
0.07
0.60
1.08
2.07
3.04
4.04
5.02
—
0.06
0.63
1.09
1.92
2.71
3.33
3.96
—
0.22
0.60
1.09
2.07
3.09
4.03
5.01
—
0.15
0.41
0.70
1.29
1.83
2.32
2.82
—
0.11
0.36
1.08
2.06
3.05
4.27
5.02
—
0.09
0.18
0.50
0.92
1.34
1.80
2.10
—
0.49
1.01
1.80
2.71
3.68
—
0.22
0.86
1.58
2.57
3.54
4.23
0.24
0.89
1.54
2.34
3.03
3.47
0.35
0.84
1.57
2.55
3.54
4.52
0.26
0.60
1.05
1.63
2.13
2.61
0.60
1.82
3.78
—
—
—
0.27
0.84
1.65
—
—
—
FIG. 21. Sorption and desorption isotherms of carbon dioxide in PVB. Open and filled symbols represent sorption and desorption,
respectively.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption isotherms were measured gravimetrically with a Cahn
model 2000 electrobalance.
Source and Purity of Materials:
Ar: purity 99.999%.
N2: purity 99.999%.
CO2: purity 99.99%.
PVB: reaction of poly共vinyl alcohol兲 and benzoyl chloride 共see
Ref. 1兲.
Estimated Error:
No information given.
References:
1
T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci.
30, 401 共1985兲.
1309
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Pressure/MPa
T⫽308.2 K
Original Measurements:
Y. Kamiya, T. Hirose, K. Mizoguchi, and K. Terada., J. Polym.
Sci., Part B: Polym. Phys. 26, 1409 共1988兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共vinyl benzoate兲 共PVB兲; 关24991-32-0兴 共XIII兲
Original Measurements:
T. Hirose, K. Mizoguchi, Y. Naito, and Y. Kamiya, J. Appl.
Polym. Sci. 35, 1715 共1988兲.
Variables:
T/K⫽298
p/MPa⫽0 – 5.0
Prepared By:
A. K. Bokarev
Variables:
T/K⫽278⫺358
p/kPa⫽0⫺100
Prepared By:
A. K. Bokarev
Experimental Data
Experimental Data
TABLE 3. Dual mode sorption parameters for carbon dioxide in PVB
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
278
288
298
308
318
328
338
343
348
353
358
1.78
1.45
1.18
1.00
0.851
0.730
0.641
0.577
0.545
0.511
0.472
4.69
3.59
3.52
3.05
1.78
0.666
—
—
—
—
—
1.60
1.35
0.821
0.623
0.547
0.760
—
—
—
—
—
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption isotherms were measured gravimetrically with a Cahn
model 2000 electrobalance. A correction for the buoyancy was
introduced.
Source and Purity of Materials:
CO2 : purity 99.99%.
PVB: reaction of poly共vinyl alcohol兲 and benzoyl chloride 共see
Ref. 1兲. Density (298 K兲⫽1.214 g/cm3.
Estimated Error:
No information given.
References:
1
T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci.
30, 401 共1985兲.
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
288
298
308
318
1.45
1.55
1.00
0.851
1.71
1.73
0.890
0.477
1.338
0.739
0.828
0.760
PATERSON, YAMPOL’SKII, AND FOGG
T/K
TABLE 2. Dual mode sorption parameters for carbon dioxide in PVB after annealing at 358 K
FIG. 22. Sorption and desorption isotherms of carbon dioxide in PVB at 298 K: 共䊐兲 first sorption run; 共䊊兲共䊉兲 subsequent sorption and
desorption runs.
The isotherm was treated by the Kamiya’s et al. equation. The following values of the parameterrs were found at 298 K:
k D ⫽1.15 cm3共STP兲/cm3 atm b⫽0.167 atm⫺1
⬘ ⫽22.0 cm⫺3共STP兲/cm3共sorption兲; C H0
⬘ ⫽30.2 cm3共STP兲/cm3共desorption兲
C H0
C g ⫽38.5 cm3共STP兲/cm3 f ⫽0.8 共dimensionless兲
1310
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共vinyl benzoate兲 共PVB兲; 关24991-32-0兴 共XIII兲
TABLE 3. Sorption isotherms of carbon dioxide in PVB. Sorption isotherms are linear above 338 K 共The original data were represented
graphically兲
TABLE 4. Sorption isotherms of carbon dioxide in PVB after annealing at 358 K 共The original data were represented graphically兲
Pressure/kPa
Pressure/kPa
Pressure/kPa
Sorption (V 1* (STP)/V 2* )
Pressure/kPa
Sorption 共V *
1 (STP)/V *
2兲
Pressure/kPa
Sorption 共V *
1 (STP)/V *
2兲
Pressure/kPa
Sorption 共V 1* (STP)/V *
2兲
0.21
0.44
0.64
0.82
34.24
41.41
54.47
65.95
1.04
1.20
1.48
1.76
80.89
89.18
99.66
—
2.02
2.21
2.39
—
0.11
0.30
0.57
0.62
40.13
53.47
66.68
80.04
0.85
1.08
1.35
1.60
93.35
98.78
99.52
—
1.76
1.90
1.82
—
0.20
0.40
0.64
53.33
67.44
75.85
0.81
0.98
1.11
82.82
90.58
98.66
1.19
1.27
1.36
0.13
0.30
0.44
53.85
66.85
80.44
0.61
0.76
0.86
89.45
98.79
—
0.93
1.01
—
Sorption (V 1* (STP)/V 2* )
0.51
1.27
1.86
40.08
53.44
66.96
2.53
3.05
3.59
79.84
94.13
—
4.03
4.46
—
0.40
0.74
1.34
41.07
54.11
67.13
1.83
2.28
2.63
80.78
93.63
—
3.02
3.29
—
0.26
0.51
0.94
40.84
54.17
67.03
1.34
1.67
2.00
82.26
94.95
—
2.35
2.63
—
0.27
0.52
0.87
43.64
54.27
66.96
1.07
1.28
1.59
80.11
89.78
94.23
1.78
1.91
2.07
0.11
0.23
0.46
40.89
54.99
68.14
0.67
0.85
1.06
80.97
99.03
—
1.21
1.44
—
0.12
0.10
0.24
0.24
0.38
42.60
47.04
60.96
63.34
73.63
0.47
0.55
0.63
0.67
0.76
78.86
86.77
98.48
99.59
—
0.81
0.89
0.98
0.98
—
0.07
0.14
0.21
0.26
53.72
66.84
66.67
66.99
0.35
0.43
0.44
0.44
79.64
93.38
97.65
—
0.51
0.59
0.61
—
0.07
0.23
54.69
68.13
0.31
0.37
80.46
93.74
0.43
0.49
0.16
0.17
0.24
0.27
62.45
68.62
68.94
78.58
0.29
0.32
0.32
0.37
81.27
89.02
95.03
98.67
0.38
0.42
0.44
0.45
T⫽288 K
7.04
13.77
20.65
27.20
T⫽298 K
6.83
13.70
27.07
28.04
T⫽308 K
13.49
26.82
41.12
T⫽318 K
13.77
27.40
41.01
TABLE 5. Dual mode sorption parameters for CO2 in PVB at 298 K after exposure to 50 atm of CO2
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
1.18
1.18
1.18
1.18
1.18
1.18
6.88
5.74
5.00
3.54
3.52
1.73
0.889
0.990
0.942
1.008
0.827
0.739
Just after exposure
Next day
7 days later
11 months later
After measurements at 298 K in Table 3
After annealing at 358 K
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were made using facilities and
procedures described in Ref. 1.
Source and Purity of Materials:
CO2 : purity ⬎99.99%.
PVB films: preparation and its properties reported in Ref. 2. The
sample films were exposed to CO2 of 50 atm at 308 K before
measurements.
IUPAC-NIST SOLUBILITY DATA SERIES
Estimated Error:
No information given.
References:
1
T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci.
34, 1657 共1987兲.
2
T. Hirose, K. Mizoguchi, and Y. Kamiya, ibid. 30, 401 共1985兲.
1311
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
T⫽278 K
6.72
16.17
26.85
T⫽288 K
6.70
13.55
27.09
T⫽298 K
6.84
13.36
26.23
T⫽308 K
10.48
19.53
33.97
T⫽318 K
6.66
13.47
26.63
T⫽328 K
10.93
12.66
20.59
24.70
32.78
T⫽338 K
14.39
26.40
34.13
40.76
T⫽348 K
20.09
41.57
T⫽358 K
33.68
38.42
53.13
54.23
Sorption (V 1* (STP)/V 2* )
Auxiliary Information
Components:
共1兲 Carbon dioxide; CO2 ; 关124-38-9兴
共2兲 Poly共vinyl butyral兲 共PVBu兲 共XIV兲
Original Measurements:
Y. Kamiya, T. Hirose, K. Mizoguchi, and K. Terada, J. Polym.
Sci., Part B: Polym. Phys. 26, 1409 共1988兲.
Variables:
T/K⫽298
p/MPa⫽0 – 5.0
Prepared By:
A. K. Bokarev
MethodÕApparatusÕProcedure
Sorption isotherms were measured gravimetrically with a Cahn
model 2000 electrobalance. A correction for the buoyancy was
introduced.
1312
Source and Purity of Materials:
CO2 : purity 99.99%.
PVBu Mitsubishi Monsanto Chemical Co., density at 308 K
1.087 g/cm3, M w between 34 000 and 38 000, butyral content
88%.
Estimated Error:
No information given.
Experimental Data
References:
1
T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci.
30, 401 共1985兲.
FIG. 23. Sorption and desorption isotherms of carbon dioxide in PVBu at 298 K: 共䊐兲 first sorption run; 共䊊兲共䊉兲 subsequent sorption and
desorption runs.
The isotherm was treated by the equation:
⬘ bp 共 ⫺C * C g 兲 / 共 1⫹b p 兲 ,
C⫽C D ⫹C H ⫽ 关 k D exp共 sC * 兲兴 p⫹C H0
⬘ , and b have the usual meaning, C g is the solute concentration corresponding to the glass transition and
where the parameters k D , C H0
⬘ bp/ 共 1⫹bp 兲兴 / 关 1⫹ f C H0
⬘ b p/C g 共 1⫹b p 兲兴 ,
C * ⫽C D ⫹ f C H ⫽ 关 k D p⫹ f C H0
where f is an adjustable parameter, characterizing the plastisizing ability of a solute.
Parameters for ordinary dissolution 共Flory–Huggins’s兲 and for Langmuir isotherms at 298 K.
f
0.8
k D/
cm3共STP兲 cm⫺3 atm⫺1
⬘ /
C H0
cm3共STP兲 cm⫺3
b/
atm⫺1
103 S/
cm3共STP兲 cm⫺3
C g/
cm3共STP兲 cm⫺3
1.13
20.7 共sorption兲
28.6 共desorption兲
0.096
3.5
34.0
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.10. Poly„Vinyl Butyral…—Carbon Dioxide
3.12. Poly„Vinyltrimethyl Silane…—Various Gases
3.11. Poly„Vinylmethylether…—Propane
Components:
共1兲 Propane; C3H8 ; 关74-82-8兴
共2兲 Poly共vinylmethyl ether兲 共PVME兲; 关9003-09-2兴
Original Measurements:
H. G. Spencer and J. A. Yavorsky, J. Appl. Polym. Sci., 28, 2937
共1983兲.
Variables:
T/K: 317–357
p/kPa: 0–40
Components:
共1兲 Hydrocarbon gases C1 –C4
共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
The solubility of gaseous hydrocarbons in PVTMS has been measured using three different techniques: volumetric,1 gravimetric,2–4
5–8
and inverse gas chromatography.
The data for the following gases are available: methane 关74-82-8兴,1 acetylene 关74-86-2兴,2–4,8,9
ethylene 关74-85-1兴,2–5,7–9 ethane 关74-84-0兴,2–5,7–9 propadiene 关463-49-0兴,2–4,8,9 propyne 关74-99-7兴,2–4,8,9 propene 关115-07-1兴,2–5,7–9 propane 关74-98-6兴,2,9 n-butane 关106-97-8兴.5,7 Except propane and butane for which the dual mode sorption isotherms have been obtained,4,6
the solubility of all other gases was measured in the range of pressure corresponding to the linear part of the sorption isotherm, i.e., the
solubility coefficients have been reported. There is a general tendency for the solubility to increase with the critical temperature of gases,
the variation of solubility with critical temperature is shown below. Values of critical temperature were taken from Ref. 10.
Prepared By:
A. K. Bokarev
Experimental Data
In the pressure range indicated above, solubility obeys Henry’s law.
Temperature dependence for solubility coefficient, S, is given by equation:
S⫽S0 exp共⫺⌬H/RT兲
Correlation of the solubility coefficients S with critical temperature T c /K of hydrocarbons
Parameter
Data
⫺10.0
⫺7.57
⫺4.05
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were carried out in a low pressure,
constant-volume cell previously described.1 The correction for
the buoyancy was introduced.
Source and Purity of Materials:
The polymer investigated was supplied by Polysciences, Inc.
It had M w ⫽34 000;T g ⫽247 K.
A density at 303 K was 1.04 g/cm3.
Propane of 99.99% purity 共Matheson兲 was used.
Estimated Error:
No estimates.
References:
1
J. A. Yavorsky and H. G. Spencer, J. Appl. Polym. Sci. 25,
2109 共1980兲.
Hydrocarbons
T c /K
log(S/cm3共STP兲 cm⫺3 atm⫺1)
Ref.
CH4
C 2H2
190.5
309
309
282.6
282.6
282.6
305.4
305.4
305.4
393
393
401
401
364.9
364.9
364.9
379.9
379.9
379.9
427.1
⫺1.86
⫺1.48
⫺1.6
⫺1.33
⫺1.44
⫺1.44
⫺1.15
⫺1.14
⫺1.14
⫺0.5
⫺0.5
⫺0.5
⫺0.5
⫺0.5
⫺0.6
⫺0.6
⫺0.6
⫺0.4
⫺0.4
⫺0.05
1
2–4
7, 8
2–4
5, 6
7, 8
2–4
5, 6
7, 8
7, 8
2–4
7, 8
2–4
2–4
7, 8
5, 6
5, 6
7, 8
2–4
5, 6
C 2H4
C 2H6
CH2CCH2
CH3CCH
C3H6
C 3H8
1313
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
n-C4H10
IUPAC-NIST SOLUBILITY DATA SERIES
⌬H/共kJ/mol兲
ln(S0 /(cm3共STP兲/cm3 cm Hg)
lnS共353 K兲/共cm3共STP兲/cm3 cm Hg兲
References:
1
V. V. Volkov, S. G. Durgaryan, E. G. Novitskii, and N. S. Namctkin, Dokl. Akad. Nauk SSSR 232, 838 共1977兲.
2
V. V. Volkov, N. S. Nametkin, E. G. Novitskii, and S. G. Durgaryan, Vysokomol. Soedin. Ser A 21, 920 共1979兲.
3
V. V. Volkov, N. S. Nametkin, E. G. Novitskii, and S. G. Durgaryan, Vysokomol. Soedin. Ser. A 21, 927 共1979兲.
4
V. V. Volkov, dissertation, Moscow, TIPS, 1979.
5
N. E. Kaliuzhnyi, Yu. P. Yampol’skii, S. G. Durgaryan, and N. S. Nametkin, Dokl. Akad. Nauk SSSR 265, 1170 共1982兲.
V. V. Volkov, A. K. Bokarev, S. G. Durgaryan, and N. S. Nametkin, Dokl. Akad. Nauk SSSR 282, 641 共1985兲.
Yu. P. Yampol’skii, N. E. Kaliuzhnyi, and S. G. Durgaryan, Macromolecules 19, 846 共1986兲.
8
M. B. Davydova, Yu. P. Yampol’skii, N. K. Gladkova, and S. G. Durgaryan, Vysokomol. Soedin., Ser. A 30, 554 共1988兲.
9
M. B. Davydova, Yu. P. Yampol’skii, and S. G. Durgaryan, Vysokomol. Soedin., Ser. A 30, 1430 共1988兲.
10
D. R. Stull, E. F. Westrum, and G. C. Sinke, The Chemical Thermodynamics of Organic Compounds 共Wiley, New York, 1969兲.
Components:
共1兲 Different gases
共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲
Original Measurements:
V. V. Volkov, S. G. Durgaryan, E. G. Novitskii, and N. S.
Nametkin, Dokl. Akad. Nauk SSSR 232, 838 共1977兲;
Vysokomol. Soedin., Ser. A 21, 927 共1979兲.
Variables:
T/K⫽283– 323
p/kPa⫽0 – 93
Prepared By:
Yu. P. Yampol’skii
1314
6
Experimental Data
Solubility coefficients S/cm3共STP兲/cm3 atm at 298 K and enthalpies of sorption ⌬H kcal/mol
7
Gas
Helium; He; 关7440-59-7兴
Argon; Ar; 关7440-37-1兴
Hydrogen; H2; 关1333-74-0兴
Nitrogen; N2 ; 关7727-37-9兴
Oxygen; O2; 关7782-44-7兴
Methane; CH4; 关74-82-8兴
Carbon dioxide; CO2; 关124-38-9兴
S102
⫺⌬H
0.11
0.63
0.12
0.40
0.56
1.37
3.52
1.45
2.83
1.66
2.62
2.69
3.82
4.93
Auxiliary Information
MethodÕApparatusÕProcedure
A McBain quartz spring microbalance and a volumetric
apparatus were used for sorption measurements.
Source and Purity of Materials:
PVTMS synthesized by BuLi initiated anionic polymerization
had: M w ⫽608 000, M n ⫽416 000. All the gases were
‘‘chromatographically’’ pure.
Estimated Error:
␦ S/S⫽10%.
␦ (⌬H)/⌬H⫽20%.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Critical Evaluation:
The solubility coefficients obtained by means of a gravimetric method 共McBain balance兲 are, in majority of cases, higher than those
measured using inverse gas chromatography method. However, the differences are well within the limits of scatter.
Components:
共1兲 Xenon; Xe; 关7440-63-3兴 and hydrocarbons
共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲
Original Measurements:
V. V. Volkov, N. S. Nametkin, E. G. Novitskii, and S. G.
Durgaryan, Vysokomol. Soedin, Ser. A. 21, 920 共1979兲.
Components:
共1兲 Various hydrocarbons C2 –C4
共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲
Original Measurements:
N. E. Kaliuzhnyi, Yu. P. Yampol’skii, S. G. Durgaryan, and N.
S. Nametkin, Dokl. Akad. Nauk SSSR 265, 1170 共1982兲.
Variables:
T/K⫽293– 313
p/kPa⫽0 – 93
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽298– 383
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Solubility coefficients S/cm3共STP兲/cm3 atm of hydrocarbons
Experimental Data
Solubility coefficients S/cm 共STP兲/cm3 atm at 298 K and enthalpies of sorption ⌬H/kcal/mol
3
S
Gas
⫺⌬H
7.1
3.3
4.7
7.0
31.5
30.0
4.20
—
4.02
3.58
5.47
5.64
Gas
Xenon
Acetylene; C2H2; 关74-86-2兴
Ethylene; C2H4; 关74-85-1兴
Ethane; C2H6; 关74-84-0兴
Propadiene; C3H4; 关463-49-0兴
Propyne; C3H4; 关74-99-7兴
Propene; C3H6; 关115-07-1兴
Propane; C3H8; 关74-98-6兴
n-Butane; C4H10; 关106-97-8兴
31
40
272
5.96
6.20
—
Auxiliary Information
MethodÕApparatusÕProcedure
A McBain balance with a quartz spring was used in sorption
measurement.
Source and Purity of Materials:
PVTMS synthesized in the presence of BuLi had M w
⫽608 000 and M n ⫽416 000.
All the gases were chromatographically pure.
Estimated Error:
␦ S/S⫽10%.
Ethylene; C2H4; 关74-85-1兴
Ethane; C2H6; 关74-84-0兴
Propene; C3H6; 关115-07-1兴
S 共at 298 K兲
Gas
298 K
333 K
373 K
3.6
7.2
23
Propane; C3H8; 关74-98-6兴
n-Butane; C4H10; 关106-97-8兴
27
90
8.05
22.2
—
5.62
Enthalpies of sorption ⌬H/kcal/mol
Gas
⌬H
C2H6
C3H8
C4H10
5.4
6.42⫾0.15
8.02⫾0.06
Auxiliary Information
MethodÕApparatusÕProcedure
Inverse gas chromatography was used for the determination of
solubility coefficients. By the measurements correction for the
pressure drop in a column was introduced.
Source and Purity of Materials:
PVTMS was prepared by anionic polymerization 共sec. BuLi as a
catalyst兲 and had molecular mass about 500 000 and a density
0.898 g/cc.
1315
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
S102
Original Measurements:
M. B. Davydova, Yu. P. Yampol’skii, N. K. Gladkova, and S. G.
Durgarvan, Vysokomol. Soedin. Ser. A 30, 554 共1988兲;
M. B. Davydova, Yu. P. Yampol’skii, and S. G. Durgaryan,
Vysokomol. Soedin., Ser. A 30, 1430 共1988兲.
Variables:
Prepared By:
T/K⫽295– 345
Yu. P. Yampol’skii
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲
Original Measurements:
V. V. Volkov, A. K. Bokarev, and S. G. Durgaryan, Vysokomol.
Soedin., Ser. A 26, 1294 共1984兲.
Variables:
T/K⫽298
p/MPa⫽0 – 0.4
Prepared By:
S. M. Shishatskii
Experimental Data
TABLE 1. Sorption isotherm of sulfur dioxide in PVTMS at 298 K. Thickness of the film: 64 ␮m 共The original data were represented
graphically兲
Experimental Data
Solubility coefficients S/共cm3共STP兲/cm3 atm兲 at 295 K
S
Gas
S
Relative pressure
Sorption (V *
1 (STP)/V *
2)
Ethyne; C2H2; 关74-86-2兴
Ethylene; C2H4; 关74-85-1兴
Ethane; C2H6; 关74-84-0兴
1,2-Propadiene; C3H4; 关463-49-0兴
2.5
3.6
7.2
Propyne; C3H4; 关74-99-7兴
Propene; C3H6; 关115-107-1兴
Propane; C3H8; 关74-98-6兴
29.5
24
38
0.24
0.34
0.40
0.47
0.54
0.70
0.80
12.14
15.00
17.03
19.89
22.00
27.81
31.27
31
Heats of sorption, ⌬H/kJ/mol,⫽⫺Rd(ln S)/d(1/T)
⫺⌬H/kJ/mol
Gas
⫺⌬H/kJ/mol
24.0
30.6
34.8
Propyne
Propene
30.6
31.8
Relative pressure (p/p s )⫽ratio of partial pressure and its saturted vapor pressure at the temperature of the experiment.
Ethyne
1,2-Propadiene
Propane
Auxiliary Information
MethodÕApparatusÕProcedure
Inverse gas chromatographic method of measurement of
solubility was described in Ref. 1. The determination was
performed in the condition of infinite dilution and in the
absence of diffusion limitation.
Source and Purity of Materials:
PVTMS studied had molecular mass 600 000.
Estimated Error:
␦ (⌬H)/⌬H⬍5.3%
References:
1
Yu. P. Yampol’skii, S. G. Durgaryan, and N. E. Kaliuzhnyi, J.
Chrom. 286, 97 共1984兲.
TABLE 2. Sorption and desorption isotherms of sulfur dioxide in PVTMS at 298 K. Thickness of the film: 160 ␮m 共The original data
were represented graphically兲
Relative pressure
Sorption (V 1* (STP)/V 2* )
Relative pressure
Desorption (V 1* (STP)/V 2* )
0.18
0.24
0.27
0.33
0.38
0.40
0.51
0.60
0.72
0.83
0.96
0.98
1.00
10.04
13.16
14.25
15.34
17.96
17.96
21.49
23.94
28.40
32.45
40.63
43.16
46.62
0.14
0.18
0.20
0.25
0.33
0.40
0.46
0.55
0.68
0.75
0.85
0.90
0.94
8.94
10.88
12.65
14.25
18.22
22.35
25.55
29.09
32.71
34.57
38.02
40.04
42.32
Relative pressure (p/p s )⫽ratio of partial pressure and its saturated vapor pressure at the temperature of the experiment.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was measured gravimetrically using a McBain
balance.
Source and Purity of Materials:
PVTMS: Kuskovo Chemical Plant.
Estimated Error:
No information given.
PATERSON, YAMPOL’SKII, AND FOGG
Gas
Gas
1316
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Various hydrocarbons
共2兲 Poly共vinyltrimethyl silane兲; 共PVTMS兲; 关25036-32-2兴 共XV兲
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲
Original Measurements:
Yu. P. Yampol’skii, V. V. Volkov, N. E. Kaliuzhnyi, and S. G.
Durgaryan, Vysokomol. Soedin., Ser. A 26, 1640 共1984兲.
Variables:
T/K⫽298
p/kPa⫽0 – 100
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for SO2 in PVTMS at 298 K
k D /mol cm⫺3共STP兲 Pa⫺1
2.0109
⬘ /mmol cm⫺3
CH
b/共kPa兲⫺1
0.45
0.01
Sorption isotherm of sulfur dioxide in PVTMS at 298 K. 共The original data were represented graphically兲
Sorption
共mmol/cm3兲
8.68
13.28
19.41
26.39
44.28
57.40
58.25
67.79
72.90
81.25
91.31
0.06
0.09
0.12
0.16
0.24
0.28
0.29
0.33
0.35
0.38
0.42
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was studied using a McBain balance with quartz
spring. The procedure has been described in Ref. 1.
Estimated Error:
No information given.
Variables:
T/K⫽298
p/MPa⫽0 – 0.7
Prepared By:
S. M. Shishatskii
Experimental Data
Dual mode sorption parameters for PVTMS at 298 K
Gas
k D ⫻102 /(cm3共STP兲/cm3 cm Hg)
⬘ /(cm3共STP兲/cm3)
CH
b⫻102 /(cm Hg) ⫺1
Xe
CO2
N2O
C3H8
1.20
0.46
1.4
0.113
18.5
28.7
13.1
5.2
0.41
0.11
0.29
19.1
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was measured using a gravimetric technique
described in Ref. 1.
Source and Purity of Materials:
No information given.
Estimated Error:
No information given.
References:
1
V. V. Volkov, A. K. Bokarev, and S. G. Durgaryan,
Vysokomol. Soedin., Ser A. 26, 1295 共1984兲.
References:
1
V. V. Volkov, N. S. Nametkin, and S. G. Durgaryan,
Vysokomol. Soedin., Ser. A 21, 920 共1979兲.
1317
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Source and Purity of Materials:
SO2: traces of air were removed from the gas prior to use.
PVTMS films: recast after dissolving gas separation PVTMS
membrane 共NPO Plastmassy兲 in methylbenzene.
Original Measurements:
V. V. Volkov, A. K. Bokarev, S. G. Durgaryan, and N. S.
Nametkin, Doklady Akad. Nauk., SSSR. 282, 641 共1985兲.
N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova,
V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol’skii J.
Membr. Sci. 60, 13 共1991兲.
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/kPa
Components:
共1兲 Xenon; Xe; 关7440-63-3兴 Carbon dioxide; CO2; 关124-38-9兴
Nitrous oxide; N2O; 关10024-97-2兴 Propane; C3H8; 关74-98-6兴
共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
PTMSP is known as the most permeable among polymers, both glassy and rubbery. So its sorption drew attention of several groups
1–5
The dual mode sorption parameters as well as the apparent solubility coefficients S obtained by different researchers
of investigators.
at temperatures 298–328 K are compared below.
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴
Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲
Original Measurements:
Y. Ichiraku, S. A. Stern, and T. Nakagawa, J. Membr. Sci. 34, 5
共1987兲.
Variables:
Prepared By:
T/K⫽308 and 328
p/MPa⫽0 – 2.7 共0–27 atm兲
Yu. P. Yampol’skii
1318
Experimental Data
Dual mode sorption parameters for various gases in PTMSP at 308 K
TABLE 1. Dual mode sorption parameters and apparent solubility coefficients
T/K
p/atm
kD
⬘
CH
b
⬘b
S⫽k D ⫹C H
Ref.
298
298
303
308
328
0–65
0–60
0–40
0–25
0–25
3.6
1.3
1.53
1.50
0.98
47.7
139
151
113
71.9
0.107
0.064
0.0403
0.058
0.059
8.7
10.2
6.6
8.0
5.2
2, 3
5
4
1
1
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1.
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H
A significant scatter of the values of the sorption model parameters is seen, which is related to the substantial time dependence of
transport and thermodynamic properties of this polymer 共for more details see Ref. 6兲. The scatter of the S values is not very large, and
better agreement is observed between the data from different papers.
⬘ , much higher than in other
An essential feature of the sorption in PTMSP is the large values of Langmuir capacity parameter C H
polymers. The minimal value reported in Refs. 2 and 3 is presumably underestimated owing to the narrow pressure range studied in these
works. It is intriguing and as yet unexplained fact that Henry’s law solubility coefficients k D in PTMSP are significantly higher than in
other polymers. This is true not only for carbon dioxide but for other gases as well.1–3
Referring to the data given in Table 1 one can tentatively recommend the sorption parameters measured in Refs. 5 and 1 since they
form a plausible temperature dependence for all three parameters and for S.
The enthalpy of sorption calculated from Van’t Hoff plot for S is equal to ⫺14.7⫾4.9 kJ/mol. The scatter in the temperature
dependences of the k D and b values prevents the calculation of the corresponding enthalpies of Henry’s law dissolution and Langmuir
adsorption.
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
CO2
1.497
0.978*
0.667
112.9
71.9*
87.8
0.058
0.059*
0.035
0.431
0.656
15.4
16.8
0.042
0.036
CH4
N2
O2
*At 328 K.
References:
Y. Ichiraku, S. A. Stern, and T. Nakagawa, J. Membr. Sci. 34, 5 共1987兲.
A. K. Bokarev, V. V. Volkov, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, and Yu. P. Yampol’skii, Dokl. Akad. Nauk.
SSSR 305, 117 共1989兲.
3
N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol’skii, J. Membr.
Sci. 60, 13 共1991兲.
4
T. Nakagawa, M. Sekiguchi, K. Nagai, and A. Higuchi, Intern. Congress on Membranes 共ICOM-90兲, Chicago, 1990, p. 824.
5
V. I. Bondar, Yu. M. Kukharskii, and V. V. Volkov, Abstracts, 5th Intern. Symp. on Solubility Phenomena, Moscow, 1992, p. 227.
6
D. R. Paul and Yu. P. Yampol’skii, Eds., Polymeric Gas Separating Membranes 共CRC, Boca Raton, 1994兲, p. 192.
1
2
FIG. 24. Sorption isotherms of various gases in PTMSP at 308 K.
Auxiliary Information
MethodÕApparatusÕProcedure
The solubility was measured by a volumetric method. The
apparatus and the procedure are described in detail in Ref. 1.
Source and Purity of Materials:
Gases: purity ⬎99.5%.
PTMSP: Sanyo Chemical Industries, density 0.938 g/cm3, M w
⫽700 000, no glass transition observed below 473 K.
Estimated Error:
Relative precision of solubilities: from ⫾6.6%共CO2兲 to
⫾54%共N2兲.
References:
1
V. M. Shah, B. J. Hardy, and S. A. Stern, J. Polym. Sci., Part B:
Polym. Phys. 24, 2033 共1986兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.13. Poly„Trimethylsilyl Propyne…—Various Gases
Components:
共1兲 2-Methylpropane; C4H10; 关75-28-5兴
共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲
Original Measurements:
H. Odani, H. Shimomura, K. Nakanishi, T. Masuda, and T.
Higashimura, Japan—US Polymer Symposium 1985, pp. 251–
252.
Components:
共1兲 Xenon; Xe; 关7440-63-3兴 Oxygen; O2; 关7782-44-7兴 Carbon
dioxide; CO2; 关124-38-9兴
共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲
Variables:
T/K⫽298
p/kPa⫽0 – 100
Prepared By:
Yu. P. Yampol’skii
Variables:
Prepared By:
T/K⫽307.8
p/kPa⫽0 – 93
V. I. Bondar
Experimental Data
Sorption isotherm of 2-methylpropane in PTMSP at 298 K. 共The original data were represented graphically兲
Sorption (V 1* 共STP兲/V 2* )
4.22
9.03
12.78
24.40
27.09
41.94
67.73
93.33
14.74
20.59
23.79
30.22
30.65
35.56
43.01
50.19
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was studied by a gravimetric method.
Source and Purity of Materials:
PTMSP: synthesized according to Ref. 1 and stored in methanol
until used.
Estimated Error:
No information given.
References:
1
K. Takada, H. Matsuya, T. Masuda, and T. Higashimura, J.
Appl. Polym. Sci. 30, 1605 共1985兲.
Experimental Data
Linear sorption isotherms were observed for all three gases.
Solubility coefficients S
Gas
102 S/cm3共STP兲/cm3 cm Hg
Xe
O2
CO2
19.71
2.4
8.83
Auxiliary Information
MethodÕApparatusÕProcedure
Source and Purity of Materials:
A gravimetric method of the measurement was employed 共the
McBain balance with a quartz spring兲. The correction allowing
for buoyancy was made.
PTMSP was prepared according to Ref. 1. It had M w
⫽2 500 000.
Estimated Error:
No information given.
References:
1
T. Masuda, E. Isobe, T. Higashimura, and K. Takada, J. Am.
Chem. Soc. 105, 74 共1983兲.
1319
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/kPa
Original Measurements:
S. Asakawa, Y. Saitoh, K. Waragai, and T. Nakagawa, Gas
Separation Purification, 3, 117 共1989兲.
Original Measurements:
V. I. Bondar, Yu. M. Kukharskii, and V. V. Volkov, Abstracts,
5th Intern. Symposium on Solubility Phenomena, Moscow,
1992, p. 227.
Variables:
T/K⫽298
p/MPa⫽0 – 11
Prepared By:
V. I. Bondar
Experimental Data
Dual mode sorption parameters for various gases in PTMSP at 298 K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
Ar
N2
CO2
CH4
C2H6
0.096
0.062
1.300
0.200
2.830
90.9
60.0
139.0
88.3
75.1
0.015
0.017
0.064
0.041
0.473
Original Measurements:
A. K. Bokarev, V. V. Volkov, N. E. Kaliuzhnyi, E. G. Litvinova,
V. S. Khotimskii, and Yu. P. Yampol’skii, Dokl. Akad. Nauk
SSSR 305, 117 共1989兲.
N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova,
V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol’skii, J.
Membr. Sci. 60, 13 共1991兲.
Variables:
T/K⫽298
p/kPa⫽0 – 665
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for various gases in PTMSP at 298 K
Gas
102 k D /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
102 b/cm Hg⫺1
CO2
N2O
Xe
4.70
47.70
0.141
6.15
4.84
42.88
61.73
0.329
0.399
FIG. 25. Sorption isotherms of various gases in PTMSP at 298 K.
Auxiliary Information
MethodÕApparatusÕProcedure
Solubility was measured by means of gravimetric method
using Sartorius 4436 microbalance.
Source and Purity of Materials:
PTMSP: prepared according the method of Masuda et al.1
Estimated Error:
No information given.
References:
1
T. Masuda, E. Isobe, and T. Higashimura, J. Am. Chem. Soc.
105, 7473 共1983兲.
FIG. 26. Sorption isotherms of various gases in PTMSP at 298 K.
PATERSON, YAMPOL’SKII, AND FOGG
Gas
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Krypton; Kr; 关7439-90-9兴 Xenon;
Xe; 关7440-63-3兴 Carbon dioxide; CO2; 关124-38-9兴 Nitrous
oxide; N2O; 关10024-97-2兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲
1320
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon
dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 Ethane;
C2H6; 关74-84-0兴
共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were performed using McBain balance
as is described in Ref. 1
Source and Purity of Materials:
PTMSP: prepared by polymerization in the presence of TaCl5 as
a catalyst: density 0.964 g/cm3 共measured in a gradient column兲.
M w ⫽590 000, M n ⫽125 000, glass transition temperature 503
K.
Estimated Error:
No information given.
References:
1
V. V. Volkov, A. K. Bokarev, and S. G. Durgaryan,
Vysokomol. Soedin., Ser. A 26, 1294 共1984兲.
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Poly共trimethylsilyl propyne兲 共PMSP兲; 关87842-32-8兴 共XVI兲
Original Measurements:
L. C. Withchey-Lakshmanan, H. B. Hopfenberg, and R. T.
Chern, J. Membr. Sci. 48, 321 共1990兲.
Variables:
T/K⫽308
p/kPa⫽0 – 120
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for propane at 308 K*
⬘
CH
kD
⫺4
⫺3
3.6 10 mol/g atm
6.3 cm3共STP兲/cm3 atm
2.16⫻10 mol/g
37.7 cm3共STP兲/cm3
b
4.4 共atm兲⫺1
4.4 共atm兲⫺1
*The first line gives the values as reported by the authors, the second line recalculated by the compiler.
MethodÕApparatusÕProcedure
The sorption measurements were performed with a McBain
quartz spring balance following a procedure described in Ref.
1
Source and Purity of Materials:
PMSP had M w ⫽600 000, a density 0.78 g/cm3. Purity of
propane 99.5%.
Estimated Error:
No information given.
References:
1
R. M. Felder, C. J. Patton, and W. J. Koros, J. Polym. Sci.,
Polym. Prep. 19, 1895 共1981兲.
1321
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Auxiliary Information
Variables:
T/K⫽303 and 308
p/MPa⫽0 – 0.1 共for C3H8兲 and 0–4.0 共for CO2兲
Original Measurements:
T. Nakagawa, M. Sekiguchi, K. Nagai, and A. Higuchi, Int.
Congress on Membranes 共ICOM-90兲 Chicago, 1990, pp. 824–
26.
T. Nakagawa, H. Nahano, and A. Higuchi, Membrane
Symposium N1 ‘‘Control in Membrane Transport,’’ Kvoto,
1989, pp. 36–39.
Original Measurements:
T. Nakagawa, M. Sekiguchi, K. Nagai, and A. Higuchi, Int.
Congress on Membranes 共ICOM-90兲, Chicago, 1990, pp. 824–
26.
Variables:
T/K⫽303
p/MPa⫽0 – 4.0
Prepared By:
Yu. P. Yampol’skii
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual-mode sorption parameters
Experimental Data
Dual-mode sorption parameters
T/K
k D ,/cm3共STP兲/cm3 atm
⬘ ,/cm3共STP兲/cm3
CH
b, atm⫺1
CO2
303
308
303
0.534
1.497
6.93
151.2
112.9
50.14
0.0403
0.058
2.15
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were done by means of Cahn
electrobalance, model 2000.
Gas
关Br兴,%
p/MPa
k D ,/cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm3
CH
b/atm⫺1
CO2
C 3H8
2.6
11.9
0–4.0
0–0.1
1.77
9.65
48.8
19.6
0.0701
5.96
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were made by means of Cahn
electrobalance model 2000.
Source and Purity of Materials:
Poly共trimethylsilylpropyne was synthesized according to Ref. 1.
Bromination was carried out by dipping samples into bromine
water. The polymer revealed a glass transition at 323 K.
Source and Purity of Materials:
PTMSP was synthesized according to Masuda et al.1 It did not
reveal any glass transition up to 620 K.
Estimated Error:
No information given.
References:
1
K. Takada, H. Mitiuta, T. Masuda, and T. Higashimura, J. Appl.
Polym. Sci. 30, 1605 共1983兲.
References:
K. Takada, H. Mitiuta, T. Masuda, and T. Higashimura, J. Appl.
Polym. Sci. 30, 1605 共1983兲.
1
PATERSON, YAMPOL’SKII, AND FOGG
Gas
C3H8
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Propane; C3H8; 关74-98-6兴
共2兲 Brominated poly共1-trimethylsilyl-1-propyne兲
1322
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Propane; C3H8; 关74-98-6兴
共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲 关87842-32-8兴 共XVI兲
3.15. Poly„2,3 Dimethylphenylene Oxide…—Carbon Dioxide, Methane
3.14. Poly„Phenylene Oxides…—Various Gases
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共2,6-dimethylphenylene oxide兲 共PPO兲; 关24938-67-8兴
共XVIII兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Four investigations are available on solubility of carbon dioxide and methane in PPO.1–4 PPO is a semicrystalline polymer with high
glass transition temperature of amorphous phase. However, no author reported the content of amorphous and crystalline phases of
polymer studied and other important characteristics like molecular mass. All this should result in predicaments in comparison of the data
obtained in different papers.
Table 1 shows the dual mode sorption parameters and apparent solubility coefficients S calculated from them or from the initial slope
of the experimental isotherms.
TABLE 1. Dual mode sorption parameters and apparent solubility coefficients
T/K
kD
⬘
CH
b
CO2
308
308
308
293
308
308
0.788
0.849
—
—
—
0.267
32.6
25.9
—
—
—
19.1
0.216
0.239
—
—
—
0.1077
CH4
⬘b
S⫽k D ⫹C H
7.8
7.0
6*
4.7
2.2*
2.3
Ref.
1
3
2
4
2
3
Original Measurements:
K. Toi, G. Morel, and D. R. Paul, J. Appl. Polym. Sci. 27, 2997
共1982兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.5
Prepared By:
A. K. Bokarev
Experimental Data
Dual mode sorption parameters for various gases in PPO at 308 K
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
Ar
CO2
CH4
0.21
0.95
9.4
27.5
0.058
0.250
0.33
0.12
18.1
7.1
0.110
0.040
N2
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1.
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H
*Calculated from the plots by evaluator.
In spite of the difficulties mentioned above, the dual mode sorption parameters found by different authors agree reasonably, as well
as the solubility coefficients at constant temperature.
Enthalpy of sorption of methane in PPO found from the S values measured at two different temperatures is shown to be equal to
⫺35.6 kJ/mol.
References:
Y. Maeda and D. R. Paul, J. Polym. Sci.: Part B: Polym. Phys. 25, 981 共1987兲.
2
R. T. Chern, L. Jia, S. Shimoda, and H. B. Hopfenberg, J. Membr. Sci. 48, 333 共1990兲.
3
B. J. Story and W. J. Koros, J. Appl. Polym. Sci. 42, 2613 共1991兲.
1
O. M. Ilinitch, G. L. Semin, M. V. Chertova, and K. I. Zamaraev, J. Membr. Sci. 66, 1 共1992兲.
4
FIG. 27. Sorption isotherms of various gases in PPO at 298 K.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were made using facilities and
procedures described previously, Ref. 1
Source and Purity of Materials:
PPO: General Electric Co., M w ⫽34 000. M n ⫽22 600.
Estimated Error:
No information given.
References:
1
D. R. Paul, Ber. Bunsenges Phys. Chem. 83, 294 共1979兲.
1323
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon
dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共2, 6-dimethylphenylene oxide兲 共PPO兲; 关24938-67-8兴
共XVIII兲
Original Measurements:
B. J. Story and W. J. Koros, J. Appl. Polym. Sci. 42, 2613
共1991兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.0 (0 – 20 atm)
Prepared By:
Yu. P. Yampol’skii
Components:
共1兲 Xenon; Xe, 关7440-63-3兴 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共phenylene oxide兲 共PPO兲 关24938-67-8兴 共XVIII兲
Original Measurements:
S. Asakawa, Y. Saitoh, K. Waragai, and T. Nakagawa, Gas
Separation Purification 3, 117 共1989兲.
Variables:
T/K⫽307.8
p/kPa⫽0 – 93
Prepared By:
V. I. Bondar
1324
Experimental Data
Solubility coefficients, S
Experimental Data
Dual mode sorption model parameters for pure gases in PPO at 308 K
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
CO2
CH4
0.8490
0.2674
25.86
19.10
0.2395
0.1077
Gas
102 S/cm3共STP兲/cm3 cm Hg
Xe
CO2
18.81
8.56
Auxiliary Information
MethodÕApparatusÕProcedure
A McBain balance with a quartz spiral was used in the
solubility measurements, the correction for buoyancy was
introduced.
Source and Purity of Materials:
PPO was obtained by oxidative coupling method according to
Ref. 1. Nothing specified on molecular mass or crystallinity.
Estimated Error:
No information given.
References:
A. S. Hay, H. S. Blanchard, G. F. Endres, and J. W. Eustance,
J. Am. Chem. Soc. 81, 6335 共1959兲.
1
FIG. 28. Mixed gas sorption CO2 /CH4 in poly共phenylene oxide兲 at 308 K. Solid lines: sorption model for mixed gas sorption C i
⬘ b i p i /(1⫹b j p j ⫹bp i ), 共Dotted lines兲 sorption model for pure gases.
⫽k Di p i ⫹C Hi
Auxiliary Information
MethodÕApparatusÕProcedure
Standard pressure decay system 共Ref. 1兲 was used in pure gas
sorption. Mixed gas sorption experiments were performed
using a special apparatus having additional chambers for
preparation and chromatographic sampling of gas mixtures.
Source and Purity of Materials:
No information given.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Methane; CH4; 关74-82-8兴
共3兲 Poly共2, 6-dimethylphenylene oxide兲 共PPO兲; 关24938-67-8兴
共XVIII兲
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Decanedioic acid, dioctyl ester 共dioctyl sebacate, DOS兲;
C26H50O4 ; 关2432-87-3兴 Phosphoric acid, tri共methyl phenyl兲
ester 共tricresyl phosphate, TCP兲; C21H21O4P; 关1330-78-5兴
共3兲 Poly共2, 6-dimethylphenylene oxide兲 共PPO兲; 关24938-67-8兴
共XVIII兲
Original Measurements:
Y. Maeda and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys.
25, 981 共1987兲.
Variables:
T/K⫽308– 328
p/MPa⫽0 – 2.2 (0 – 22 atm)
Prepared By:
A. K. Bokarev
Pressure/MPa
Experimental Data
TABLE 1. Dual mode sorption parameters for CO2 in PPO at different temperatures and its mixtures with plasticizers at 308 K
k D /cm 共STP兲 cm
3
⫺3
⫺1
atm
⬘ /cm 共STP兲 cm
CH
3
⫺3
⫺1
b/atm
T g /K
T/K
PPO
308
318
328
0.788
0.586
0.463
32.6
30.0
28.4
0.216
0.164
0.128
481.8
481.8
481.8
308
0.543
21.6
0.181
427.1
318
328
0.654
0.821
14.2
3.8
0.132
0.251
380.9
345.0
308
318
328
0.532
0.763
1.090
20.5
7.3
—
0.141
0.172
—
408.8
354.1
312.3
20%
30%
DOS 共mass %兲
10%
20%
30%
Pressure/MPa
Sorption/
(V 1* 共STP兲/V 3* )
Pressure/MPa
Sorption/
(V 1* 共STP兲/V 3* )
Pressure/MPa
Pressure/MPa
Sorption
(V 1* 共STP兲/V 23)
Pressure/MPa
Sorption
(V 1* 共STP兲/V 23)
DOS 0 mass %
0.06
0.08
0.10
0.12
0.17
0.19
DOS 10 mass %
0.18
0.23
0.30
0.46
DOS 20 mass %
0.13
0.22
0.27
0.38
DOS 30 mass %
0.20
0.28
0.37
0.48
4.91
5.85
7.10
8.29
10.82
11.27
0.28
0.38
0.41
0.43
0.45
0.47
14.94
17.82
18.07
19.31
19.66
19.91
0.65
0.83
0.84
1.01
1.11
1.17
23.94
27.17
27.87
30.01
31.95
32.35
1.36
1.61
1.87
1.89
1.98
2.01
35.39
37.94
41.03
40.63
41.38
42.38
5.02
6.36
7.90
10.44
0.60
0.84
0.94
1.15
12.63
15.48
16.48
18.77
1.48
1.53
1.78
2.09
21.72
21.97
24.02
26.32
2.14
—
—
—
26.38
—
—
—
2.44
3.78
4.28
5.78
0.50
0.65
0.72
0.83
7.27
8.72
9.52
10.67
0.97
1.34
1.43
1.76
12.22
15.22
15.82
18.67
2.09
—
—
—
21.52
—
—
—
2.59
3.44
4.39
5.69
0.65
0.95
0.99
1.19
7.53
10.43
10.98
12.83
1.37
1.53
1.81
2.09
14.62
16.32
19.32
22.51
2.14
—
—
—
23.16
—
—
—
Sorption/
(V 1* 共STP兲/V 3* )
4.24
4.92
5.94
7.08
8.33
10.60
11.17
0.28
0.37
0.41
0.42
0.46
0.55
0.65
14.92
17.64
18.09
19.34
20.02
21.82
24.08
0.83
0.84
1.02
1.11
1.18
1.30
1.37
27.13
27.92
30.16
31.86
32.41
34.55
35.45
1.61
1.89
1.91
2.00
2.03
—
—
38.02
41.15
40.80
41.70
42.38
—
—
4.80
7.98
8.66
11.38
12.28
0.41
0.55
0.70
0.79
0.84
14.77
17.60
20.07
21.54
22.21
0.91
1.14
1.34
1.43
1.50
23.45
25.91
28.38
29.38
30.51
1.74
1.76
2.08
2.16
—
32.51
32.16
35.28
35.60
—
4.79
6.38
9.55
11.13
0.44
0.57
0.79
0.95
12.48
14.62
17.88
19.56
1.08
1.27
1.30
1.68
21.13
23.48
23.93
26.70
1.74
1.82
1.98
2.09
27.37
28.15
29.25
30.02
Pressure/MPa
TCP 0 mass %
0.04
0.06
0.08
0.11
0.14
0.18
0.20
TCP 10 mass %
0.13
0.18
0.23
0.27
0.35
TCP 20 mass %
0.16
0.21
0.29
0.34
TCP 30 mass %
0.20
0.26
0.31
0.40
Sorption
(V *
1 共STP兲/V 23)
Pressure/MPa
Sorption
(V *
1 共STP兲/V 23)
Pressure/MPa
Sorption
(V *
1 共STP兲/V 23)
Pressure/MPa
Sorption
(V *
1 共STP兲/V 23)
3.19
4.67
5.81
7.17
8.19
10.69
11.03
0.30
0.39
0.42
0.44
0.48
0.56
0.66
14.77
17.83
18.05
19.30
19.98
21.79
23.94
0.83
0.84
1.01
1.11
1.18
1.29
1.36
27.21
27.89
30.14
31.83
32.39
34.42
35.21
1.62
1.87
1.89
1.99
2.02
—
—
37.90
41.27
40.58
41.48
42.38
—
—
4.54
6.13
7.15
8.28
9.75
0.44
0.58
0.70
0.73
0.78
11.44
13.81
15.61
16.29
16.62
0.83
0.91
1.11
1.27
1.35
17.18
18.20
20.21
21.78
22.33
1.46
1.71
1.88
1.95
—
23.68
25.46
26.69
27.13
—
3.17
4.08
5.09
6.10
0.41
0.51
0.67
0.81
7.00
8.12
10.15
11.83
0.86
1.14
1.20
1.40
12.17
14.74
15.30
17.20
1.43
1.89
1.95
—
17.08
20.53
20.98
—
2.48
3.16
3.94
4.73
0.43
0.49
0.55
0.67
5.18
5.73
6.29
7.76
0.93
1.00
1.06
1.18
10.10
10.66
11.22
12.34
1.48
1.57
1.77
2.14
14.91
15.46
17.59
20.49
1325
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
T⫽308 K
0.04
0.06
0.08
0.10
0.12
0.17
0.19
T⫽318 K
0.09
0.18
0.19
0.28
0.32
T⫽328 K
0.13
0.19
0.30
0.38
Sorption/
(V 1* 共STP兲/V 3* )
Sorption
(V 1* 共STP兲/V 23)
TABLE 4. Effect of the content of TCP 共mass %兲 on CO2 sorption isotherms for PPO at 308 K. 共The original data were represented
graphically兲
TABLE 2. Sorption isotherms of carbon dioxide in pure PPO 共The original data were represented graphically兲
Pressure/MPa
Pressure/MPa
Sorption
(V 1* 共STP兲/V 23)
IUPAC-NIST SOLUBILITY DATA SERIES
System
TCP 共mass %兲
10%
TABLE 3. Effect of the content of DOS 共mass %兲 on CO2 sorption isotherms for PPO at 308 K 共The original data were represented
graphically兲
MethodÕApparatusÕProcedure
The apparatus and procedure for measuring sorption isotherms
are described in Ref. 1.
Source and Purity of Materials:
PPO: General Electric Co., M n ⫽22 600. M w ⫽34 000, M z
⫽57 200, glass transition temperature 482 K.
Estimated Error:
No information given.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
Components:
共1兲 Nitrogen; N2 ; 关7727-37-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共2, 6-dimethyl-1, 4-phenyleneoxide兲 共PPO兲;
关24938-67-8兴 共XVIII兲 Aryl-brominated PPO 共Br content 36%
and 91%兲
Original Measurements:
R. T. Chern, F. R. Sheu, L. Jia, V. T. Stannett, and H. B.
Hopfenberg, J. Membr. Sci. 35, 103 共1987兲.
Variables:
T/K: 308
p/MPa: 0–3.0 共1–3 atm兲
Prepared By:
A. K. Bokarev
1326
Experimental Data
Dual-mode sorption parameters for gases in PPO and PPOBr at 308 K
Polymer
Gas
k D /cm⫺3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/共atm⫺1兲
PPO
CO2
CH4
N2
0.921
0.321
0.153
32.74
22.19
9.95
0.195
0.107
0.048
PPOBr
共36%兲
CO2
CH4
N2
0.941
0.344
0.162
35.42
24.93
11.83
0.244
0.113
0.053
PPOBr
共91%兲
CO2
CH4
N2
0.969
0.379
0.169
37.54
26.90
15.06
0.292
0.120
0.057
Auxiliary Information
MethodÕApparatusÕProcedure
A dual-transducer pressure-decay cell, was used for the
solubility measurements. For details see Refs. 1 and 2.
Source and Purity of Materials:
PPO in powder form was obtained from General Electric Co.
Bromination of PPO resulted in only aryl-substituted polymer.
The ratio of mono- to di-substituted PPO was 2.6 for PPOBr
共36%兲 and 8.6 for PPO 共91%兲.
The purity of gases 共Air Products and Chemicals兲 used: Coleman
grade CO2 共99.999%兲, instrument grade CH4 共99.7%兲, N2
(⬎99.99%).
Estimated Error:
Not specified.
References:
1
R. T. Chern, W. J. Koros, R. Yui, H. B. Hopfenberg, and V. T.
Stannett, J. Polym. Sci., Polym. Phys. Ed. 22, 1061 共1984兲.
2
E. S. Sanders, W. J. Koros, V. T. Stannett, and H. B.
Hopfenberg, J. Membr. Sci. 13, 161 共1983兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
Components:
共1兲 Hydrocarbons C1 –C3
共2兲 Poly共phenylene oxide兲 共PPO兲; 关25134-01-4兴
Original Measurements:
O. M. Ilinitch, G. L. Semin, M. V. Chertova, and K. I. Zamaraev,
J. Membr. Sci. 66, 1 共1992兲.
Variables:
T/K⫽293.2
p/kPa⫽0–100
Prepared By:
O. M. Ilinitch
Experimental Data
Solubility C/cm3共STP兲 cm⫺3 of hydrocarbons in PPO
Gas
Methane;
CH4;
关74-82-8兴
Ethylene;
C2H4;
关74-85-1兴
C
Gas
p/kPa
C
21.3
34.0
46.7
60.0
72.6
84.0
1.0
1.4
1.8
2.3
2.8
3.4
Propane;
C3H8;
关74-98-6兴
6.9
13.7
20.3
30.0
34.7
9.7
12.6
14.4
16.1
16.9
6.0
7.6
20.0
25.6
34.7
3.3
4.5
7.0
8.2
9.8
Propylene;
C3H6;
关115-07-1兴
4.4
8.1
13.6
20.0
26.7
34.7
6.6
9.3
11.6
13.7
15.4
17.1
4.7
8.0
10.0
14.2
23.3
34.3
36.0
2.6
3.5
4.3
5.1
6.9
8.6
9.2
Auxiliary Information
Source and Purity of Materials:
PPO was prepared via oxidative polycondensation of
2,6-dimethylphenol. Major possible impurity: phenoquinone and
copper. Purity ⬎99.9%; a density 1.17 g/cm3, T g ⫽482 K.
All the gases had a purity 99.9%.
Estimated Error:
␦ T⫽⫾0.1 K; ␦ p⫽⫾0.2 kPa.
␦ C/C⫽⫾0.1 共compiler兲.
Variables:
T/K⫽308
p/MPa⫽0–2.5
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Properties of PPO and brominated PPO
Characteristics
PPO
PPOBr 共0.36兲
PPOBr 共0.91兲
PPOBr 共1.06兲
% Repeat unit
Mono-Br
Di-Br
Unmodified
Density/g cm⫺3
T g /K
0
0
100
1.061
483
20.4
7.8
71.8
1.203
506
73.9
8.5
17.6
1.380
535
60.0
24.0
16.0
1.390
542
TABLE 2. Sorption isotherms of carbon dioxide in the various polymers at 308 K 共The original data were represented graphically兲
PPOBr 共0.36兲
PPO
PPOBr 共0.91兲
PPOBr 共1.06兲
Pressure/MPa
Sorption
共V *
1 共STP兲/V *
2)
Pressure/MPa
Sorption
共V *
1 共STP兲/V *
2)
Pressure/MPa
Sorption
共V *
1 共STP兲/V *
2)
Pressure/MPa
Sorption
共V *
1 共STP兲/V 2* )
0.13
0.17
0.24
0.30
0.36
0.45
0.72
0.81
0.88
1.02
1.17
1.37
1.36
1.50
1.73
1.76
1.94
2.16
2.38
2.63
2.80
8.79
9.93
12.90
14.95
16.31
18.57
24.90
27.17
28.05
30.28
33.20
35.16
36.56
36.70
40.27
41.18
42.91
45.10
47.27
51.06
52.81
0.13
0.20
0.24
0.32
0.49
0.53
0.61
0.76
0.86
0.95
1.02
1.28
1.34
1.41
1.46
1.75
1.88
1.93
2.14
2.32
—
10.19
13.39
15.69
18.43
23.43
24.79
26.37
29.52
31.78
33.11
34.00
38.47
38.90
40.01
40.45
44.20
45.75
46.64
48.83
51.03
—
0.14
0.22
0.40
0.45
0.63
0.88
0.97
1.08
1.33
1.52
1.65
1.73
2.06
2.13
2.22
2.32
2.65
—
—
—
—
12.50
17.33
23.48
24.85
29.61
35.25
36.59
38.60
42.16
44.82
45.9
46.77
51.20
51.86
53.89
54.52
58.25
—
—
—
—
0.12
0.36
0.38
0.24
0.55
0.70
0.74
0.96
0.90
1.11
1.27
1.41
1.53
1.63
1.85
2.06
2.22
2.53
—
—
—
10.42
22.35
21.41
15.93
26.41
32.35
30.93
35.20
36.86
40.91
41.97
46.29
48.07
48.93
52.27
55.85
57.61
61.35
—
—
—
1327
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
The conventional McBain balance was used.
Original Measurements:
R. T. Cher, L. Jia, S. Shimoda, and H. B. Hopfenberg, J. Membr.
Sci. 48, 333 共1990兲.
IUPAC-NIST SOLUBILITY DATA SERIES
Ethane;
C2H6;
关74-84-0兴
p/kPa
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共2, 6-dimethylphenylene oxide兲 共PPO兲; 关24938-67-8兴
共XVIII兲
Brominated PPO
PPOBr 共0.36兲
PPO
PPOBr 共0.91兲
PPOBr 共1.06兲
Sorption
共V 1* 共STP兲/V 2* )
Pressure/MPa
Sorption
共V 1* 共STP兲/V 2* )
Pressure/MPa
Sorption
共V 1* 共STP兲/V 2* )
Pressure/MPa
Sorption
共V 1* 共STP兲/V 2* )
0.10
0.19
0.47
0.51
0.57
0.70
0.99
1.10
1.17
1.28
1.67
1.73
1.79
2.03
2.21
2.26
2.46
2.63
2.67
—
—
—
—
—
—
—
—
2.85
4.50
8.56
9.24
10.11
11.36
14.34
15.30
15.77
16.53
19.10
19.28
19.95
20.98
22.22
22.40
23.04
24.48
24.47
—
—
—
—
—
—
—
—
0.03
0.18
0.23
0.29
0.37
0.43
0.52
0.66
0.72
0.80
0.88
0.99
1.08
1.13
1.19
1.27
1.50
1.56
1.69
1.80
2.00
2.07
2.18
2.26
2.36
2.41
2.46
2.08
4.89
6.06
7.32
8.58
9.75
10.91
12.65
13.32
14.38
15.15
16.11
16.97
17.35
18.03
18.79
20.51
20.60
21.75
22.31
23.74
23.72
24.58
25.35
25.82
25.81
26.09
0.11
0.20
0.48
0.53
0.69
0.93
0.96
1.04
1.17
1.26
1.50
1.40
1.61
1.74
1.80
2.02
2.10
2.29
2.50
2.57
—
—
—
—
—
—
—
4.02
6.46
11.51
12.18
14.51
17.10
17.88
18.06
20.20
19.68
21.30
22.70
24.12
24.19
25.06
26.39
26.86
27.90
28.73
29.11
—
—
—
—
—
—
—
0.04
0.18
0.45
0.61
0.80
1.03
1.22
1.45
1.65
1.88
2.07
2.27
2.44
2.57
—
—
—
—
—
—
—
—
—
—
—
—
—
2.17
7.05
12.40
14.13
17.53
19.83
22.25
24.16
25.98
27.30
29.23
30.36
31.79
31.96
—
—
—
—
—
—
—
—
—
—
—
—
—
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption isotherms were measured with a dual transducer
barometric device described in Ref. 1.
Source and Purity of Materials:
Bromination was conducted at 273 K in dilute solution of PPO in
chloroform 共⬍5%兲. According to NMR none of the methyl
groups were brominated. Aromatic rings were brominated
mainly in three and five positions.
Estimated Error:
No information given
References:
E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. T.
Stannett, J. Membr. Sci. 13, 16 共1983兲.
1
Original Measurements:
B. J. Story and W. J. Koros, J. Appl. Polym. Sci. 42, 2613
共1991兲.
Variables:
Prepared By:
T/K⫽308
p/MPa⫽0–2.0 (0 – 20 atm)
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for various gases in CCPO at 308 K
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
CO2
CH4
0.7918
0.2981
26.28
15.53
0.2852
0.1254
PATERSON, YAMPOL’SKII, AND FOGG
Pressure/MPa
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Methane; CH4; 关74-28-8兴
共3兲 Carboxylated poly共phenylene oxide兲 共CPPO兲
1328
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 3. Sorption isotherms of methane in the various polymers at 308 K 共The original data were represented graphically兲
Auxiliary Information
MethodÕApparatusÕProcedure
A standard pressure decay system 共Ref. 1兲 was used in pure
gas sorption. Mixed gas sorption experiments were performed
using a special apparatus having additional chambers for
preparation and chromatographic sampling of gas mixtures.
Source and Purity of Materials:
CPPO: prepared via lithiation into methyl groups with BuLi/
THF with subsequent carboxylation and acidification. The
average content of COOH groups per repeat unit was 0.22.
Estimated Error:
No information given.
References:
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
1
IUPAC-NIST SOLUBILITY DATA SERIES
1329
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
FIG. 29. Mixed gas sorption CO2 /CH4 in CPPO at 308 K and two different pressures. 共Solid lines兲 sorption model for mixed gas
⬘ b i p i /(1⫹b i p i ⫹b j p j ), 共Dotted lines兲 sorption model for pure gases.
sorption C i ⫽k Di p i ⫹C Hi
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲
Evaluator:
TABLE 2. Solubility coefficients S in semicrystalline samples of PETP 共if not stated otherwise兲
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
This system has been studied thoroughly by a number of investigators.1–9 However, the variation in crystallinity of polymer samples,
as well as different temperature and pressure ranges studied preclude an accurate comparison of all the results.
Table 1 summarizes the dual mode sorption parameters at 298 K for the samples having different degrees of crystallinity. It is seen
that other factors beside crystallinity determine the parameters of sorption isotherms. Moreover, depending on the method of crystallization, different values of model parameters can be observed for the same crystallinity.9 Perhaps, this is caused by the effects of
quenching or swelling in high pressure gas. The same is true for the solubility coefficient.
S/cm3共STP兲 cm⫺3 atm⫺1
Ref.
290
298
3.1
2.7
3.3
3.1
4.6
2.2
5.0
3.8
1.7
1.7
2.3
0.6
1.1
0.35
6a
1b,c
2b
5b
7a
5b
8a,c
8a
4a
5b
7a
8a,c
8a
5b
308
0
25*
27**
43
46
59
kD
⬘
CH
b
⬘b
S⫽k D ⫹C H
Ref.
318
0.38
0.77
0.73
0.21
0.37
0.36
5.3
2.6
7.0
4.2
5.7
7.9
0.44
1.5
1.3
0.45
0.52
0.35
2.7
4.7
9.8
2.1
3.3
3.1
1
9
9
1
2
5
338
358
a
Found by evaluator from the initial slope of sorption isotherms.
Calculated using the dual mode sorption parameters.
Amorphous sample.
b
c
*Crystallization by heating.
**Crystallzation by exposing to high pressure carbon dioxide.
Further experimental studies with well characterized polymer samples are required in order to properly evaluate this system.
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1.
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H
For the given samples of PETP, very good temperature dependences of the parameters of sorption isotherms have been obtained 共see
⬘ parameter determined by different authors and for the samples
e.g., Refs. 5 and 9兲. Figure 30 shows temperature dependence of the C H
⬘ values than those
with different pretreatment. It indicates that the differences in crystallization methods cause larger alterations in the C H
obtained in independent sorption studies.
References:
1
A. S. Michaels, W. R. Vieth, and J. A. Barrie, J. Appl. Polym. Sci. 34, 1 共1963兲.
2
W. R. Vieth, H. H. Alcalay, and A. J. Frabetti, J. Appl. Polym. Sci. 8, 2125 共1964兲.
3
K. Toi, J. Polym. Sci., Polym. Phys. Ed. 11, 1829 共1973兲.
W. J. Koros, D. R. Paul, M. Fujii, and H. B. Hopfenberg, J. Appl. Polym. Sci. 21, 2899 共1977兲.
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 16, 1947 共1978兲.
O. N. Tigina, Dissertation, GIAP, Moscow, USSR, 1983.
7
M. D. Sefcik, H. K. Yuen, and D. D. Chan, Polymer 26, 2043 共1985兲.
8
Y. Kamiya, T. Hirose, Y. Naito, and K. Mizoguchi, J. Polym. Sci., Part B: Polym. Phys. 26, 159 共1988兲.
9
T. Hirose, K. Mizoguchi, Y. Kamiya, and Y. Terada, J. Appl. Polym. Sci. 37, 1513 共1989兲.
4
5
6
⬘ /共cm3共STP兲 cm⫺3兲. 共䊐兲 Ref. 1; 共䊏兲 Ref. 2; 共䊉兲 Ref. 5: 共䊊兲 Ref.
FIG. 30. Temperature dependence of Langmuir adsorption capacity C H
9 共crystallization by exposure to CO2兲; 共⽧兲 Ref. 9 共crystallization by heating兲.
PATERSON, YAMPOL’SKII, AND FOGG
T/K
TABLE 1. The dual mode sorption parameters and apparent solubility coefficients S at 298 K
Crystallinity/%
1330
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
⬘ values vanish in the vicinity of T g of PETP, in fact, one of the best documented cases of such a behavior.
It can be seen too that the C H
Table 2 presents the temperature dependence of the solubility coefficients. In spite of the substantial scatter, a decrease in the S values
with temperature can be observed.
3.16. Poly„Ethylene Terephthalate…—Carbon Dioxide and Other Gases
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲
Original Measurements:
W. R. Vieth and K. J. Sladek, J. Colloid Sci. 20, 1014 共1965兲.
Variables:
T/K⫽313
p/MPa⫽0 – 1.8
Prepared By:
A. K. Bokarev
Experimental Data
Sorption isotherm of carbon dioxide in a PETP Mylar film at 313 K. 共The original data were represented graphically兲
Sorption (V 1* (STP)/V 2* )
Pressure/MPa
Sorption (V 1* (STP)/V 2* )
0.15
0.19
0.21
0.32
0.42
0.46
0.61
0.72
0.75
0.90
2.10
2.35
2.61
3.27
3.57
3.98
4.85
5.46
5.31
5.97
0.93
1.07
1.07
1.23
1.41
1.43
1.54
1.75
1.76
—
5.81
6.37
5.96
6.88
7.69
7.23
8.15
8.65
8.34
—
Original Measurements:
K. Toi, J. Polym. Sci., Polym. Phys. Ed. 11, 1829 共1973兲.
Variables:
T/K: 288– 315
p/kPa: 0 – 101.3
Prepared By:
A. K. Bokarev
Experimental Data
Henry’s law is obeyed by O2, Ar, and N2, in all samples of PETP at pressure up to 1 atm. The deviations from Henry’s law were
observed for CO2. The dual mode sorption model equation was follow C⫽ 关 1.89p/(1⫹0.45p) 兴 ⫹0.38pa, where a is volume fraction
of amorphous phase, for CO2 /PETP systems.
The solubility coefficients S/cm3共STP兲cm⫺3 atm⫺1 of gases in PETP-50 at 303 K
0.084
N2
O2
0.092
0.105
1.353
Ar
CO2a
a
PETP-75.
Heats of sorption for CO2 in PETP-75 at 70 cm Hg gas pressure was equal to ⫺5.37 kcal/mol.
Auxiliary Information
Auxiliary Information
MethodÕApparatusÕProcedure
The experimental technique used to obtain the gas solubility
data was identical to that reported by Michaels et al.1 The
details of the apparatus and procedure had been described in
Ref. 2.
Source and Purity of Materials:
PETP: commercial grade biaxally oriented Mylar film described
in Ref. 2.
M w ⫽from 15 000 to 20 000, amorphous volume fraction ␣
⫽0.54.
Estimated Error:
No information given.
Source and Purity of Materials:
Four samples of commercial PETP 共Diafoil, Mitsubishi Plastics
Ltd.兲 were studied: one having amorphous structure 共PETP-75兲
and three having the degree of crystallinity of 48.0% 共PETP-50,
75, and 100, where figures are the thickness of the samples兲.
Completely amorphous PETP-75 had density 1.331 g/cc. Other
samples had ␳ ⫽1.400 g/cc. Commercial gases were used. CO2
was purified by the sublimation method by means of liquid
nitrogen.
Estimated Error:
␦ S/S⫽⫹3%.
1331
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
References:
1
A. S. Michaels, W. R. Vieth, and J. A. Barrie, J. Appl. Phys. 31,
1 共1963兲.
2
W. R. Vieth, H. H. Alcalay, and A. J. Frabetti, J. Appl. Polym.
Sci. 8, 2125 共1964兲.
MethodÕApparatusÕProcedure
Manometric method was used for the measurement of
solubility.
The pressure changes due to sorption were measured with a
cathetometer.
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/MPa
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Oxygen;
O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲
Original Measurements:
W. J. Koros, D. R. Paul, M. Fujii, H. B. Hopfenberg, and V.
Stannett, J. Appl. Polym. Sci. 21, 2899 共1977兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethylene terephthalate兲; 共PETP兲; 关25038-59-9兴 共XIX兲
Original Measurements:
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 16,
1947 共1978兲.
Variables:
T/K⫽308– 338
p/MPa⫽0 – 2.1
Prepared By:
A. K. Bokarev
Variables:
T/K: 298–388
p/MPa: 0 – 2.0 (0 – 20 atm)
Prepared By:
A. K. Bokarev
Experimental Data
Sorption isotherms of carbon dioxide in poly共ethylene terephthalate兲 at 308 and 338 K. 共The original data were represented
graphically兲
Pressure/MPa
Pressure/MPa
Sorption
(V *
1 (STP)/V *
2)
Pressure/MPa
Sorption
(V *
1 (STP)/V *
2)
1.64
2.88
2.71
3.50
4.63
5.87
5.87
6.66
0.94
1.01
1.08
1.26
1.52
1.57
1.66
1.76
7.39
7.73
7.84
8.79
9.75
9.63
10.09
10.65
1.79
1.85
1.88
1.94
2.03
2.07
—
—
10.36
10.87
10.93
11.15
11.60
11.77
—
—
1.13
1.35
2.25
2.65
2.76
2.92
0.82
0.96
1.18
1.25
1.26
1.52
3.49
3.60
4.50
4.61
4.44
5.45
1.69
1.81
1.92
1.95
1.97
—
5.50
6.12
6.29
6.23
6.23
—
Auxiliary Information
MethodÕApparatusÕProcedure
Design and operation of the sorption cell have been described
in the literature.1,2
Experimental Data
Dual-mode sorption parameters for CO2 in PETP
T/K
k D /cm3共STP兲cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
298
308
318
328
338
348
358
368
378
388
0.362
0.330
0.260
0.234
0.214
0.210
0.196
0.194
0.184
0.167
7.913
5.760
4.960
3.753
2.735
1.814
0.936
0.351
0.322
0.282
0.252
0.197
0.165
0.167
Below 358 K, sorption isotherms of CO2 in PETP show a nonlinear character typical for glassy polymers. Above 358 K, the isotherms
are completely linear at pressures at high as 20 atm.
Auxiliary Information
MethodÕApparatusÕProcedure
The apparatus and experimental procedure used for sorption
measuring have been described elsewhere.1
Source and Purity of Materials:
PETP 共Kinmar兲 from Commercial Plastics Co had the weight
average molecular mass of 54 000, T g ⫽358 K, and the degree
of crystallinity near 60%. A density of amorphous PETP was
1.331 g/cc, those of semicrystalline samples were in the range
1.4⫾0.003 g/cc.
The CO2 used was ⬎99% pure.
Source and Purity of Materials:
PETP: commercially available transparent and highly crystalline
sample.3
Estimated Error:
No information given.
Estimated Error:
No information given.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed., 14, 687 共1976兲.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym Phys. Ed. 14,
1903 共1976兲.
2
W. J. Koros, D. R. Paul, and A. A. Rocha, ibid. 14, 687 共1976兲.
3
W. J. Koros, Ph.D. dissertation, The University of Texas at
Austin, 1977.
PATERSON, YAMPOL’SKII, AND FOGG
T⫽308 K
0.08
0.18
0.19
0.27
0.41
0.60
0.63
0.76
T⫽338 K
0.18
0.22
0.42
0.55
0.59
0.73
Sorption
(V *
1 (STP)/V 2* )
1332
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲;
关25038-59-9兴 共XIX兲
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲
Original Measurements:
O. N. Tigina, dissertation, GIAP, Moscow, USSR, 1983.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲
Original Measurements:
M. D. Sefcik, H. K. Yuen, and D. D. Chan, Polymer 26, 2043
共1985兲.
Variables:
T/K⫽290 and 320
p/MPa⫽0.4– 4.0
Prepared By:
S. M. Shishatskii
Variables:
T/K⫽308– 328
p/kPa⫽0 – 100 共0–1 atm兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Solubility of carbon dioxide 共g/g polymer兲 in PETP
Experimental Data
Sorption isotherms of carbon dioxide in PETP 共the original data were represented graphically兲
p/MPa
C 102
T/K
p/MPa
C 102
290
0.4
0.5
0.6
0.8
1.0
1.2
1.4
1.6
1.8
1.73
2.2
2.3
2.9
3.2
3.8
4.2
4.5
4.8
320
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0.8
1.1
1.3
1.5
1.8
1.9
2.1
2.2
2.3
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
5.1
5.3
5.5
5.7
5.8
5.9
6.0
6.1
6.2
6.3
6.3
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
2.4
2.5
2.6
2.6
2.7
2.8
2.8
2.9
2.9
T⫽308 K
T⫽318 K
T⫽308 K*
T⫽328 K
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
2.03
2.03
3.04
5.07
8.11
12.16
17.23
24.32
33.44
48.64
66.87
85.11
102.34
0.06
0.09
0.16
0.27
0.36
0.53
0.71
0.94
1.14
1.48
1.87
2.24
2.53
5.07
8.11
12.16
20.27
27.36
33.44
43.57
53.70
62.82
73.97
84.10
93.22
101.33
0.12
0.19
0.28
0.48
0.62
0.74
0.92
1.09
1.25
1.42
1.59
1.73
1.88
4.05
8.11
12.16
20.27
27.36
33.44
43.57
53.70
62.82
73.97
84.10
94.23
103.35
0.06
0.14
0.22
0.33
0.44
0.54
0.70
0.85
0.95
1.11
1.24
1.36
1.48
3.04
13.17
33.44
101.33
—
—
—
—
—
—
—
—
—
0.11
0.42
0.86
2.17
—
—
—
—
—
—
—
—
—
*Repeated after all the measurements.
Auxiliary Information
Auxiliary Information
Source and Purity of Materials:
PETP 共specification TU-29-02-367-71兲 was studied. It had a
density 1.34 g/cc and a degree of crystallinity 25%.
Estimated Error:
␦ C/C⫽1.5%
Source and Purity of Materials:
PETP: B. F. Goodrich Co., glass transition temperature 340 K,
amorphous phase content 66%.
A powdered sample of PETP was prepared by dissolving the
polymer in a mixed solvent 共67% of C2H2Cl4 and 33% of
C6H5OH兲 with subsequent precipitation in excess methanol.
Surface area of the powder: 7.5 m2/g.
Estimated Error:
No information given.
References:
1
I. F. Golubev and O. A. Dobrovol’skii, Gaz. Prom. N5, 43
共1964兲.
1333
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
The solubility was measured by means of an apparatus of
hydro-static weighing, the principle of which had been
described in Ref. 1.
MethodÕApparatusÕProcedure
Sorption isotherms were determined gravimetrically using a
Mettler Thermoanalyzer-1.
IUPAC-NIST SOLUBILITY DATA SERIES
T/K
Original Measurements:
Y. Kamiya, T. Hirose, Y. Naito, and K. Mizoguchi, J. Polym.
Sci., Part B: Polym. Phys. 24, 159 共1988兲.
Variables:
T/K⫽308– 338
p/MPa⫽0 – 5.0
Prepared By:
A. K. Bokarev
1334
Experimental Data
FIG. 32. Sorption isotherms of carbon dioxide in amorphous PETP. The dotted arrows show the decreases in concentration accompanying
crystallization. Open and filled symbols represent sorption and desorption, respectively.
Auxiliary Information
MethodÕApparatusÕProcedure
The isotherms of gases in the polymer were obtained
gravimetrically using a Cahn model 2000 electrobalance.
Details of this apparatus were described previously.1
FIG. 31. Sorption isotherms of carbon dioxide in CO2-conditioned crystalline PETP, measured after CO2 sorption experiment at 308 K.
Open and filled symbols represent sorption and desorption, respectively.
Source and Purity of Materials:
CO2: purity 99.99%.
Amorphous PETP: Diafoil Ltd., density 1.336 g/cm3.
PETP after thermal crystallization for about 5 h at 393 K in an
air: density 1.37–1.38 g/cm3.
PETP after CO2 exposure crystalline film to 50 atm at 308 K for
24 h or more: density 1.367 g/cm3.
Estimated Error:
No information given.
References:
1
Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Pol. Sci.,
Polym. Phys. Ed. 24, 535 共1986兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲
Original Measurements:
T. Hirose, K. Mizoguchi, Y. Kamiya, and K. Terada, J. Appl.
Polym. Sci. 37, 1513 共1989兲.
Variables:
T/K⫽298– 338
p/kPa⫽0 – 100 共0–1 atm兲
amorphous volume fraction ␣ ⫽0.73– 0.96
Prepared By:
A. K. Bokarev
Experimental Data
TABLE 1. Dual mode sorption parameters for CO2 in c-PETP
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
298
308
318
328
338
308a
0.733
0.633
0.522
0.485
0.429
0.633
7.05
5.22
3.94
3.45
2.15
3.19
1.30
1.36
1.30
0.739
0.668
1.50
FIG. 33. Sorption isotherms of carbon dioxide in c-PETP.
a
After annealing of c-PETP at 338 K.
TABLE 2. Dual mode sorption parameters for CO2 in h-PETP
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
298
308
318
328
0.770
0.665
0.579
0.509
2.59
1.64
1.12
0.72
1.52
1.79
1.59
1.33
TABLE 3. Comparison of solubilities of CO2 in c-PETP before and after thermal annealing at 338 K 共The original data were represented graphically兲
Before annealing
After annealing at 338 K
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
13.51
27.34
40.80
54.60
—
—
0.99
1.51
2.03
2.40
—
—
67.61
83.71
87.94
97.87
—
—
2.73
3.21
3.34
3.54
—
—
13.79
27.18
41.00
41.74
55.52
60.52
0.67
1.01
1.43
1.39
1.68
1.91
68.15
69.27
80.35
87.62
88.75
97.93
2.01
1.97
2.17
2.33
2.31
2.48
FIG. 34. Sorption isotherms of carbon dioxide in h-PETP.
1335
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Pressure/kPa
IUPAC-NIST SOLUBILITY DATA SERIES
T/K
1336
MethodÕApparatusÕProcedure
Sorption isotherms for gases in the polymer were obtained
gravimetrically using a Cahn model 2000 electrobalance.
Details of this apparatus were described in Ref. 1
Source and Purity of Materials:
Amorphous PETP 共a-PETP兲: Mitsubihi Diafoil Co.,
erystallization by exposing to CO2 共50 atm, 308 K兲 共c-PETP兲 or
thermal 共398 K, 5.3 h兲 共h-PETP兲
a-PETP: density 1.336 g/cm3, ␣ ⫽0.96.
c-PETP: density 1.362 g/cm3, ␣ ⫽0.73.
h-PETP: density 1.362 g/cm3, ␣ ⫽0.70.
Components:
共1兲 Hydrogen; H2; 关1333-74-0兴 Nitrogen; N2; 关7727-37-9兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲
Original Measurements:
H.-C. Draisbach, D. Jeschke,
Naturforschung 17a, 447 共1962兲.
Variables:
T/K⫽293– 373
p/MPa⫽6.65– 66.5
Prepared By:
Yu. P. Yampol’skii
H.
A.
Stuart,
Z.
Experimental Data
Solubility coefficients S 102 /cm3共STP兲/cm3 atm of hydrogen*
Estimated Error:
No information given.
References:
1
T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci.
34, 1657 共1987兲.
and
Temperature/K
Sample
293
303
313
323
333
343
353
363
373
Amorphous
Cryst., 30.6%
Cryst., 43.0%
2.68
2.39
2.21
2.47
2.21
2.00
2.29
2.00
1.83
2.12
1.82
1.68
2.01
1.71
1.62
2.00
1.62
1.56
2.09
1.56
1.50
2.27
1.59
1.53
2.45
1.65
1.53
*Smoothed values from the plot, taken by compiler.
Enthalpies of sorption ⌬H/共cal/mol of hydrogen兲
Sample
T⬍T g
T⬎T g
Amorphous
Cryst., 30.6%
Cryst., 43.0%
1700
1900
2000
1900
—
—
Solubility coefficients S/cm3共STP兲/cm3 atm of nitrogen at 338 K
Amorphous
0.0238
Cryst., 30.6%
Cryst., 43.0%
0.0231
0.0226
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurement was employed using a high vacuum
glass apparatus with McLeod gauge.
Source and Purity of Materials:
Three samples of commercial PETP 共Terylen兲 were studied: one
having amorphous structure and two having the degrees of
crystallinity of 30.6 and 43.0%. PETP had T g ⫽343 K.
Nothing specified on the purity of gases.
Estimated Error:
No information given.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
Components:
共1兲 Helium; He; 关7440-59-7兴 Argon; Ar; 关7440-37-1兴 Nitrogen;
N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide;
CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 Ethane; C2H6;
关74-84-0兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲
Original Measurements:
A. S. Michaels, W. R. Vieth, and J. A. Barrie, J. Appl. Phys. 34,
1 共1963兲.
Variables:
T/K⫽298– 338
p/MPa⫽0 – 1.26
Prepared By:
S. M. Shishatskii
Pressure/kPa
TABLE 1. Solubility coefficients of various gases in amorphous PETP at 298 K
3
He
Ar
N2
O2
CO2
CH4
C2H6
0.0078
0.082
0.058
0.100
2.71
0.240
0.99
␣⫽amorphous volume fraction
TABEL 2. Temperature dependence of the solubility coefficients S共cm3共STP兲/cm3 atm)
Sample
Gas
T/K
Amorphous
Crystalline ( ␣ ⫽0.58)
CH4
308
318
337
308
322
338
298
312
328
338
348
0.175
0.116
0.065
—
—
—
—
—
—
—
—
—
—
—
0.155
0.100
0.073
2.00
1.20
0.64
0.50
0.34
CO2
Sorption
共V 1* (STP)/V 2* 兲
Pressure/kPa
Sorption
共V 1* (STP)/V 2* 兲
TABLE 3. Sorption isotherms of ethane in PETP at 298 K 共The original data were represented graphically兲
␣ ⫽0.54
␣ ⫽0.57
6.73
17.02
21.00
28.12
30.35
38.36
41.04
␣ ⫽1.0
12.62
21.14
23.34
35.39
34.99
39.44
41.22
0.16
0.38
0.42
0.54
0.58
0.70
0.76
52.14
60.11
69.87
83.99
86.62
99.99
103.1
0.91
1.00
1.13
1.23
1.23
1.47
1.51
112.39
115.05
131.02
149.57
161.07
170.80
—
1.61
1.63
1.83
2.00
2.11
2.21
—
0.36
0.57
0.57
0.81
0.85
0.92
0.94
50.16
54.63
58.20
72.94
85.33
87.14
100.03
1.13
1.23
1.29
1.58
1.71
1.77
1.95
109.34
111.56
124.44
137.31
145.76
156.39
—
2.07
2.11
2.28
2.46
2.59
2.71
—
共II兲
␣ ⫽0.65
4.01
11.47
11.46
17.11
17.09
22.21
39.03
42.82
43.28
␣ ⫽1.0
7.23
14.21
16.09
22.63
30.10
31.50
0.05
0.15
0.17
0.19
0.21
0.29
0.50
0.49
0.51
47.96
48.38
51.23
53.08
58.71
64.81
69.97
71.85
76.53
0.55
0.60
0.59
0.64
0.67
0.72
0.76
0.77
0.81
85.91
95.27
100.9
101.36
111.21
122.00
125.26
132.79
—
0.89
0.99
1.03
1.05
1.12
1.20
1.26
1.28
—
0.15
0.26
0.27
0.36
0.45
0.47
29.60
33.82
38.52
48.33
50.65
63.75
0.48
0.52
0.54
0.66
0.71
0.86
68.88
73.56
82.45
100.23
—
—
0.93
0.98
1.07
1.26
—
—
␣ ⫽1.0
Pressure/kPa
Sorption 共V 1* (STP)/V 2* 兲
Pressure/kPa
Sorption 共V 1* (STP)/V 2* 兲
19.09
31.29
43.39
57.63
73.57
85.53
102.61
124.64
143.81
0.13
0.24
0.33
0.41
0.49
0.55
0.64
0.72
0.78
20.54
43.08
62.01
75.77
89.41
107.63
125.24
140.59
—
0.20
0.38
0.51
0.60
0.67
0.76
0.84
0.92
—
1337
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Pressure/kPa
IUPAC-NIST SOLUBILITY DATA SERIES
cm 共STP兲/cm atm
3
Sorption
共V 1* (STP)/V 2* 兲
共I兲
Experimental Data
Henry’s law is obeyed by He, O2, Ar, N2, and CH4 in amorphous PETP at subatmospheric pressure. Deviations from Henry’s law were
observed for CO2 and C2H6 even below 1 atm and at higher pressures.
Sorption
TABEL 4. Sorption isotherms of carbon dioxide in PETP at 298 K 共I兲 and 313 K 共II兲 and at subatmospheric pressure 共The original data
were represented graphically兲
Pressure/MPa
Pressure/MPa
␣ ⫽1.0, run II
0.14
0.20
0.28
0.31
0.36
0.41
0.48
0.61
0.73
0.81
0.91
1.00
1.07
1.16
1.24
␣ ⫽0.57, run IV
0.28
0.41
0.55
—
—
—
2.89
4.08
4.70
5.22
5.55
6.14
6.77
7.21
7.31
7.68
8.08
8.38
8.60
—
—
1.78
1.89
2.48
3.18
3.69
4.25
Sorption 共V 1* (STP)/V 2* 兲
2.71
3.41
3.89
4.48
4.70
5.07
5.74
6.40
6.95
7.24
7.61
7.98
8.27
8.60
9.08
Variables:
Prepared By:
T/K⫽298– 328
p/MPa⫽0 – 1.7 共17 atm兲
A. K. Bokarev
Experimental Data
TABLE 1. Solubility constants for oriented poly共ethylene terephtpalate兲, ␣ ⫽0.49
Temperature
T/K
Solubility constant*
S/cm3共STP兲 cm⫺3 atm⫺1
N2
O2
CH4
CH4
CH4
298
298
298
313
328
0.044
0.076
0.200
0.130
0.087
*Value found from Van’t Hoff plot.
TABLE 2. Sorption isotherms of carbon dioxide in PETP, ␣ ⫽0.49 共The original data were represented graphically兲
2.55
3.66
4.65
—
—
—
Auxiliary Information
MethodÕApparatusÕProcedure
A manometric procedure of sorption measurement was used
either in glass apparatus 共low pressure sorption measurement兲
or in a steel bomb equipped with high pressure gauge 共0–2.5
MPa兲.
Original Measurements:
W. R. Vieth, H. H. Alcalay, and A. J. Frabetti, J. Appl. Polym.
Sci. 8, 2125 共1964兲.
Source and Purity of Materials:
Gases 共except CH4兲: purity⬎99.5%. CH4; purity 99%.
Amorphous PETP 共Mylar兲: DuPont Co., M w ⫽15 000– 20 000,
density 1.331 g/cm3. Semicrystalline samples: density in the
range 1.37–1.39 g/cm3.
Crystalline samples: prepared by annealing for 1 h at 390–420
K; degree of crystallinity from 35% to 46%.
Estimated Error:
Relative precision of solubilities: 3.5% and 6% at 95%
confidence level for CO2 in low and high pressure measurement.
10% for O2, N2, and CH4 at the the same level of confidence.
T⫽298 K
T⫽313 K
Pressure/kPa
Sorption 共V *
1 (STP)/V *
2兲
Pressure/kPa
Sorption 共V *
1 (STP)/V *
2兲
5.5
12.5
17.3
36.0
52.5
76.8
105.1
119.2
0.12
0.27
0.38
0.76
0.99
1.34
1.67
1.83
9.7
19.3
34.9
55.3
75.7
93.3
116.4
130.0
0.15
0.28
0.43
0.64
0.82
0.98
1.16
1.27
TABLE 3. Sorption isotherms of carbon dioxide in oriented PETP at 298 K 共The original data were represented graphically兲
Pressure/MPa
Sorption
共V 1* (STP)/V 2* 兲
Pressure/MPa
Sorption
共V 1* (STP)/V 2* 兲
Pressure/MPa
Sorption
共V 1* (STP)/V 2* 兲
0.16
0.17
0.18
0.21
0.27
0.27
0.31
0.33
0.35
0.40
0.45
0.46
3.19
3.42
3.46
3.92
4.24
4.52
4.70
4.88
4.97
5.34
5.61
5.70
0.51
0.58
0.63
0.64
0.73
0.73
0.74
0.81
0.96
0.97
0.98
1.02
6.11
6.71
6.89
6.93
7.53
7.66
7.25
7.80
8.29
8.52
8.29
8.75
1.06
1.14
1.15
1.24
1.36
1.44
1.60
1.64
1.76
—
—
—
8.74
9.11
9.15
9.47
9.87
10.01
10.87
10.59
11.13
—
—
—
PATERSON, YAMPOL’SKII, AND FOGG
␣ ⫽1.0, run I
0.17
0.25
0.33
0.44
0.48
0.57
0.69
0.78
0.85
0.95
1.04
1.12
1.19
—
—
␣ ⫽0.57, run III
0.12
0.15
0.24
0.34
0.47
0.55
Sorption 共V 1* (STP)/V 2* 兲
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴
Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲
1338
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 5. Sorption isotherms of carbon dioxide in PETP at elevated pressure and 298 K 共The original data were represented graphically兲
The isotherms fitted the equations:
* p ␣ ⫹C H⬘ bp/ 共 1⫹b p 兲 ,
C⫽C D ⫹C H ⫽k D
⬘ , and b have the usual meaning, k D* is Henry’s law dissolution constant, and ␣ is the amorphous volume fraction.
where the parameters C H
The following dual mode sorption parameters are reported for CO2 sorption at 298 K and 0–17 atm pressure range in PETP ( ␣
⫽0.54):
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.37
5.7
0.52
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共butylene terephthalate兲 共PBTP兲 共XX兲
Original Measurements:
L. Thuy and J. Springer, Colloid Polym. Sci. 266, 614 共1988兲.
Variables:
T/K⫽298– 338
p/MPa⫽0.1– 3.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for carbon dioxide in PBTP
Heats of sorption, found from Vant’Hoff for S(CO2) in PETP ( ␣ ⫽0.49):
⌬H 共CO2兲⫽⫺7.4 kcal/mol; ⫺31.0 kJ/mol
⌬H 共CH4兲⫽⫺5.4 kcal/mol; ⫺22.6 kJ/mol.
Auxiliary Information
Source and Purity of Materials:
CO2 ,N2 ,O2: minimum purity 99.5%.
CH4: purity 99%.
PETP 共oriented Mylar兲: Du Pont Co., M w ⫽15 000– 20 000,
density 1.39 g/cm3, amorphous volume fraction ␣ ⫽0.49 and
0.54.
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
298
308
318
328
338
0.48
0.42
0.37
0.34
0.29
7.70
5.55
3.70
1.67
—
0.18
0.17
0.16
0.15
—
Estimated Error:
Relative precision of solubility constants: ⫾8%.
References:
1
A. J. Michaels and W. R. Vieth, J. Appl. Phys. 34, 1 共1963兲.
FIG. 35. Sorption isotherms of carbon dioxide in PBTP.
Auxiliary Information
MethodÕApparatusÕProcedure
High pressure apparatus was employed including Sartorius
microbalance 共model 4436兲.
Source and Purity of Materials:
PBTP: BASF 共Ultradur B 255O兲. The granular degassed
polymer was pressed into thin foil at 528 K and then quickly
quenched in a mixture of ice, salt, and water.
Density 1.283 g/cm3, degree of crystallinity about 19%, glass
transition temperature 316 K.
Estimated Error:
No information given.
1339
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
MethodÕApparatusÕProcedure
The procedure for low pressure measurements was described
in Ref. 1.
High pressure experiments were performed in a stainless steel
bomb equipped with a pressure gauge.
T/K
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Bisphenol A polycarbonate 共for brevity here and further, polycarbonate兲 is a well known and widely used industrial plastic produced
by General Electric Co. under a tradename Lexan. Many authors dealt with the system PC–carbon dioxide.1–11 The polymer samples
studied were nearly identical in majority of the cases. The data have been obtained in the temperature range 293–373 K and at pressures
up to 10 MPa. It was the system PC–CO2, which was used as an example for the demonstration of the effects of annealing and
conditioning on the sorption parameters,4,9,11 which are generally characteristic of other glassy polymers. Exposing a polymer sample to
high pressure gas, results in an increase in the concentration of dissolved gas the larger the higher is the pressure of such conditioning.4
The annealing of polymer samples at sub-T g temperatures leads to a decrease in the concentration of the dissolved gas.
The table shows the pressure dependence of the concentration, C, of carbon dioxide dissolved in the polymer samples unconditioned
共‘‘as received’’兲 and exposed to 2 MPa of carbon dioxide prior to solubility measurement. It is seen that the difference between the
individual ‘‘sorption isotherms’’ is not dramatic. The last line presents average values of C at different pressures.
Original Measurements:
F. J. Norton, J. Appl. Polym. Sci. 7, 1649 共1963兲.
Variables:
T/K: 273–333
p/kPa: 101.3
Prepared By:
A. K. Bokarev
Experimental Data
TABLE 1. Solubility C of CO2 in Lexan at 1 atm*
T/K
C/cm3 gas 共STP兲/cm3
273
298
323
4.43
12.76
25.10
*Calculated by compiler.
Pressure/MPa
Auxiliary Information
0.5
1.0
1.5
2.0
Type of sample
Ref.
12.2
12.8
13.2
—
11.7
16.6
18.5
19.0
17
18.6
20.6
23.0
23.6
—
24.0
24.5
27.2
27.6
27
28.7
2
4
5
6
—
13.2
12.6
16
19.3
17.9
—
24.0
23.0
26
28.1
27.0
**
*
**
**
**
**
*
—
*Conditioned at 2.0 MPa of CO2.
**‘‘As received.’’
References:
F. J. Norton, J. Appl. Polym. Sci. 7, 1649 共1963兲.
2
W. R. Vieth and J. A. Eilenberg, J. Appl. Polym. Sci. 16, 945 共1972兲.
1
W. J. Koros, D. R. Paul, and A. Rocha, J. Polym. Sci., Polym. Sci. Ed. 14, 687 共1976兲.
A. J. Wonders and D. R. Paul, J. Membr. Sci. 5, 63 共1979兲.
5
A. H. Chan and D. R. Paul, Polym. Eng. Sci. 20, 87 共1980兲.
6
G. K. Fleming and W. J. Koros, Macromolecles 19, 2285 共1986兲.
7
Y. Kamiya, T. Hirose, K. Mizogchi, and K. Terada, J. Polym. Sci., Part B: Polym. Phys. 24, 1525 共1986兲.
8
E. Sada, H. Kumazawa, H. Yakushiji, Y. Bamba, and K. Sakata, Ind. Eng. Chem., Res. 26, 433 共1987兲.
3
4
N. Muruganandam, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 25, 1999 共1987兲.
R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B: Polym. Phys. 25, 2497 共1987兲.
11
G. K. Fleming and W. J. Koros, Macromolecules 23, 1353 共1990兲.
9
10
8
10
11
Av.
MethodÕApparatusÕProcedure
Source and Purity of Materials:
Manometric method.
Lexan PC from General Electric Co. was studied. No more
information given.
PATERSON, YAMPOL’SKII, AND FOGG
Pressure dependence of the concentration C/共cm3共STP兲 cm⫺3兲 of dissolved CO2 at 308 K
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate Lexan 共PC兲; 关24936-68-3兴 共XXI兲
1340
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.17. Polycarbonate—Carbon Dioxide
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
W. R. Vieth and J. A. Eilenberg. J. Appl. Polym. Sci. 16, 945
共1972兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate; 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
W. J. Koros, D. R. Paul, and A. Rocha, J. Polym. Sci., Polym.
Phys. Ed. 14, 687 共1976兲.
Variables:
T/K⫽308–338
p/MPa⫽0–2.2
Prepared By:
A. K. Bokarev
Variables:
T/K: 308 K
P/MPa: 0.1–2.5
Prepared By:
A. K. Bokarev
Experimental Data
TABLE 1. Dual mode sorption parameters for carbon dioxide in polycarbonate
Experimental Data
Solubility of carbon dioxide in PC at 308 K*
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
308
318
338
0.765
0.708
0.346
9.53
7.20
7.09
1.50
1.16
0.94
T⫽308 K
T⫽318 K
T⫽338 K
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
0.33
0.41
0.56
0.68
0.91
1.20
1.36
1.51
1.88
—
7.72
9.09
11.36
13.54
15.31
17.64
19.08
20.13
22.85
—
0.25
0.40
0.53
0.66
0.8
1.10
1.49
1.69
2.16
—
5.93
8.12
9.32
11.26
12.14
14.55
17.03
18.64
21.52
—
0.20
0.36
0.50
0.72
0.87
1.01
1.25
1.45
1.83
2.16
3.50
5.27
6.88
8.41
9.37
9.76
10.62
11.09
12.84
13.37
Auxiliary Information
Source and Purity of Materials:
PC: preparation described in Ref. 2, amorphous film, thickness
0.5 mm.
10
20.5
15
26.7
21
32.0
25
37.4
30
42.3
*Smooth values taken from the graph by compiler.
TABLE 1. Dual mode sorption parameters for CO2 in polycarbonate at 308 K
Method
Graphical
Nonlinear
Least squares
k D cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.992
0.933
13.7
15.3
0.392
0.338
Auxiliary Information
MethodÕApparatusÕProcedure
Measurements of gas solubility in polymer performed using a
pressure decay method of dual-volume dual transducer type.
Source and Purity of Materials:
Bisphenol A polycarbonate 共PC兲 共Lexan兲 was obtained from the
General Electric Co. M W ⫽35 800. The CO2 used in experiment
was ⬎99% pure.
Estimated Error:
␦ C⫽0.45 cm3共STP兲/cm3共polymer兲.
Estimated Error:
⬘ ⬍8.7%.
Relative precision: C H
References:
1
W. R. Vieth, C. S. Frangoulis, and J. A. Rionda, J. Colloid
Interface Sci. 22, 454 共1966兲.
2
P. J. Eloranta, thesis, B. S. Department of Chemical Eng.,
M.I.T., Cambridge, MA, 1968.
1341
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
A pressure decay method was used. Other details are given in
Ref. 1.
5
14.2
IUPAC-NIST SOLUBILITY DATA SERIES
TABLE 2. Sorption isotherms of carbon dioxide in polycarbonate 共The original data were represented graphically兲
p/atm
C * /cm3共STP兲 cm⫺3
Original Measurements:
A. J. Wonders and D. R. Paul, J. Member. Sci. 5, 63 共1979兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
A. H. Chan and D. R. Paul, Polym. Eng. Sci. 20, 87 共1980兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.02 (0 – 20 atm)
Prepared By:
A. K. Bokarev
Variables:
T/K⫽308–348
p/MPa⫽0 – 2.0 (0 – 20 atm)
Prepared By:
A. K. Bokarev
Experimental Data
Sorption isotherms of carbon dioxide in polycarbonate at 308 K. 共The original data were represented graphically兲
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
0.83
1.02
1.06
1.09
1.12
1.20
1.29
1.40
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
15.13
17.47
17.91
18.34
18.34
19.31
20.07
21.15
1.55
1.63
1.71
1.81
1.96
2.02
—
—
Sorption
(V 1* (STP)/V 2* )
22.34
23.21
24.50
25.37
26.66
27.53
—
—
Experimental Data
TABLE 1. Temperature dependence of sorption parameters for carbon dioxide in PC. Sorption measurements were made after conditioning
at 20 atm of CO2
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
333
353
373
Van’t Hoff parameters/共kcal/mol⫺1兲
0.64
0.46
0.30
⫺4.0
18.00
12.78
11.16
—
0.234
0.156
0.098
⫺4.8
TABLE 2. Dual mode sorption parameters for carbon dioxide in annealed PC. Sorption measurements were made at 308 K after conditioning at 20 atm of CO2
PC sample history
0.80
0.89
1.00
1.12
1.21
1.30
1.39
16.39
17.47
18.33
19.74
20.49
21.36
22.12
1.49
1.60
1.69
1.74
1.95
2.02
—
22.98
24.39
25.14
25.79
26.99
27.85
—
Auxiliary Information
MethodÕApparatusÕProcedure
The sorption apparatus and procedure used in the present
sorption experiments are the same as described earlier.1
Results labeled ‘‘initial’’ were obtained by beginning with
‘‘as-received’’ polymer and simply conducting a sorption
experiment by increasing experimental pressure. ‘‘Uniform’’
samples were also prepared in a separate bomb using CO2
pressures of 20, 40, and 60 atm for 24 h.
Source and Purity of Materials:
CO2: purity 99%.
PC 共Bisphenol A polycarbonate兲: Lexan, General Electric Co.,
M w ⫽35 800.
Estimated Error:
No information given.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
As received
Annealed at 398 K for
2h
10 h
1 day
2 day
8.5 day
14 day
Annealed at 408 K for
0.5 h
5h
10 h
2 day
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.642
18.00
0.234
0.618
0.609
0.601
0.587
0.611
0.532
15.49
14.66
14.17
13.89
12.89
13.71
0.230
0.220
0.231
0.228
0.238
0.238
0.574
0.570
0.550
0.560
17.05
15.43
15.20
14.80
0.220
0.226
0.227
0.230
PATERSON, YAMPOL’SKII, AND FOGG
Series on initial exposure film
0.08
3.12
0.11
3.88
0.22
5.92
0.33
7.76
0.43
9.70
0.51
10.78
0.72
13.69
0.79
14.88
Series after CO2 exposure at 20 atm
0.09
4.20
0.20
7.00
0.31
9.26
0.42
11.20
0.51
12.61
0.58
13.58
0.70
15.20
Pressure/MPa
1342
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
FIG. 38. Same as for Fig. 37 except that the annealing temperature was equal to 408 K.
Auxiliary Information
MethodÕApparatusÕProcedure
The equilibrium solubility of CO2 in the polymer was
measured by a pressure decay technique described earlier, Ref.
1.
Source and Purity of Materials:
PC 共Lexan兲: General Electric Co., M w ⫽35 800, glass transition
temperature 418 K.
Estimated Error:
No information given
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903
共1976兲.
FIG. 37. Equilibrium sorption of carbon dioxide in PC samples annealed at 398 K. Sorption measurements were made at 308 K after
conditioning at 20 atm of CO2.
1343
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
FIG. 36. Effect of temperature on carbon dioxide sorption in PC for ‘‘as-received’’ material conditioned at 20 atm of CO2.
Original Measurements:
G. K. Fleming and W. J. Koros, Macromolecules 19, 2285
共1986兲.
Variables:
T/K⫽308
p/MPa⫽0 – 6.2
Prepared By:
A. K. Bokarev
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
Y. Kamiya, T. Hirose, K. Mizoguchi, and K. Terada, J. Polym.
Sci., Part B: Polym. Phys. 24, 1525 共1986兲.
Variables:
T/K⫽308– 328
p/MPa⫽0 – 5.0
Prepared By:
A. K. Bokarev
1344
Experimental Data
TABLE
Experimental Data
共For all the following tables, the original data were represented graphically兲
1. Sorption and desorption isotherms of carbon dioxide in PC at 308 K, first series of experiments
‘‘As received’’ film
FIG. 39. Sorption and desorption isotherms of carbon dioxide in polycarbonate at 308 K. Open and filled symbols represent sorption and
desorption, respectively.
Auxiliary Information
MethodÕApparatusÕProcedure
Gas sorption measurements were made with a pressure decay
cell that has been used at pressures up to 30 atm.1,2 With
slight modification, this design was used to make sorption
measurements up to 68 atm.
Source and Purity of Materials:
CO2 : Linde, Inc., purity 99.99%.
PC: General Electric Co. 共commercial grade film兲, density
1.200⫾0.001 g/cm3.
Estimated Error:
No information given.
References:
1
W. J. Koros, Ph.D. dissertation, University of Texas of Austin,
Austin, TX, 1977.
2
W. J. Koros and D. R. Paul, J. Membr. Sci. 5, 63 共1978兲.
Rod specimens
Pressure/MPa
Sorption
共V *
1 共STP兲/V *
2)
Pressure/MPa
Sorption
共V *
1 共STP兲/V *
2)
Pressure/MPa
Sorption
共V *
1 共STP兲/V *
2)
Pressure/MPa
Sorption
共V *
1 共STP兲/V 2* )
0.10
0.41
0.70
0.98
1.37
1.87
2.39
4.86
—
—
—
—
—
—
—
—
—
3.31
9.10
13.16
16.78
21.41
26.63
32.14
47.85
—
—
—
—
—
—
—
—
—
0.04
0.09
0.17
0.22
0.29
0.43
0.68
0.97
1.26
1.58
1.92
2.02
2.27
2.65
2.99
3.49
3.91
4.32
6.63
9.38
11.11
13.86
18.19
23.69
28.61
32.08
35.42
37.89
38.18
39.93
41.96
43.28
44.60
46.21
0.32
1.41
2.98
4.86
—
—
—
—
—
—
—
—
—
—
—
—
—
7.94
21.13
34.91
49.14
—
—
—
—
—
—
—
—
—
—
—
—
—
0.36
0.58
1.00
1.93
3.41
4.78
—
—
—
—
—
—
—
—
—
—
—
15.16
20.94
27.74
38.47
45.61
47.55
—
—
—
—
—
—
—
—
—
—
—
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
TABLE 2. Sorption and desorption isotherms of carbon dioxide in polycarbonate film at 308 K, second and third series
Second series
TABLE 4. Sorption and desorption isotherms of carbon dioxide in polycarbonate film at 318 K
First series**
Third series
Sorption
共V 1* 共STP兲/V 2* )
Pressure/MPa
Desorption
共V 1* 共STP兲/V 2* )
Pressure/MPa
Sorption
共V 1* 共STP兲/V 2* )
Pressure/MPa
Desorption
共V 1* 共STP兲/V 2* )
0.17
0.29
0.36
0.49
0.57
0.78
0.96
1.15
1.44
1.78
2.05
2.35
2.67
2.98
3.49
3.96
4.40
4.82
6.64
9.96
11.55
14.44
15.46
18.50
20.96
22.99
26.18
29.37
31.83
33.87
35.76
37.36
40.42
43.33
45.95
47.99
0.17
0.23
0.27
0.39
0.59
0.77
1.04
1.32
1.76
2.23
2.87
3.34
3.90
4.37
—
—
—
—
5.63
10.25
12.27
16.17
20.22
24.41
28.47
32.23
36.58
39.49
42.55
44.31
45.63
47.10
—
—
—
—
0.04
0.25
0.43
0.65
0.87
1.21
1.54
1.91
2.42
2.90
3.43
3.90
4.32
4.79
4.76
—
—
—
3.74
8.66
11.99
15.75
19.22
22.99
26.76
30.38
34.16
37.36
40.42
43.33
45.37
49.72
47.99
—
—
—
0.12
0.13
0.16
0.30
0.43
0.75
1.06
1.92
2.43
3.47
—
—
—
—
—
—
—
—
5.77
7.50
8.51
12.85
16.89
23.83
27.89
38.46
41.52
46.05
—
—
—
—
—
—
—
—
TABLE 3. Sorption and desorption isotherms of carbon dioxide in polycarbonate film at 328 K, measured after experiments at 298 K
Sorption
Intermediate sorption*
Desorption
Solubility
共V 1* 共STP兲/V 2* )
Pressure/MPa
Solubility
共V 1* 共STP兲/V 2* )
Pressure/MPa
Solubility
共V 1* 共STP兲/V 2* )
0.24
0.33
0.48
0.87
1.30
1.97
2.98
3.70
4.34
4.94
—
—
4.41
6.13
7.84
12.12
15.69
21.12
26.99
30.14
32.87
35.16
—
—
0.13
0.14
0.15
0.22
0.30
0.51
0.81
1.11
1.87
2.59
3.37
4.17
2.56
3.70
4.70
5.98
7.69
11.54
15.96
19.25
24.96
28.69
31.7
34.00
0.91
1.88
3.01
4.00
—
—
—
—
—
—
—
—
16.25
23.40
28.56
31.57
—
—
—
—
—
—
—
—
Solubility
共V 1* 共STP兲/V 2* )
Sorption
0.79
1.53
2.95
5.00
11.62
18.35
28.96
40.32
Desorption
0.44
1.16
2.20
3.51
—
—
—
—
—
—
—
—
—
13.12
23.67
32.10
37.35
—
—
—
—
—
—
—
—
—
Pressure/MPa
Solubility
共V 1* 共STP兲/V 2* )
Sorption
0.14
0.38
0.57
0.92
1.12
1.54
2.03
2.98
3.95
4.91
4.98
9.52
12.83
15.84
18.84
22.71
25.66
30.49
34.94
38.86
Desorption
0.09
0.26
0.56
0.80
1.71
2.93
4.08
3.99
9.81
15.58
19.65
28.99
34.92
38.17
Pressure/MPa
Solubility
共V 1* 共STP兲/V 2* )
0.56
1.06
1.61
2.41
3.36
4.47
4.91
—
—
—
—
—
—
—
—
—
—
—
—
15.58
20.44
24.93
29.52
34.05
37.82
40.08
—
—
—
—
—
—
—
—
—
—
—
—
*Experiments for decending scanning isotherm.
**Series of experiments on ‘‘as received’’ film.
***Experiments for ascending scanning isotherm.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption isotherms for gases in the polymer were obtained
gravimetrically using a Cahn model 2000 electrobalance.
Details of this apparatus are described in Ref. 1.
Source and Purity of Materials:
CO2: purity 99.99%.
PC 共Bisphenol A polycarbonate兲: film 共thickness 75 ␮m兲, rod
共diameter 3 mm兲; densities at 298 K 1.194 g/cm3 共‘‘as
received’’兲 and 1.192 g/cm3 共after CO2 exposure兲; glass
transition temperature 417 K.
Estimated Error:
No information given.
References:
1
Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Polym.
Sci., Polym. Phys. Ed. 24, 535 共1986兲.
1345
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Pressure/MPa
Pressure/MPa
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/MPa
Intermediate sorption***
Second series
Original Measurements:
R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B:
Polym. Phys. 25, 2497 共1987兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
G. K. Fleming and W. J. Koros, Macromolecules 23, 1353
共1990兲.
Variables:
T/K⫽308.2
p/MPa⫽0 – 10.2
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽308
p/MPa⫽0 – 6.3 共0–900 psia兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Solubility of carbon dioxide C
C/cm3共STP兲/g polymer*
9.8
18
27
35
43
51
69
88
102
13
21
27
34
40
47
59
63
65
Experimental Data
The effects of conditioning 共pretreatment兲 of the polymer by exposing it prior to sorption experiments to high pressure carbon dioxide
atmosphere was studied.
TABLE 1. Dual mode sorption parameters for carbon dioxide sorption in PC at 308 K 共p: conditioning pressure兲
p/psia
Pressure-based model
300
600
900
Fugacity-based model
300
600
900
*Taken from a graph by the compiler.
p/MPa
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
2.07
4.14
6.21
0.681
0.587
0.542
17.30
29.61
29.21
0.261
0.194
0.167
2.07
4.14
6.21
0.844
0.843
0.868
15.16
19.42
21.24
0.303
0.265
0.257
Auxiliary Information
MethodÕApparatusÕProcedure
The gravimetric method was used. The polymer samples were
suspended from a quartz spring. The corrections for buoyancy
were introduced using CO2 densities up to higher pressure.
Source and Purity of Materials:
PC 共General Electric Co兲 had glass transition temperature 420 K.
The purity of CO2 共Linde Co兲 was 99.99%.
Estimated Error:
␦ C/C⫽⫾1 cm3共STP兲/g polymer.
TABLE 2. Dual mode desorption parameters for carbon dioxide in PC at 308 K 共p: conditioning pressure兲
Fugacity-based model
p/psia
p/MPa
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
300
600
900
2.07
4.14
6.21
0.617
0.254
0.261
21.00
46.59
59.50
0.285
0.125
0.117
The differences between sorption and desorption parameters are indicative for hysteresis phenomena.
PATERSON, YAMPOL’SKII, AND FOGG
p/atm
1346
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
FIG. 42. Sorption isotherms of CO2 at 308 K in CO2-conditioned, ‘‘as-received,’’ and annealed PC. The annealed sample was first CO2conditioned at 900 psia and then annealed at 408 K for 500 h under vacuum. 共䊊兲 ‘‘as-received;’’ 共䊉兲 900 psia conditioned; 共䊐兲 annealed.
Auxiliary Information
MethodÕApparatusÕProcedure
The procedures and apparatus for sorption measurements were
identical with those described in Ref. 1.
Source and Purity of Materials:
CO2: purity 99.99%.
PC 共Bisphenol A polycarbonate兲: General Electric, density 1.200
g/cm3.
Estimated Error:
No information given.
References:
1
G. K. Fleming and W. J. Koros, Macromolecules 19, 2285
共1986兲.
FIG. 41. Initial CO2 sorption and desorption in PC at 308 K after conditioning pressures of 300, 600, and 900 psia. 共䊊兲 ‘‘as-received;’’
共䊉兲 desorption.
1347
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
FIG. 40. Sorption isotherms of CO2 in PC at 308 K for conditioning pressures of 300, 600, and 900 psia. 共䊊兲 ‘‘as-received;’’ 共䊉兲 CO2conditioned.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-828兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
E. Sada, H. Kumszawa, H. Yakushji, Y. Bamba, K. Sakata, and
S.-T. Wang, Ind. Eng. Chem., Res. 26, 433 共1987兲.
Variables:
T/K⫽293– 313
p/MPa⫽0.2– 3.0
Prepared By:
Yu. P. Yampol’skii
T/K
k D /(cm3共STP兲/cm3 atm)
⬘ /(cm3共STP兲/cm3)
CH
b/atm⫺1
CO2
293
303
313
293
303
313
0.911
0.804
0.702
0.335
0.308
0.280
23.1
19.9
16.0
6.40
5.62
4.72
0.264
0.197
0.124
0.157
0.120
0.0872
Auxiliary Information
Source and Purity of Materials:
PC films were provided by Teijin Co.
Estimated Error:
No information given.
References:
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
1
p/kPa
C/cm3共STP兲 cm⫺3
10
30
50
101
11.6⫾1.1
22.0⫾1.6
31.2⫾1.2
51.4⫾2.0
References:
1
E. G. Davis and M. L. Rooney, Kolloid Z.-Z. Polym. 249, 1043 共1971兲
2
E. G. Davis and M. L. Rooney, J. Polym. Sci., Polym. Phys. Ed. 10, 2325 共1972兲.
S. Frimpong, C. A. Plank, and W. L. S. Laukhauf, Chem. Eng. J. 42, 25 共1989兲
3
PATERSON, YAMPOL’SKII, AND FOGG
Gas
MethodÕApparatusÕProcedure
Equilibrium sorption was measured by the pressure decay
method in the cell similar to one described in Ref. 1. The
pressure changes in the cell were continuously measured by a
pressure transducer.
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
The system sulfur dioxide–polycarbonate has been studied by Davis and Rooney1,2 and by Frimpong et al.3 In all the papers, the
same commercial material Lexan 共General Electric Co.兲 was investigated.
The parameters of the dual mode sorption isotherm reported in Refs. 1 and 3 are fairly close, so the following pressure dependence
of the solubility at 298 K can be recommended.
Experimental Data
Dual mode sorption parameters
CH4
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
1348
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.18. Polycarbonate—Sulfur Dioxide
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
E. G. Davis, M. L. Rooney, and Z.-Z. Kolloid Polym. 249, 1043
共1971兲.
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Polycarbonate; 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
E. G. Davis and M. L. Rooney, J. Polym. Sci., Polym. Phys. Ed.
10, 2325 共1972兲.
Variables:
T/K⫽298
p/kPa⫽0 – 100
Prepared By:
A. K. Bokarev
Variables:
T/K: 298
p/kPa: 13.87; 79.46
Prepared By:
A. K. Bokarev
Experimental Data
Dual mode sorption parameters for sulfur dioxide in polycarbonate at 298 K
Experimental Data
Solubility of sulfur dioxide in polycarbonate
k D /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/cm Hg⫺1
p/kPa
C/cm3共STP兲 cm⫺3
0.522
10
0.241
13.87
79.46
12.8
40.6
Sorption isotherm of sulfur dioxide in polycarbonate at 298 K. 共The original data were represented graphically兲
Sorption (V 1* (STP)/V *
2)
Pressure/kPa
Sorption (V *
1 (STP)/V *
2)
3.20
6.52
12.01
17.72
23.65
28.12
33.53
39.41
45.56
5.27
8.15
11.48
14.27
16.88
19.01
21.11
22.83
25.08
49.53
56.7
62.33
67.71
74.37
81.25
88.11
95.75
99.97
27.05
30.32
31.87
33.44
36.02
38.41
40.63
43.71
45.67
Auxiliary Information
MethodÕApparatusÕProcedure
A modified McBain balance technique described in Ref. 1 was
used to measure the solubility of sulfur dioxide in the
polymer.
Source and Purity of Materials:
SO2: purity 99.95%.
PC: Lexan, General Electric Co., density 1.119 g/cm3, glass
transition temperature 422 K.
Estimated Error:
No information given.
Source and Purity of Materials:
PC 共‘‘Lexan’’兲 with ␳ ⫽1.119 g/cm3, provided by General
Electric Co. 共USA兲. M w ⫽45 000; T g ⫽422 K. Sulfur dioxide of
99.95% purity was used.
Estimated Error:
dT/K: ⫾0.5.
1349
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
References:
1
S. Prager and A. F. Long, J. Am. Chem. Soc. 73, 4072 共1951兲.
MethodÕApparatusÕProcedure
A modified McBain balance technique was used to measure
the solubility of sulfur dioxide in the polymer.
IUPAC-NIST SOLUBILITY DATA SERIES
Auxiliary Information
Pressure/kPa
Original Measurements:
S. Frimpong, C. A. Plank, and W. L. S. Laukhauf, Chem. Eng. J.
共Lausanne兲 42, 25 共1989兲.
Variables:
T/K⫽283.2– 343.2
p/kPa⫽0 – 100
Prepared By:
Yu. P. Yampol’skii
MethodÕApparatusÕProcedure
A McBain quartz spring balance was employed for sorption
measurement. The apparatus is described in Ref. 2.
1350
Source and Purity of Materials:
PC 共Lexan 101兲: General Electric Co., glass transition
temperature 421 K 共DSC兲, melting point 496.8 K.
Estimated Error:
Relative precision in T: ⫾0.1 K.
References:
C. A. Plank, W. L. S. Laukauf, and G. R. Ranade, J. Appl.
Polym. Sci. 30, 2695 共1985兲.
2
G. R. Ranade, V. M. Nadgir, C. A. Plank, and W. L. S. Laukauf,
J. Appl. Polym. Sci. 28, 201 共1983兲.
1
Experimental Data
FIG. 43. Sorption isotherms of sulfur dioxide in polycarbonate.
Dual mode sorption parameters for sulfur dioxide in polycarbonate
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
283.2
298.2
313.2
343.2
61.66
40.26
26.27
11.72
22.45
13.93
9.52
4.08
19.39
16.33
15.57
12.13
The experiment data for 298.2 and 313.2 K were correlated by the equation
C⫽123.212 exp关1.0772⫻10⫺3 共 RT/cal mol⫺1兲共 ln共 p/atm兲 ⫹ 共 2355/共共 T/K兲 ⫺33兲兲 ⫺10.24兲兴
based on adsorption potential theory in Ref. 1.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
3.19 Polycarbonate—Methane
Components:
共1兲 Methane; CH4; 关74-82-8兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Four papers are available for the system polycarbonate–methane. Pope et al.4 studied history effects on sorption isotherms 共unconditioned film, the film conditioned by exposure to high pressure carbon dioxide gas and exchange-conditioned by subsequent sweeping
CO2 by methane兲 and showed the significant changes in the isotherm’s shape caused by the pretreatment of a sample. On the other hand,
the other papers1–3 reported the dual mode sorption parameters but did not study the effects of different pretreatment of the films on the
parameters of the sorption model.
Below the solubility coefficients at 308 K are shown based on the dual mode sorption parameters1–3 and by the initial slope of the
isotherms.4
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
Nitrogen; N2; 关7727-37-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part
B: Polym. Phys. 26, 729 共1988兲.
W. J. Koros, Ph.D. dissertation, The University of Texas at
Austin, 1977.
Variables:
T/K: 308 p/MPa: 0–2.33
Prepared By:
A. K. Bokarev
Experimental Data
Dual mode sorption parameters for polycarbonate at 308 K
Parameter
k D /(cm 共STP兲/cm atm兲
3
S/cm3共STP兲 cm⫺3 atm⫺1
0.85
0.84
0.99
0.54
1.0
1
2
3
4*
4**
Ref.
⬘ /(cm3共STP兲/cm3)
CH
b/(atm⫺1)
CO2
CH4
N2
0.685
18.81
0.147
8.38
0.0909
2.11
0.215
0.100
0.074
Auxiliary Information
In spite of possible different film history, the solubility coefficients lie within fairly narrow limits. Accordingly, sorption isotherms are
given for the samples with different pretreatment.
Solubility of methane C/共cm3共STP兲 cm⫺3兲 in PC at 308 K and different pressure
p/MPa
Ref. 1
Ref. 2
A
B
0.5
1.0
2.0
3.0
3.2
5.3
8.2
10.4
3.3
5.6
9.5
12.9
2.5
4.3
6.8
8.2
5.0
8.2
13.0
15.7
These data indicate a possible range of variation of the solubility of CH4 in polycarbonate at different pressures.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
E. Sada, H. Kumazawa, H. Yakushiji, Y. Bamba, K. Sakata, and S-T. Wang, Ind. Eng. Chem., Res. 26, 433 共1987兲.
T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 26, 729 共1988兲.
4
D. S. Pope, G. K. Fleming, and W. J. Koros, Macromolecules 23, 2988 共1990兲.
2
3
1351
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
References:
1
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲.
Source and Purity of Materials:
Bisphenol A polycarbonate 共Lexan兲 was obtained from the
General Electric Co. M w ⫽35 800.
Each gas was of chromatographic quality 共purity ⬎99.99%兲.
Estimated Error:
Nothing specified.
Ref. 4
A Unconditioned film.
B Exchange-conditioned film.
MethodÕApparatusÕProcedure
The sorption apparatus and procedures used in the present
sorption experiments are the same as described earlier.1
IUPAC-NIST SOLUBILITY DATA SERIES
*Unconditioned film.
**Exchange-conditioned film.
3
Components:
共1兲 Methane; CH4; 关74-82-8兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
D. S. Pope, G. K. Fleming, and W. J. Koros, Macromolecules 23,
2988 共1990兲.
Variables:
T/K⫽308
p/MPa⫽0 – 6.89
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Only two papers are available for this system.1,2 However, they cover the same temperature 共303–333 K兲 and pressure 共0–0.1 MPa兲
ranges. In both cases, the polymer is probably Lexan from General Electric Co. recast from methylene dichloride. This enables a
meaningful comparison of the data to be done. The parameters of sorption isotherms at 323 K reported in Refs. 1 and 2 agree within the
estimated error. Hence, the following pressure dependence was calculated for propane solubility in polycarbonate.
p/kPa
C/cm3共STP兲 cm⫺3
10
30
50
101
0.83⫾0.03
1.67⫾0.05
2.37⫾0.02
4.03⫾0.05
Auxiliary Information
MethodÕApparatusÕProcedure
Two methods of conditioning were studied. Conventionally
conditioned isotherms were obtained with the samples which
had been previously in contact with CO2 gas under pressure of
6.21 MPa for 2–3 h with consequent pumping for 2 days.
Both isotherms were obtained by pressure decay method.1
Exchange conditioning involved exposing the samples to CO2
gas and then sweeping it by a CH4 flux with the subsequent
gravimetric determination of sorption.
Source and Purity of Materials:
CH4 : purity ⬎99.99%.
PC: General Electric Co., density 1.200 g/cm3, glass transition
temperature 423 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci.: Polym. Phys. Ed.
14, 1903 共1976兲.
PATERSON, YAMPOL’SKII, AND FOGG
References:
1
J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci. 20, 21 共1980兲.
2
J. A. Yavorsky and H. J. Spencer, J. Appl. Polym. Sci. 25, 2109 共1980兲.
FIG. 44. Sorption isotherms of methane in polycarbonate for unconditioned, carbon dioxide conditioned and exchange conditioned
samples.
1352
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.20. Polycarbonates—Propane and Other Gases
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
J. A. Yavorsky and H. J. Spencer, J. Appl. Polym. Sci. 25, 2109
共1980兲.
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci.
20, 21 共1980兲.
Variables:
T/K: 321.7; 323
p/kPa; Not stated
Prepared By:
A. K. Bokarev
Variables:
T/K⫽303– 333
p/kPa⫽0 – 8.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Thermal treatment of films
Experimental Data
⬘ b), and errors 共%兲 for propane in polycarbonate
Dual mode sorption parameters, solubility coefficients S, (S⫽k D ⫹C H
Thermal treatment
PC-1
PC-A1
PC-A2
PC-10
3 days in vacuum at 313–323 K
Treatment of PC-1 plus 49 h at 408 K in vacuum
Treatment of PC-A1 plus 51 h at 408 K in vacuum
3 days in vacuum at 353 K
T/K
303
313
323
333
102 k D /
cm3共STP兲 cm⫺3 cm Hg⫺1
6.07
5.01
4.01
2.55
共⫾7%兲
共⫾2%兲
共⫾8%兲
共⫾17%兲
⬘/
CH
cm3共STP兲 cm⫺3
1.67
1.25
1.02
1.22
b/cm Hg⫺1
共⫾11%兲
共⫾4%兲
共⫾21%兲
共⫾31%兲
0.311
0.254
0.167
0.094
共⫾30%兲
共⫾9%兲
共⫾43%兲
共⫾50%兲
S/
cm3共STP兲 cm⫺3 cm Hg⫺1
0.579
0.368
0.210
0.140
共⫾18%兲
共⫾5%兲
共⫾19%兲
共⫾19%兲
TABLE 2. Dual mode sorption parameters for the propane–polycarbonate system
Sample
T/K
PC-1
PC-10
323.0
321.7
PC-A1
PC-A2
323.0
323.0
k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/共cm Hg兲⫺1
0.72
1.5
0.23
0.08
0.53
0.48
0.22
0.22
Unannealed films
4.5
3.0
Annealed films
4.5
4.5
Auxiliary Information
MethodÕApparatusÕProcedure
The volumetric sorption procedure was used to determine the
sorption equilibrium properties.
Estimated Error:
No estimates possible.
FIG. 45. Sorption isotherms for propane in PC.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption isotherms were measured using an electronic vacuum
microbalance Sartorius, model 4102 as described in Ref. 1.
Source and Purity of Materials:
PC films: cast from methylene chloride; glass transition
temperature 420 K.
Estimated Error:
See table.
References:
J. A. Barrie and D. Machin, J. Makromol. Sci.-Phys. B. 3, 645
共1969兲.
1
1353
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Source and Purity of Materials:
The bisphenol-A polycarbonate. Lexan, was supplied by the
General Electric Co. M n ⫽12 500; M w ⫽35 300. Films were cast
on mercury at about 307–309 K from 5% to 10% solutions in
methylene chloride. The thermal treatment of the films is
summarized in Table 1. The T g for these films were in the range
421–428 K.
Propane used was 99.5% pure and was subjected to freeze–
pump–thaw cycles.
IUPAC-NIST SOLUBILITY DATA SERIES
Sample
Original Measurements:
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165
共1977兲.
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Original Measurements:
W. J. Koros, and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
Variables:
Prepared By:
Prepared By:
A. K. Bokarev
T/K⫽308
p/MPa⫽0 – 2.53
A. K. Bokarev
Variables:
T/K⫽308
p/MPa⫽0.1– 2.6
Experimental Data
Sorption isotherm of nitrogen in polycarbonate at 308 K. 共The original data were represented graphically兲
Experimental Data
Dual mode sorption parameters for various gases in polycarbonate at 308 K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
Ar
He
CH4
N2
0.1534
0.0145
0.1473
3.093
0.313
8.382
0.063
0.0121
0.0841
0.0909
2.109
0.0564
Pressure/MPa
Sorption 共V 1* (STP)/V 2* 兲
Pressure/MPa
Sorption 共V 1* (STP)/V 2* 兲
0.08
0.11
0.14
0.19
0.30
0.40
0.60
0.75
0.90
1.14
1.29
0.18
0.21
0.27
0.42
0.58
0.69
1.03
1.34
1.58
1.85
2.01
1.37
1.44
1.63
1.82
2.03
2.25
2.29
2.49
2.60
2.59
—
2.14
2.21
2.47
2.72
2.96
3.18
3.24
3.50
3.57
3.63
—
Auxiliary Information
MethodÕApparatusÕProcedure
Measurement of gas solubility was performed using a pressure
decay method with a dual-volume dual transducers system 共see
also Ref. 1兲. In order to achieve superior precision the ratio of
the two working volumes should be close to 1. It was shown
that the reduction of this ratio from 9.7 to 1.45 resulted in
much less scatter.
Source and Purity of Materials:
N2: purity⬎99%.
PC 共Bisphenol A polycarbonate兲: Lexan, General Electric Co.,
M w ⫽35 800.
Estimated Error:
Relative precision of solubilities: ⫾0.07 cm3共STP兲/cm3 polymer.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
FIG. 46. Sorption isotherms of various gases in polycarbonate at 308 K.
Auxiliary Information
Source and Purity of Materials:
Gases; purity ⬎99%.
PC 共Bisphenol A polycarbonate, Lexan兲; General Electric Co.,
M w ⫽35 800.
Estimated Error:
No information given.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
PATERSON, YAMPOL’SKII, AND FOGG
Gas
MethodÕApparatusÕProcedure
The sorption apparatus and procedure used in the present
sorption experiments are the same as described earlier.1
1354
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Helium; He; 关7440-59-7兴 Argon; Ar; 关7440-37-1兴 Nitrogen;
N2; 关7727-37-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴 Methane; CH4 ; 关74-82-8兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
Tetramethylpolycarbonate 共TMPC兲; 关38797-88-5兴 共XXII兲
Tetrachloropolycarbonate 共TCPC兲; 关26913-25-7兴 共XXIV兲
Tetrabromopolycarbonate 共TBPC兲; 关28774-93-8兴 共XXV兲
Original Measurements:
N. Muruganandam, W. J. Koros, and D. R. Paul, J. Polym. Sci.,
Part B: Polym. Phys. 25, 1999 共1987兲.
Variables:
T/K⫽308– 358
p/MPa⫽0.1– 2.0 (1 – 20 atm)
Prepared By:
A. K. Bokarev
Experimental Data
Dual mode sorption parameters for various gases in the polycarbonates at 308 K
Polymer
TBPC*
CH4
TMPC
TCPC
TBPC
PC
TMPC
TCPC
TBPC
N2
PC
TMPC
TCPC
TBPC
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.685
1.011
0.860
0.840
0.179
18.81
27.66
26.35
24.59
17.77
0.262
0.283
0.316
0.395
0.128
Conditioned
Conditioned
Conditioned
Conditioned
Conditioned
0.281
0.289
0.275
0.147
0.244
0.340
0.209
12.29
12.22
12.37
8.38
15.34
11.26
15.05
0.106
0.128
0.141
0.084
0.100
0.150
0.120
Unconditioned
Unconditioned
Unconditioned
Conditioned
Conditioned
Conditioned
Conditioned
0.091
0.102
0.145
0.148
2.11
8.43
6.22
4.63
0.056
0.032
0.046
0.061
Unconditioned
Unconditioned
Unconditioned
Unconditioned
Conditions
FIG. 47. Comparison of sorption isotherms of methane at 308 K in TMPC for unconditioned and conditioned films.
FIG. 48. Comparison of sorption isotherms of methane at 308 K in TCPC for unconditioned and conditioned films.
1355
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
*At 358 K.
IUPAC-NIST SOLUBILITY DATA SERIES
CO2
PC
TMPC
TCPC
TBPC
k D /cm3共STP兲 cm⫺3 atm⫺1
1356
FIG. 51. Sorption isotherms of methane at 308 K in polycarbonates conditioned by prior CO2 exposure. 共䊊兲 PC; 共⽧兲 TMPC; 共䊐兲 TCPC;
共䊉兲 TBPC.
FIG. 50. Sorption isotherms of carbon dioxide at 308 K in polycarbonates conditioned by prior CO2 exposure.
FIG. 52. Sorption isotherms of nitrogen at 308 K in polycarbonates without prior CO2 exposure.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
FIG. 49. Comparison of sorption isotherms of methane at 308 K in TBPC for unconditioned and conditioned films.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was measured using the method described in Ref. 1
Sorption data were collected using films never exposed to CO2
共unconditioned films兲 and films that had been exposed to CO2
at 20 atm for 24 h.
Source and Purity of Materials:
Gases: purity 99%.
PC: General Electric Co., density 1.200 g/cm3.
TMPC: Bayer AG, density 1.083 g/cm3.
TBPC: Dow Chemical Co., density 1.953 g/cm3.
h/(dl/g)
Polymer
Mw
PC
TMPC
TCPC
TBPC
35 800
—
—
—
—
0.530
0.534
0.417
T g /K
423
466
503
536
Components:
共1兲 Methane; CH4; 关74-82-8兴
共2兲 Tetramethylpolycarbonate 共TMPC兲; 关38797-88-5兴 共XXII兲
Original Measurements:
D. S. Pope, G. K. Fleming, and W. J. Koros, Macromolecules 23,
2988 共1990兲.
Variables:
T/K⫽308
p/MPa⫽0 – 5
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Sorption isotherms of methane at 308 K in unconditioned, conventionally conditioned, and exchange-conditioned samples of TMPC.
共The original data were represented graphically兲
Unconditioned
References:
1
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2,
165 共1977兲.
Conventionally conditioned
Exchange-conditioned
Sorption/
(V *
1 (STP)/V *
2)
Pressure/MPa
Sorption/
(V *
1 (STP)/V *
2)
Pressure/MPa
Sorption/
(V *
1 (STP)/V *
2)
0.42
0.93
1.49
2.05
2.60
3.12
3.72
4.31
4.94
4.82
8.25
11.04
13.20
15.15
16.79
18.52
20.04
21.45
0.72
1.77
2.89
3.83
4.87
—
—
—
—
9.44
15.67
20.73
24.11
27.17
—
—
—
—
0.52
1.07
1.77
2.47
3.06
3.80
4.48
—
—
9.25
14.90
20.21
24.26
26.84
29.83
32.29
—
—
Auxiliary Information
Source and Purity of Materials:
CH4: purity 99.99%.
TMPC: Dow Chemical Co., density 1.08 g/cm3, glass transition
temperature 476 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
1357
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
Two methods of conditioning were studied. Conventionally
conditioned isotherms were obtained with the samples which
had been previously in contact with CO2 gas under pressure of
6.21 MPa for 2–3 h with consequent pumping for 2 days.
Exchange conditioning involves exposing samples to CO2 gas
and then sweeping it with methane flux. For exchange
conditioning runs a gravimetric technique was used, in two
other types of experiments a pressure decay method was
applied.1
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/MPa
Original Measurements:
G. K. Fleming and W. J. Koros, J. Polym. Sci., Part B: Polym.
Phys. 28, 1137 共1990兲.
Variables:
T/K⫽308
p/MPa⫽0 – 6.2 (0 – 62 atm)
Prepared By:
Yu. P. Yampol’skii
MethodÕApparatusÕProcedure
Pressure decay sorption cell and procedure used are described
in Ref. 1.
1358
Source and Purity of Materials:
CO2: Linde Inc., purity 99.99%.
TMPC: Bayer AG, density 1.083 g/cm3, glass transition
temperature 475 K, d spacing 6.0 Å 共WAXD兲.
Estimated Error:
No information given.
Experimental Data
Sorption isotherm of carbon dioxide in TMPC on a fugacity basis at 308 K. 共The original data were represented graphically兲
Fugacity/MPa
Sorption (V 1* (STP)/V 2* )
Fugacity/MPa
Sorption (V 1* (STP)/V 2* )
0.21
0.60
0.98
1.33
1.65
1.95
2.26
2.51
2.77
13.53
26.09
35.48
42.17
48.41
52.61
57.50
61.95
64.81
3.03
3.27
3.47
3.72
3.91
4.13
4.30
4.47
—
68.80
71.90
75.91
80.36
84.60
88.39
92.86
93.49
—
FIG. 53. Sorption 共open points兲 and desorption 共filled points兲 isotherms of carbon dioxide in TMPC for maximum conditioning
pressures of 37.95 共䊊兲 共䊉兲 and 62.1 共䊐兲 共䊏兲 atm. 共⽧兲 second desorption
References:
1
G. K. Fleming and W. J. Koros, Macromolecules 19, 2285
共1986兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Tetramethylpolycarbonate 共TMPC兲; 关38797-88-5兴 共XXII兲
Components:
共1兲 Helium; He; 关7440-59-7兴 Nitrogen; N2; 关7727-37-9兴
Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴
Methane; CH4; 关74-82-8兴
共2兲 Tetrabromopolycarbonate 共TBPC兲; 关28774-93-8兴 共XXV兲
Original Measurements:
M. W. Hellums, W. J. Koros, G. R. Husk, and D. R. Paul, J.
Membr. Sci. 46, 93 共1989兲.
Variables:
T/K⫽308
p/MPa⫽0 – 6.06
Prepared By:
Yu. P. Yampol’skii
Original Measurements:
G. K. Fleming and W. J. Koros, J. Polym. Sci., Part B: Polym.
Phys. 28, 1137 共1990兲.
Variables:
T/K⫽308
p/MPa⫽0.3– 3.3
Prepared By:
V. I. Bondar
Experimental Data
TABLE 1. Sorption and desorption isotherms of carbon dioxide in HFPC at 308 K. 共The original data were represented graphically兲
Experimental Data
Solubility of gases C/(cm3共STP兲/cm3) in TBPC at different pressures*
Sorption
p/atm
C
Gas
p/atm
C
He
7.2
12.6
18.4
25.5
0.40
0.55
0.80
1.05
CH4
3.0
7.2
12.0
17.3
23.0
4.4
7.6
10.6
12.8
14.7
N2
3.6
7.4
11.7
17.3
20.0
1.4
2.6
3.6
4.8
5.4
CO2
5.4
9.5
15.0
20.7
19
25
32
37.5
1.0
2.35
5.0
8.2
12.5
0.6
1.2
2.6
3.95
5.5
Desorption
Pressure/MPa
Solubility (V *
1 (STP)/V *
2)
Pressure/MPa
Solubility (V *
1 (STP)/V *
2)
0.59
0.88
1.20
1.54
1.83
2.08
2.23
2.39
2.63
2.89
3.12
3.29
—
30.19
36.46
42.07
46.17
49.61
52.41
53.70
54.99
57.14
59.07
60.57
61.42
—
0.32
0.69
1.03
1.37
1.63
1.91
2.11
2.37
2.60
2.77
2.94
3.09
3.29
13.48
20.83
26.23
30.76
36.60
40.70
43.72
47.82
51.28
53.43
56.24
58.40
61.42
Experimental Data
TABLE 2. Sorption isotherms of carbon dioxide in HFPC at 308 K on fugacity basis. 共The original data were represented graphically兲
*Taken from the graphs by compiler.
Fugacity/MPa
Sorption (V 1* (STP)/V 2* )
0.36
0.72
1.08
1.36
1.63
1.85
2.11
2.32
2.52
2.68
2.82
16.40
26.28
33.42
38.05
42.04
45.62
49.40
52.97
55.92
58.65
61.38
Auxiliary Information
Source and Purity of Materials:
TBPC was prepared from tetrabromo-bisphenol A using
standard interfacial polymerization technique. It had the
following characteristics:
␳ ⫽1.083 g/cc, T g ⫽466 K
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul. J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
1359
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
Pressure decay apparatus was used in sorption measurement
共see Ref. 1兲.
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
O2
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Hexafluoropolycarbonate 共HFPC兲; 关32291-26-2兴 共XXVI兲
Type
Pressure
Fugacity
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
1.09
1.33
28.05
25.48
0.255
0.275
Auxiliary Information
MethodÕApparatusÕProcedure
Pressure decay sorption cell and procedure were described in
Ref. 1.
Source and Purity of Materials:
HFPC: Dow Chemical Co., density 1.478 g/cm3, glass transition
temperature 445 K, d spacing 5.8 A 共WAXD method兲.
The polymer was conditioned before measurement of sorption
isotherms by exposing to CO2 at 33 atm.
Components:
共1兲 Methane; CH4; 关74-82-8兴
Tetramethylhexafuropolycarbonate 共TMHFPC兲; 关125431-72-3兴
共XXIII兲
Original Measurements:
D. S. Pope, G. K. Fleming, and W. J. Koros, Macromolecules 23,
2988 共1990兲.
Variables:
T/K⫽308
p/MPa⫽0 – 3
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Sorption isotherms of methane at 308 K in unconditioned, conventionally conditioned, and exchange-conditioned samples of
TMHFPC. 共The original data were represented graphically兲
Unconditioned
Estimated Error:
No information given.
Conventionally conditioned
Exchange-conditioned
Pressure/MPa
Sorption
(V 1* (STP)/V *
2)
Pressure/MPa
Sorption
(V *
1 (STP)/V *
2)
Pressure/MPa
Sorption
(V *
1 (STP)/V *
2)
0.20
0.60
1.05
1.61
2.23
2.94
3.51
8.50
12.66
16.39
20.03
23.33
0.70
1.41
2.12
2.72
—
—
11.09
17.75
22.64
26.45
—
—
0.34
0.71
1.23
1.75
2.23
2.69
7.02
12.18
17.93
22.42
25.65
28.38
Auxiliary Information
MethodÕApparatusÕProcedure
Two methods of conditioning were studied. Conventionally
conditioned isotherms were obtained with the samples which
had been previously in contact with CO2 gas under pressure of
6.2 MPa for 2–3 h with consequent pumping for 2 days.
Exchange conditioning involves exposing samples to CO2 gas
and then sweeping it with a methane flux. For exchange
conditioning runs a gravimetric technique was used. In two
other types of experiments a pressure decay method was
applied.1
Source and Purity of Materials:
CH4: purity ⬎99.99%.
TMHFPC: synthesized, density 1.200 g/cm3, glass transition
temperature 481 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
PATERSON, YAMPOL’SKII, AND FOGG
References:
1
G. K. Fleming and W. J. Koros, Macromolecules 19, 2285
共1986兲.
1360
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 3. Dual mode sorption parameters for carbon dioxide in HFPC at 308 K
Components:
共1兲 Helium; He; 关7440-59-7兴 Nitrogen; N2; 关7727-37-9兴
Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴
Methane; CH4; 关74-82-8兴
共2兲 Tetrabromohexafluoropolycarbonate 共TBHFPC兲;
关126430-95-3兴 共XXVII兲
Original Measurements:
M. W. Hellums, W. J. Koros, G. R. Husk, and D. R. Paul, J.
Membr. Sci. 46, 93 共1989兲.
Variables:
T/K⫽308
p/MPa⫽0 – 6.0
Prepared By:
Yu. P. Yampol’skii
Variables:
Prepared By:
T/K⫽308
p/MPa⫽0 – 2.0 共0–20 atm兲
Yu. P. Yampol’skii
p/atm
C
Gas
p/atm
C
He
2.4
8.7
15.6
23.0
35.0
0.2
0.6
1.05
1.5
2.35
CH4
3.0
9.0
13.5
18
22
26.5
32.5
5.3
11.5
14.8
17.3
19
21.5
23.5
1.0
3.0
6.0
9.0
14.0
0.6
2.0
3.4
4.9
6.8
CO2
0.6
1.6
2.4
4.1
6.3
0.4
1.3
1.9
3.1
4.65
3.5
8.0
15.5
22
28
39
52
22
36
47
60
74
100
116
k D /cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm3
C H,
b/atm⫺1
N2
CO2
0.166
0.978
3.15
19.8
0.071
0.306
Auxiliary Information
MethodÕApparatusÕProcedure
The measurement of sorption was carried out using a pressure
decay sorption cell as described in Ref. 1. The films were cast
from methylene dichloride solution.
Source and Purity of Materials:
NBPC 共Eastman Kodak Co兲 had a density 1.20 g/cc, the glass
transition temperature of 508 K. The intrinsic viscosity in
methylene dichloride solution was 0.55 dl/g.
Purity of gases not indicated.
Estimated Error:
No information given.
References:
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165
共1977兲.
1
Auxiliary Information
MethodÕApparatusÕProcedure
Pressure decay apparatus was used in sorption measurement
共see Ref. 1兲.
Source and Purity of Materials:
TBHFPC was prepared from tetrabromohexafluorobisphenol A
using standard interfacial polymerization technique. It had the
following characteristics: ␳ ⫽1.987 g/cc, T g ⫽528 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
1361
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
*Taken from the graphs by compiler.
Gas
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
O2
Original Measurements:
J. S. McHattie, W. J. Koros, and D. R. Paul, J. Polym. Sci.: Part
B: Polym. Phys. 29, 731 共1991兲.
Experimental Data
Dual mode sorption parameters at 308 K
Experimental Data
Solubility of gases C/cm3共STP兲/cm3 in TBPC at different pressures*
N2
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Bisphenol norbornene polycarbonate 共NBPC兲 共XXVIII兲
Original Measurements:
J. S. McHattie, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part
B: Polym Phys. 29, 731 共1991兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.0 共0–20 atm兲
Prepared By:
Yu. P. Yampol’skii
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Bisphenol chloral polycarbonate 共BCPC兲; 关31546-39-1兴
共XXX兲
Original Measurements:
J. S. McHattie, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part
B: Polym. Phys. 29, 731 共1991兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.0 共0–20 atm兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters at 308 K
Experimental Data
Dual mode sorption parameters at 308 K
Gas
k D /cm 共STP兲/cm atm
⬘ /cm 共STP兲/cm
CH
CO2
CH4
0.545
0.223
18.5
5.65
3
3
1362
3
3
⫺1
b/atm
0.172
0.106
Gas
k D /cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm3
CH
b/atm⫺1
CO2
CH4
0.718
0.130
14.9
6.64
0.271
0.088
Auxiliary Information
Auxiliary Information
MethodÕApparatusÕProcedure
The measurement of sorption was carried out using a pressure
decay apparatus 共see Ref. 1兲. The films were cast from
methylene dichloride solution.
Source and Purity of Materials:
PCZ 共Mitsubishi Gas Chemical Co兲 had a density 1.20 g/cc and
glass transition temperature of 458 K. Its intrinsic viscosity in
chloroform was 0.49 dl/g. Purity of gases not indicated.
Estimated Error:
No information given.
References:
1
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165
共1977兲.
MethodÕApparatusÕProcedure
The measurement of sorption was carried out using a pressure
decay apparatus 共see Ref. 1兲. The films were cast from
methylene dichloride solution.
Source and Purity of Materials:
PCPC from General Electric Co had a density 1.39 g/cc and
glass transition temperature of 437 K. Its intrinsic viscosity in
chloroform was 0.66 dl/g. Purity of gases not indicated.
Estimated Error:
No information given.
References:
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165
共1977兲.
1
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Bisphenol-Z-polycarbonate 共PCZ兲; 关25135-52-8兴 共XXIX兲
3.21. Poly„Aryl-bis-isopropylidene Ether Ketone…—Carbon Dioxide and Methane
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共aryl-bis-isopropylidene ether ketone兲 共PAEK-12H兲;
关122165-94-0兴 共XXXI兲
Variables:
T/K⫽308
p/MPa⫽0 – 2.0
Original Measurements:
J. M. Mohr and D. R. Paul, Polymer 32, 2387 共1991兲
Prepared By:
V. I. Bondar
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共aryl-isopropylidene-hexafluoro-isopropylidene ether
ketone兲 共PAEK-6H6F兲; 关122165-96-2兴 共XXXII兲
Poly共aryl-hexafluoroisopropylidene-isopropylidene ether
ketone兲 共PAEK-6F6H兲; 关122165-95-1兴 共XXXIII兲
Original Measurements:
J. M. Mohr and D. R. Paul, Polymer 32, 2387 共1991兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.0
Prepared By:
V. I. Bondar
Experimental Data
Dual mode sorption parameters for carbon dioxide in PAEK-12H at 308 K
k D /cm3共STP兲 cm⫺3 atm⫺1
0.700
Experimental Data
Dual mode sorption parameters for carbon dioxide in polymers at 308 K
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
9.22
0.305
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
6H6F
6F6H
0.840
0.756
10.90
12.70
0.373
0.331
CH4
CO2
Pressure/MPa
Sorption (V 1* (STP)/V 2* )
Pressure/MPa
Sorption (V 1* (STP)/V 2* )
0.13
0.26
0.42
0.55
0.70
0.87
1.01
1.19
1.36
1.54
1.74
1.97
2.07
3.19
5.51
7.71
9.38
11.13
12.31
14.46
15.51
16.79
17.96
19.31
21.38
22.33
0.17
0.34
0.50
0.68
0.86
1.04
1.21
1.38
1.57
1.75
2.02
—
—
0.95
1.76
2.37
2.94
3.47
4.19
4.98
5.49
5.94
6.46
6.92
—
—
MethodÕApparatusÕProcedure
A pressure decay method was used described in Ref. 1.
Source and Purity of Materials:
PAEK-12H: synthesized 共Ref. 2兲, density 1.166 g/cm3, glass
transition temperature 444 K.
Estimated Error
No information given.
FIG. 54. Sorption isotherms of carbon dioxide in PAEK-6H6F 共䊊兲 and PAEK-6F6H 共䊉兲.
Auxiliary Information
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
2
G. L. Tullos, P. E. Cassidy, and A. K. St. Clair, Proc. ACS. Div.
Polym. Materials 60, 310 共1989兲.
MethodÕApparatusÕProcedure
A pressure decay method was used as described in Ref. 1.
Source and Purity of Materials:
PAEK-6H6F, PAEK-6F6H: synthesized by the procedure
described in Ref. 2. 6H6F: density 1.287 g/cm3, T g ⫽452 K.
6F6H: density 1.284 g/cm3, T g ⫽454 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
2
G. L. Tullos, P. E. Cassidy, and A. K. St. Clair, Proc. ACS, Div.
Polym. Materials 60, 310 共1989兲.
1363
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
IUPAC-NIST SOLUBILITY DATA SERIES
Sorption isotherms of carbon dioxide and methane in PAEK-12H at 308 K. 共The original data were represented graphically兲
Polymer
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共aryl-bis-hexafluoroisopropylidene ether ketone兲
共PAEK-12F兲; 关122165-97-3兴 共XXXIV兲
Original Measurements:
J. M. Mohr and D. R. Paul, Polymer 32, 2387 共1991兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.0
Prepared By:
V. I. Bondar
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polyarylate Ardel 共PA兲; 关25639-68-3兴共LXX兲
Original Measurements:
T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part
B: Polym. Phys. 26, 729 共1988兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.33
Prepared By:
A. K. Bokarev
Experimental Data
Dual mode sorption parameters for carbon dioxide in PAEK-12F at 308 K
k D /cm3共STP兲 cm⫺3 atm⫺1
0.970
1364
Experimental Data
TABLE 1. Dual mode sorption parameters for gases in polyarlyate at 308 K
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
14.32
0.381
Sorption isotherms of carbon dioxide and methane in PAEK-12F at 308 K. 共The original data were represented graphically兲
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
CO2
CH4
N2
0.631
0.181
22.69
6.45
0.215
0.100
0.081
1.22
0.074
CH4
CO2
Pressure/MPa
Sorption (V 1* (STP)/V 2* )
Pressure/MPa
Sorption (V 1* (STP)/V 2* )
0.14
0.31
0.47
0.63
0.77
0.93
1.09
1.27
1.41
1.58
1.76
1.90
2.05
6.00
10.48
13.37
15.47
18.01
20.20
22.30
23.68
25.70
27.35
29.36
30.93
32.32
0.16
0.23
0.34
0.50
0.65
0.84
1.01
1.18
1.33
1.49
1.67
1.83
2.00
1.81
2.55
3.19
3.93
4.70
5.40
5.95
6.63
7.23
7.63
8.12
8.47
8.82
Auxiliary Information
MethodÕApparatusÕProcedure
A pressure decay method was used described in Ref. 1.
Source and Purity of Materials:
PAEK-12F synthesized 共Ref. 2兲, density 1.401 g/cm3, glass
transition temperature 458 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
2
G. L. Tullos, P. E. Cassidy, and A. K. St. Clair, Proc. ACS, Div.
Polym. Materials 60, 310 共1989兲.
TABLE 2. Sorption isotherms of various gases in polyarylate at 308 K 共The original data were represented graphically兲
CH4
CO2
N2
Pressure/MPa
Sorption
共V *
1 (ST P)/V *
2)
Pressure/MPa
Sorption
共V *
1 (ST P)/V *
2)
Pressure/MPa
Sorption
共V *
1 (ST P)/V *
2)
0.21
0.27
0.31
0.35
0.60
0.65
0.73
0.97
1.04
1.13
1.38
1.46
1.58
1.84
1.91
2.30
2.33
—
—
—
—
—
—
—
7.30
9.17
10.11
11.14
15.81
16.74
18.33
21.03
21.96
23.27
25.49
26.52
27.72
29.38
29.94
33.08
33.36
—
—
—
—
—
—
—
0.26
0.32
0.36
0.42
0.62
0.70
0.78
0.85
1.04
1.13
1.21
1.29
1.48
1.56
1.65
1.74
1.92
2.02
2.12
2.18
—
—
—
—
1.65
1.98
2.22
2.53
3.39
3.82
4.09
4.44
4.97
5.40
5.66
5.95
6.38
6.71
6.97
7.23
7.66
7.92
8.16
8.31
—
—
—
—
0.19
0.23
0.30
0.33
0.40
0.44
0.59
0.68
0.70
0.85
0.92
1.03
1.11
1.19
1.29
1.40
1.49
1.57
1.64
1.75
1.82
1.94
2.04
2.22
0.30
0.37
0.44
0.54
0.54
0.63
0.78
0.89
0.98
1.13
1.20
1.30
1.39
1.52
1.61
1.70
1.74
1.87
1.98
2.04
2.15
2.19
2.26
2.46
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.22. Polyarylate—Various Gases
Auxiliary Information
MethodÕApparatusÕProcedure
The sorption apparatus and procedures used in the present
sorption experiments are the same as described earlier.1
Source and Purity of Materials:
CO2 ,CH4 ,N2: purity ⬎99.99%.
PA 共Ardel D-100兲: Union Carbide Co., density 1.21 g/cm3, glass
transition temperature 457 K.
Estimated Error:
No information given.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4;
关74082-8兴
共2兲 Polyarylate Ardel 共PA兲; 关25639-68-3兴 共LXX兲
Original Measurements:
F. R. Sheu, R. T. Chern, V. T. Stannett, and H. B. Hopfenberg,
J. Polym. Sci., Part B: Polym. Phys. 26, 883 共1988兲.
Variables:
T/K⫽308
p/MPa⫽1 – 2.3
Prepared By:
Yu. P. Yampol’skii
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
Experimental Data
Dual mode sorption parameters
Gas
k D ,/cm3共STP兲 cm⫺3 atm⫺1
⬘ ,/cm3共STP兲 cm⫺3
CH
b/atm⫺1
CO2
CH4
0.98
0.27
19.8
9.0
0.30
0.12
MethodÕApparatusÕProcedure
Sorption apparatus and procedure were described in Ref. 1.
Source and Purity of Materials:
Polymer from Union Carbide had a density of 1.204 g/cm3 and
glass transition temperature 463 K.
Estimated Error:
No information given.
References:
1
E. S. Sanders, W. J. Koros, H. B. Hopfenberger, and V. T.
Stannett, J. Membr. Sci. 13, 61 共1982兲
1365
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Auxiliary Information
Original Measurements
F. R. Sheu, R. T. Chern, V. T. Stannett, and H. B. Hopfenberg,
J. Pol. Sci., Part B: Polym. Phys. 26, 883 共1988兲.
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Polyarylate 共Ardel-D 100兲; 关25639-68-3兴 共LXX兲
Original Measurements:
G. R. Ranade, R. Chandler, C. A. Plank, and W. L. S. Laukhauf,
Polym. Eng. Sci. 25, 164 共1985兲.
Variables:
T/K⫽308
p/MPa⫽0.1–2.3
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽298–336
p/kPa⫽0–90
Prepared By:
S. M. Shishatskii
Experimental Data
TABLE 1. Dual mode sorption parameters for gases in polyarylate at 308 K
Experimental Data
Dual mode sorption parameters for sulfur dioxide in polyarylate
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
CO2
CH4
1.98
0.27
19.8
9.0
0.30
0.12
278
298
313
328
336
1.78
32.47
14.99
5.01
3.50
4.69
16.06
25.07
20.01
24.04
1.60
16.03
5.02
2.77
1.26
TABLE 2. Sorption isotherms of carbon dioxide and methane in polyarylate at 308 K 共The original data were represented graphically兲
CO2
CH4
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
0.09
0.12
0.13
0.17
0.29
0.32
0.39
0.48
0.58
0.63
0.68
4.55
5.87
6.75
7.91
11.10
12.26
13.70
15.87
17.44
18.45
19.31
0.78
0.97
1.09
1.14
1.21
1.44
1.63
1.73
1.77
1.92
2.19
21.18
23.88
25.44
26.30
26.85
29.83
31.79
32.92
33.64
35.04
37.85
0.12
0.33
0.53
0.72
0.96
1.11
1.31
1.59
1.85
2.21
—
1.41
3.15
4.62
5.79
7.21
8.03
9.06
10.21
11.19
12.42
—
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption apparatus and procedure were the same as in Ref. 1.
Source and Purity of Materials:
PA: Union Carbide Co., density 1.204 g/cm3, glass transition
temperature 463 K.
Estimated Error:
No information given.
References:
1
E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. T.
Stannett, J. Membr. Sci. 13, 61 共1983兲.
FIG. 55. Sorption isotherms of sulfur dioxide in polyarylate.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was measured using a gravimetric technique 共a
McBain quartz spring balance兲. For detailed description of the
experimental procedure see Ref. 1.
Source and Purity of Materials:
Polyarylate 共Ardel-D 100兲: Union Carbide, copolyester of
bisphenol A with 50/50 mixture of iso- and terephthalic acid.
Density 1.21 g/cm3, M n ⫽12 300, M w ⫽29 800.
Estimated Error:
Precision in T: ⫾0.1 K
References:
1
G. R. Ranade, V. M. Nadgir, C. A. Plank, and W. L. S.
Laukhuf, J. Appl. Polym. Sci. 28, 201 共1983兲.
PATERSON, YAMPOL’SKII, AND FOGG
Gas
CO2
1366
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polyarylate Ardel 共PA兲; 关25639-68-3兴 共LXX兲
3.23. Polyhydroxyether—Carbon Dioxide, Methane, Nitrogen
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polyhydroxyether 共PHE兲; 关26402-79-9兴 共LXIX兲
Variables:
T/K: 308
p/MPa: 0–2.33
Original Measurements:
T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part
B: Polym. Phys. 26, 729 共1988兲.
Prepared By:
A. K. Bokarev
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polyhydroxyether 共PHE兲; 关26402-79-9兴 共LXIX兲
Variables:
Prepared By:
T/K⫽308
p/MPa⫽0–2.5
A. K. Bokarev
Experimental Data
Dual mode sorption parameters for PHE at 308 K
Experimental Data
TABLE 1. Dual mode sorption parameters for various gases in polyhydroxyether at 308 K
Parameters
CO2
CH4
k D /cm3共STP兲 cm⫺3 atm⫺1
0.289
0.051
⬘ /cm3共STP兲 cm⫺3
CH
b/atm
10.01
⫺1
0.184
2.70
0.067
Source and Purity of Materials:
PHE 共Union Carbide兲 had a tradename Phenoxy PKHH.
Density: 1.18 g/cm3; T g ⫽376 K.
Each gas was of chromatographic quality (purity⬎99.99%).
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
CO2
CH4
0.289
0.051
10.01
2.70
0.184
0.067
TABLE 2. Sorption isotherms of various gases in polyhydroxyether at 308 K 共The original data were represented graphically兲
CH4
CO2
N2
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
0.30
0.35
0.39
0.44
0.66
0.75
0.83
0.90
1.09
1.19
1.26
1.36
1.54
1.65
1.73
1.82
2.01
2.11
2.19
2.28
—
—
—
—
—
—
—
—
—
3.52
4.26
4.82
5.38
6.76
7.41
8.06
8.71
9.34
9.89
10.44
10.90
11.63
11.90
12.26
12.72
13.63
13.81
14.08
14.44
—
—
—
—
—
—
—
—
—
0.30
0.36
0.41
0.47
0.52
0.69
0.76
0.86
0.92
1.00
1.13
1.20
1.30
1.38
1.45
1.55
1.64
1.73
1.83
1.90
2.01
2.09
2.18
2.28
—
—
—
—
—
0.57
0.62
0.74
0.81
0.90
1.19
1.21
1.36
1.45
1.52
1.69
1.76
1.93
1.92
2.07
2.16
2.21
2.30
2.35
2.49
2.54
2.66
2.68
2.78
—
—
—
—
—
0.27
0.32
0.37
0.42
0.49
0.55
0.66
0.74
0.81
0.89
0.97
1.04
1.11
1.19
1.26
1.34
1.44
1.53
1.55
1.64
1.73
1.81
1.92
2.00
2.08
2.18
2.27
2.35
2.46
0.11
0.13
0.17
0.19
0.26
0.19
0.19
0.26
0.30
0.33
0.39
0.33
0.31
0.37
0.39
0.43
0.48
0.46
0.41
0.54
0.52
0.57
0.61
0.59
0.63
0.65
0.69
0.72
0.74
1367
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Pressure/MPa
IUPAC-NIST SOLUBILITY DATA SERIES
Auxiliary Information
MethodÕApparatusÕProcedure
The sorption apparatus and procedures used in the present
sorption experiments are the same as described earlier.1
Original Measurements:
T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part
B: Polym. Phys. 26, 729 共1988兲.
1368
MethodÕApparatusÕProcedure
The sorption apparatus and procedures used in the present
sorption experiments are the same as described earlier.1
Source and Purity of Materials:
CO2 ,CH4 ,N2: purity⬎99.99%.
PHE 共Phenoxy PKHH兲: Union Carbide, density 1.18 g/cm3,
glass transition temperature 376 K.
Estimated Error:
No information given.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共phenolphthalein phthalate兲 共PPhPh兲; 关24938-86-1兴
共XXXVI兲
Original Measurements
F. R. Sheu and R. T. Chern, J. Polym. Sci., Part B: Polym. Phys.
27, 1121 共1989兲.
F. R. Sheu, R. T. Chern, V. Stannett, and H. B. Hopfenberg, J.
Polym. Sci., Part B: Polym. Phys. 26, 883 共1988兲.
Variables:
T/K⫽308.2
p/MPa⫽0–2.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Dual mode sorption parameters for CO2, CH4, and N2 in different polymers at 308.2 K
Polymer
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
PPhPh-tere
CO2
CH4
N2
CO2
CH4
N2
1.312
0.321
0.155
1.230
0.324
36.37
13.76
4.67
34.66
13.74
0.413
0.160
0.065
0.413
0.154
0.151
1.229
0.329
0.157
4.39
31.54
13.00
4.12
0.077
0.452
0.154
0.067
PPhPh-50:50
PPhPh-iso
CO2
CH4
N2
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.24. Poly„Phenolphthalein Phthalate…—Various Gases
Auxiliary Information
TABLE 2. Sorption isotherms of carbon dioxide in poly共phenolphthalein phthalate兲s at 308.2 K 共The original data were represented
graphically兲
PPha-tere
PPha-50:50
TABLE 3. Sorption isotherms of methane in poly共phenolphthalein phthalate兲s at 308.2 K 共The original data were represented graphically兲
PPha-iso
PPha-tere
PPha-50:50
PPha-iso
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
0.07
0.09
0.13
0.16
0.25
0.31
0.34
0.41
0.44
0.59
0.64
0.74
0.78
0.86
0.94
10.09
12.10
15.42
17.15
21.47
24.35
25.22
27.67
29.54
32.85
34.58
37.03
38.04
40.06
40.63
0.07
0.10
0.16
0.30
0.38
0.43
0.51
0.64
0.80
0.83
0.89
1.02
1.25
1.29
1.31
9.22
12.25
15.71
22.91
25.07
27.23
29.25
32.71
36.17
37.03
38.04
40.06
44.24
44.96
44.96
0.20
0.24
0.31
0.42
0.51
0.59
0.74
0.79
0.90
1.02
1.15
1.21
1.34
1.44
1.55
16.71
19.60
22.05
26.08
27.67
30.69
32.71
34.29
35.88
38.62
40.20
40.92
42.94
45.10
46.54
0.16
0.20
0.27
0.34
0.43
0.52
0.62
0.72
0.77
0.86
0.98
1.03
1.13
1.14
1.24
3.06
3.94
4.82
5.55
6.58
7.67
8.49
9.37
9.68
10.61
11.02
11.59
12.26
12.10
13.08
0.16
0.19
0.29
0.31
0.41
0.50
0.57
0.61
0.69
0.74
0.83
0.98
1.11
1.21
1.32
2.96
3.63
4.77
5.18
6.32
7.20
7.87
8.23
9.11
9.32
10.09
11.07
11.95
12.62
13.23
0.09
0.14
0.23
0.34
0.29
0.47
0.49
0.56
0.68
0.70
0.84
0.89
0.97
1.08
1.12
1.82
2.65
3.94
5.23
4.56
6.68
6.89
7.56
8.39
8.70
9.78
10.14
10.60
11.37
11.63
1.04
1.21
1.28
1.32
1.43
1.57
1.59
1.67
1.81
1.85
1.92
42.80
46.11
47.98
47.12
49.28
51.73
52.45
54.32
54.61
55.04
56.63
1.41
1.64
1.66
1.74
1.78
1.93
1.97
—
—
—
—
46.40
50.29
50.58
51.87
52.02
53.46
54.61
—
—
—
—
1.62
1.76
1.84
1.91
—
—
—
—
—
—
—
46.40
48.41
50.58
51.59
—
—
—
—
—
—
—
1.34
1.39
1.51
1.61
1.72
1.73
1.85
1.86
1.95
1.99
13.23
13.70
14.31
15.24
15.02
15.49
16.16
15.85
16.15
16.88
1.42
1.48
1.60
1.74
1.87
1.94
1.98
—
—
—
13.80
13.95
14.67
15.07
15.84
16.41
16.72
—
—
—
1.25
1.32
1.40
1.51
1.58
1.69
1.79
1.90
—
—
12.46
12.87
13.28
13.69
14.10
14.71
15.17
15.63
—
—
1369
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/MPa
PPha-tere
PPha-50:50
PPha-iso
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
0.08
0.11
0.16
0.21
0.28
0.32
0.37
0.42
0.50
0.58
0.68
0.72
0.81
0.92
0.99
0.34
0.50
0.68
0.87
1.13
1.25
1.47
1.60
1.87
2.12
2.47
2.70
2.85
3.15
3.36
0.08
0.22
0.28
0.35
0.42
0.50
0.59
0.65
0.78
0.82
0.93
0.98
1.13
1.19
1.34
0.36
0.85
0.11
1.40
1.64
1.94
2.28
2.43
2.78
2.94
3.23
3.40
3.73
3.87
4.28
0.11
0.15
0.20
0.28
0.39
0.46
0.53
0.61
0.71
0.83
0.93
1.02
1.17
1.26
1.38
0.44
0.63
0.78
1.06
1.36
1.65
1.88
2.07
2.50
2.74
3.03
3.24
3.66
3.91
4.18
1.11
1.13
1.19
1.28
1.32
1.47
1.49
1.64
1.67
1.83
1.88
1.84
1.93
3.65
3.73
3.89
4.07
4.21
4.69
4.74
4.79
4.95
5.28
5.44
5.53
5.52
1.56
1.65
1.73
1.90
1.95
—
—
—
—
—
—
—
—
4.74
4.92
5.09
5.48
5.58
—
—
—
—
—
—
—
—
1.46
1.62
1.73
1.82
1.89
—
—
—
—
—
—
—
—
4.27
4.66
4.94
5.11
5.21
—
—
—
—
—
—
—
—
Original Measurements:
R. T. Chern and C. N. Provan, Macromolecules 24, 2203 共1991兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.1
Prepared By:
Yu. P. Yampol’skii
Experimental Data
FIG. 56. Sorption isotherms of carbon dioxide 共䊐兲, methane 共䊉兲, and ethane 共䊊兲 in the polymer at 308 K.
Auxiliary Information
Auxiliary Information
MethodÕApparatusÕProcedure
A pressure decay sorption cell was used in the measurements.
Source and Purity of Materials:
Gas purity: CO2 99.99%; CH4 99.7%; N2 99.999%.
PPhPh: synthesized by interfacial polycondensation from
phthaloyl chlorides and phenolphthalein.
PPhPh-50:50: synthesized by reacting phenolphthalein with a
mixture of 50:50 terephthaloyl and isophthaloyl chlorides.
Iso-: T g ⫽522 K, density 1.304 g/cm3
50:50 isomers: T g ⫽552 K, density 1.298 g/cm3
Tere-: T g ⫽572 K, density 1.297 g/cm3.
Estimated Error:
Precision in T: ⫾0.1 K.
MethodÕApparatusÕProcedure
A pressure decay method was used.
Source and Purity of Materials:
Poly共tetrabromophenolphthaleinterephthalate兲:
g/cm3, M w ⫽26 000,
M w /M n ⫽2.0, glass transition temp. 592 K.
Estimated Error:
No information given.
density
1.750
PATERSON, YAMPOL’SKII, AND FOGG
Pressure/MPa
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
Methane; CH4; 关74-82-8兴
Ethane; C2H6; 关74-84-0兴
共2兲 Poly共tetrabromophenolphthalein-terephthalate兲 共XXXVII兲
1370
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 4. Sorption isotherms of nitrogen in poly共phenolphthalein phthalate兲s at 308.2 K 共The original data were represented graphically兲
3.25. Polysulfone—Carbon Dioxide
Components:
共1兲 Argon; Ar; 关7440-37-1兴
Nitrogen; N2; 关7727-37-9兴
Methane; CH4; 关74-82-8兴
共2兲 Copolyester 共Kodar A-150兲
Original Measurements:
P. Masi, D. R. Paul, and J. W. Barlow, J. Polym. Sci., Polym.
Phys. Ed. 20, 15 共1982兲.
Variables:
T/K⫽308
p/MPa⫽0 – 3.5
Prepared By:
A. K. Bokarev
Experimental Data
Dual mode sorption parameters for various gases in copolyester at 308 K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
Ar
CH4
N2
0.117
0.174
0.078
2.09
2.76
1.40
0.050
0.094
0.034
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Several investigations have been carried out for this system.1–6 In most cases PSF from Union Carbide has been studied, except the
5
paper by Sada et al. where Toray Co. provided the sample and the work by McHattie et al.6 where the polymer was synthesized in the
⬘ b at different
laboratory. A comparison of the dual mode sorption parameters as well as the apparent solubility coefficients S⫽k D ⫹C H
⬘ can be observed. However, systematic
temperatures is shown in Fig. 58. A fairly good agreement between the values of k D and C H
discrepancies in the affinity parameter b can be noted between those reported by Japanese authors5 and found for PSF from Union
Carbide. These differences are also reflected in the temperature dependence of S. Since the pressure range studies and the scatter of the
experimental points are similar in two groups of the data, one is tempted to attribute this disagreement to some differences of the polymer
sample.
FIG. 57. Sorption isotherms of various gases in Kodar A-150 at 308 K.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was measured using a pressure decay method
described in Ref. 1. The specimens before measurement were
exposed to CO2 at 20 atm for 1 day.
Source and Purity of Materials:
Copolyester 共Kodar A-150兲: Eastman Chemical Products, Inc.,
film completely amorphous, ratio of units of isophthalic and
terephthalic acids 20/80, M n ⫽22 000, glass transition
temperature 360 K 共thermal analysis兲.
Estimated Error:
No information given.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
1371
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲
T/K
kD
⬘
CH
b
⬘b
S⫽k D ⫹C H
Ref.
293
308
338
0.801
0.705
0.231
26.0
18.9
17.5
0.410
0.325
0.134
11.5
6.8
2.6
3,4
1,3
3,4
1372
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Critical Evaluation:
The following dual mode sorption parameters as a function of temperature can be recommended for sorption of carbon dioxide in PSF
from Union Carbide at the pressure range 0–2.0 MPa.
⬘ /cm3 (ST P) cm⫺3 ; b/atm⫺1 .
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H
References:
1
A. J. Erb and D. R. Paul, J. Membr. Sci. 8, 11 共1981兲.
J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 30, 4019 共1985兲.
J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 33, 1823 共1987兲.
4
Y. Maeda and D. R. Paul, J. Polym. Sci.: Part B: Polym. Phys. 25, 957 共1987兲.
5
E. Sada, H. Kumazawa, P. Xu, and M. Nishigaki, J. Membr. Sci. 37, 165 共1988兲.
6
J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840 共1991兲.
2
3
PATERSON, YAMPOL’SKII, AND FOGG
⬘ vs T/K
FIG. 58. 共a兲 log S vs 1/(T/K); 共b兲 log kD vs 1/(T/K); 共c兲 log b vs 1/(T/K); 共d兲 C H
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1. 共䊉兲 Ref. 1; 共䊊兲 Ref. 4; 共䊐兲 Ref. 5; 共⽧兲 Ref. 6.
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1 ; C H
3.26. Polysulfone—Methane and Other Gases
Components:
共1兲 Methane; CH4; 关74-82-8兴
共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Only three papers are available for the solubility of methane in PSF at the pressure range 0–2.0 or 0–3.0 MPa.1–3 The polymer
specimens were provided by Union Carbide Co.,1 Toray Co.,2 or synthesized in the laboratory.3 The summary of the dual mode sorption
parameters and the apparent solubility coefficients S are presented below.
kD
⬘
CH
b
⬘b
S⫽k D ⫺C H
Ref.
303
308
308
313
323
0.441
0.161
0.257
0.413
0.376
9.26
9.86
6.58
7.63
6.07
0.116
0.0698
0.0901
0.0886
0.0748
1.5
0.84
0.85
1.08
0.83
2
1
3
2
2
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1 .
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H
A rather poor agreement between the data of different authors is observed. One may assume that this is the result of different samples
studied as it is true for the system PSE–carbon dioxide. Another possible source of errors can be caused by too narrow pressure range for
methane sorption. Indeed, the affinity constants b reported in Ref. 1–3 are equal to 0.07–0.12 atm⫺1. So the point of intersection of the
initial slope and the high pressure 共Langmuir兲 asymptote should be close to pressure 8.6–14.3 atm, which is not too far from the
maximum pressure of the isotherms. Hence, the limiting slope of the Langmuir part of isotherms has not been probably reached. Further
experimental studies of well characterized sample are required before this system can be properly evaluated, and recommended values can
be advanced.
References:
1
A. J. Erb and D. R. Paul, J. Membr. Sci. 8, 11 共1981兲.
2
E. Sada, H. Kumazawa, P. Xu, and M. Nishigaki, J. Membr. Sci. 37, 165 共1988兲.
3
J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840 共1991兲.
Original Measurements:
Y. Kamiya, T. Hirose, K. Mizoguchi and K. Terada, J. Polym.
Sci., Part B: Polym. Phys. 24, 1525 共1986兲.
Variables:
Prepared By:
T/K⫽308– 338
p/MPa⫽0 – 5.0
A. K. Bokarev
Experimental Data
TABLE 1. Sorption and desorption isotherms of carbon dioxide in polysulfone at 308 K 共The original data were represented graphically兲
First series
共‘‘as received’’ film兲
Second series
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Desorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Desorption
(V 1* (STP)/V 2* )
0.11
0.33
0.69
1.16
2.03
3.50
4.96
—
—
3.66
8.07
13.24
17.85
25.64
34.70
43.54
—
—
0.14
0.39
0.67
1.18
2.00
3.00
3.94
—
—
7.09
16.48
22.44
29.92
36.94
41.39
43.52
—
—
0.14
0.32
0.58
0.99
1.50
2.04
2.83
3.69
4.31
5.98
11.73
16.13
21.52
26.46
30.73
35.65
39.67
42.49
0.24
1.60
3.58
4.93
—
—
—
—
—
11.4
33.99
42.33
44.65
—
—
—
—
—
1373
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
T/K
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴 Methane; CH4; 关74-82-8兴 Ethane; C2H6; 关74-84-0兴
共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲
T⫽318 K
T⫽328 K
T⫽338 K
N2
CH4
Pressure/MPa
Solubility
(V 1* (STP)/V 2* )
Pressure/MPa
Solubility
(V 1* (STP)/V 2* )
Sorption
0.34
0.85
1.19
1.58
1.87
2.47
3.07
3.63
4.33
5.04
—
—
—
Desorption
9.93
16.91
20.18
22.42
25.09
28.07
30.46
32.70
34.80
37.20
—
—
—
0.33
0.52
0.81
1.06
1.54
1.86
2.47
3.10
3.57
4.03
4.53
5.00
—
8.00
9.93
13.05
15.43
18.71
20.94
23.78
26.46
28.26
29.90
31.25
32.90
—
0.10
0.31
0.60
0.82
1.15
1.54
1.87
2.37
2.91
3.28
3.85
4.40
4.92
2.81
6.37
9.64
11.87
14.70
17.08
19.16
21.40
23.35
24.69
26.49
27.84
29.49
0.12
0.37
0.64
1.16
1.60
2.06
2.47
3.04
3.54
4.14
4.95
—
—
6.96
13.78
18.38
24.33
27.75
30.43
32.37
34.17
35.67
36.57
37.19
—
—
0.15
0.39
0.65
1.07
1.52
2.03
2.55
3.06
3.63
4.32
—
—
—
5.92
11.56
15.87
20.18
23.15
25.99
27.93
29.43
30.78
32.13
—
—
—
0.18
0.40
0.70
0.88
1.27
1.59
1.95
2.53
2.98
3.49
4.00
4.47
4.83
6.22
10.52
14.09
16.02
19.15
20.93
22.72
24.96
26.16
27.66
28.57
29.32
29.78
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Desorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Desorption
(V 1* (STP)/V 2* )
0.11
0.31
0.60
1.07
1.55
2.53
3.05
4.03
5.00
—
—
1.39
3.14
5.35
7.24
9.30
11.91
12.59
14.37
15.53
—
—
0.11
0.29
0.58
1.11
2.04
3.02
4.00
5.03
—
—
—
1.64
3.54
5.68
8.04
11.17
13.15
14.61
15.68
—
—
—
0.12
0.23
0.45
0.62
1.14
2.05
2.74
3.50
4.19
4.88
4.97
0.29
0.48
1.06
1.47
2.37
3.80
4.69
5.43
6.06
6.61
6.63
0.12
0.31
0.41
1.09
1.59
2.60
3.52
4.36
—
—
—
0.44
0.84
1.12
2.46
3.18
4.63
5.52
6.30
—
—
—
TABLE 5. Dual mode sorption parameters for nitrogen in polysulfone at 308 K
k D /cm3共STP兲 cm⫺3 atm⫺1
TABLE 3. Sorption and desorption isotherms of ethane in polysulfone at 308 K, measured after CO2 sorption experiments 共The original
data were represented graphically兲
Sorption
Desorption
Pressure/MPa
Solubility (V *
1 (STP)/V *
2)
Pressure/MPa
Solubility (V *
1 (STP)/V *
2)
0.12
0.30
0.52
0.84
1.09
1.14
2.03
3.04
5.65
9.12
11.80
14.65
15.50
16.37
19.53
21.98
0.10
0.30
0.55
1.05
1.97
—
—
—
7.39
12.16
15.53
18.63
21.27
—
—
—
0.043
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
7.5
0.031
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption isotherms for gases in the polymer were obtained
gravimetrically using a Cahn Model 2000 electrobalance.
Details of this apparatus were described previously.1
Source and Purity of Materials:
Gas purity: CO2 99.99%, CH4 99.9%, C2H6 99.7%.
PSF 共Udel Polysulfone兲: Nissan Chemical Industries Ltd.,
densities 共at 298 K兲 1.240 g/cm3 共‘‘as received’’兲 and 1.238
g/cm3 共after CO2 exposure兲, glass transition temperature 455 K.
Estimated Error:
No information given.
References:
1
Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Polym.
Sci., Polym. Phys. Ed. 24, 535 共1986兲.
PATERSON, YAMPOL’SKII, AND FOGG
Solubility
(V 1* (STP)/V 2* )
Pressure/MPa
TABLE 4. Sorption and desorption isotherms of CH4 and N2 in polysulfone at 308 K, measured after CO2 sorption experiments 共The
original data were represented graphically兲
1374
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 2. Sorption and desorption isotherms of carbon dioxide in polysulfone measured after CO2 sorption experiment at 308 K 共The
original data were represented graphically兲
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon
dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲
Original Measurements:
A. J. Erb and D. R. Paul, J. Membr. Sci. 8, 11 共1981兲.
J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 33,
1823 共1987兲.
Variables:
T/K⫽308
p/MPa⫽0 – 3.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for various gases in ‘‘as-received’’ polysulfone films at 308 K
Gas
Ar
N2
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.150
6.72
0.0317
0.0753
0.664
0.161
9.98
17.90
9.86
0.0156
0.3260
0.0698
FIG. 60. Effects of history of sample treatment on sorption isotherms: CO2 sorption at 308 K.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption apparatus and procedure are described in Ref. 1.
Source and Purity of Materials:
Commercial PSF: Union Carbide Corp., studied in the form of
melt extruded film; glass transition temperature 455 K 共DSC兲.
Estimated Error:
No information given.
References:
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165
共1977兲.
1
FIG. 59. Sorption isotherms of various gases in ‘‘as-received’’ polysulfone films.
1375
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
CO2
CH4
k D /cm3共STP兲 cm⫺3 atm⫺1
Original Measurements:
J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 30,
4019 共1985兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.2 (0 – 22 atm)
Prepared By:
S. M. Shishatskii
Experimental Data
Sorption isotherm of carbon dioxide in polysulfone at 308 K. 共The original data were represented graphically兲
Sorption (V 1* (STP)/V 2* )
Pressure/MPa
Sorption (V 1* (STP)/V 2* )
0.12
0.17
0.28
0.32
0.45
0.61
0.68
0.81
0.85
1.04
5.95
7.97
11.07
11.49
14.10
16.37
17.29
18.89
18.97
21.08
1.10
1.20
1.39
1.46
1.61
1.79
1.83
2.02
2.07
2.12
21.58
22.68
24.11
24.70
25.54
27.14
27.14
28.41
28.66
29.17
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption isotherm was obtained using a dual-volume
dual-transducer cell design based on the pressure decay
principle.
Source and Purity of Materials:
PSF: conditioned at the highest CO2 pressure before
measurement; glass transition temperature 455 K.
Estimated Error:
No information given.
Original Measurements:
Y. Maeda and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys.
25, 957 共1987兲.
J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 33,
1823 共1987兲.
Variables:
T/K⫽293– 338
p/MPa⫽0 – 2.2 (0 – 22 atm兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for carbon dioxide in polysulfone at different temperatures and its mixtures with plasticizers at 308 K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
293 K
308 K
338 K
DDS 共mass %兲
0.801
0.725
0.231
26.0
19.2
17.5
0.410
0.390
0.134
10%
20%
30%
PNA 共mass %兲
10%
20%
TCP 共mass %兲
5%
10%
15%
20%
0.563
0.296
0.458
13.6
10.2
8.8
0.394
0.226
0.312
0.392
0.363
13.9
8.1
0.159
0.278
0.503
0.426
0.476
0.443
13.9
12.2
9.7
7.4
0.280
0.259
0.248
0.271
System
PSF
PATERSON, YAMPOL’SKII, AND FOGG
Pressure/MPa
Components:
共1兲 Carbon dioxide; CO2 ; 关124-38-9兴
共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲
共3兲 4,4⬘-Dichlorodiphenyl sulfone 共DDS兲; (C12H8兲2C12S;
关38980-51-7兴
共4兲 N-phenyl-2-naphtylamine 共PNA兲; C16H13N; 关135-88-6兴
共5兲 Tricresyl phosphate 共TCP兲; C21H21O4P; 关1330-78-5兴
1376
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲
FIG. 64. Effect of the content of TCP 共mass %兲 on CO2 sorption isotherms for polysulfone at 308 K.
1377
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
FIG. 62. Effect of the content of DDS 共mass %兲 on CO2 sorption isotherms for polysulfone at 308 K.
FIG. 63. Effect of the content of PNA 共mass %兲 on CO2 sorption isotherms for polysulfone at 308 K.
IUPAC-NIST SOLUBILITY DATA SERIES
FIG. 61. Effect of temperature on CO2 sorption isotherms in pure polysulfone.
MethodÕApparatusÕProcedure
The apparatus and procedure for measuring sorption isotherms
were described in Ref. 1.
Source and Purity of Materials:
PSF: Union Carbide Corp., glass transition temperature 459 K.
Estimated Error:
No information given.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
Nitrogen; N2; 关7727-37-9兴
共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲
Original Measurements:
T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci.: Part
B: Polym. Phys. 26, 729 共1988兲.
A. J. Erb, M.S. thesis, The University of Texas at Austin, 1977.
Variables:
T/K: 308
p/MPa: 0–2.33
Prepared By:
A. K. Bokarev
1378
Experimental Data
Dual mode sorption parameters fro PSF at 308 K
Parameters
k D /cm 共STP兲/cm atm
3
3
⬘ /共cm3共STP兲/cm3兲
CH
b/(atm⫺1)
CO2
CH4
N2
0.664
17.91
0.161
9.86
0.0753
9.98
0.326
0.070
0.0156
Auxiliary Information
MethodÕApparatusÕProcedure
The sorption apparatus and procedures used in the present
sorption experiments are the same as described earlier.1
Source and Purity of Materials:
PSF: no information given.
Each gas was of chromatographic quality 共purity ⬎99.99%兲.
Estimated Error:
Nothing specified.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲
Original Measurements:
E. Sada, H. Kumazawa, P. Xu, and M. Nishigaki, J. Membr. Sci.
37, 165 共1988兲.
Variables:
T/K⫽303–323
p/MPa⫽0–2.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for carbon dioxide and methane in polysulfone
T/K
CH4
Pressure
303
313
323
Fugacity
303
313
323
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.646
0.595
0.547
0.508
20.5
19.4
18.3
17.1
0.195
0.178
0.168
0.155
0.737
0.677
0.630
0.595
19.6
18.5
17.4
16.2
0.199
0.183
0.168
0.155
0.441
0.413
0.376
9.26
7.63
6.07
0.1160
0.0886
0.0748
0.489
0.445
0.415
8.37
6.60
5.12
0.1210
0.0976
0.0785
FIG. 65. Sorption isotherms of carbon dioxide in polysulfone.
FIG. 66. Sorption isotherms of methane in polysulfone.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was measured using a pressure decay method.
Source and Purity of Materials:
PSF 共Torayslon-PSF兲: Toray Co., film samples; glass transition
temperature 463 K.
Estimated Error:
No information given.
1379
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
CO2
Pressure
303
308
313
318
Fugacity
303
308
313
318
k D /cm3共STP兲 cm⫺3 atm⫺1
Original Measurements:
E. Sada, H. Kumazawa, and P. Xu, J. Polym. Sci., Part B: Polym.
Phys. 27, 919 共1989兲.
Variables:
T/K⫽313
p/MPa⫽0–1.8 共0–18 atm兲
Prepared By:
A. K. Bokarev
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲
Original Measurements:
J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840
共1991兲.
Variables:
Prepared By:
T/K⫽308
p/MPa⫽0–2.0 共0–20 atm兲
Yu. P. Yampol’skii
Experimental Data
Solubility of carbon dioxide C,/cm3共STP兲/cm3 in PSF membranes at 313 K*
1380
Experimental Data
TABLE 1. Solubility of gases C/cm3共STP兲/cm3 in PSF*
Pressure, atm
Pressure/atm
Sample
2
4
6
8
10
12
14
16
18
20
3.0
5.6
5.7
9.5
7.9
12.4
10.2
14.9
12.1
16.8
14.0
18.9
15.9
20.5
17.7
22.5
19.5
23.6
21.2
25.2
Gas
As cast
Commercial
*Smooth values taken from the graph by compiler.
CH4
Dual-mode sorption parameters for CO2 in PSF films at 313 K
Sample
k D /cm 共STP兲/cm atm
⬘ /cm 共STP兲/cm
CH
Cast PSF
Commercial PSF
共Torayslon-PS兲
0.813
0.547
6.61
18.3
3
N2
CO2
3
3
10
15
20
1.2
2.2
3.1
3.9
15.0
3.6
21.7
6.0
26.6
8.0
30.5
9.9
*Smoothed values taken from the plot by compiler.
3
b/atm
⫺1
0.155
0.168
Auxiliary Information
MethodÕApparatusÕProcedure
The apparatus and procedure for measuring sorption isotherms
were described in Ref. 1.
5
Source and Purity of Materials:
The commercial polysulfone samples Torayslon-PS 共Toray Co.
Ltd.兲 and P-1700 共Union Carbide兲 were used. P-1700 had the
glass transition temperature 459 K. A dense PSF 共P-1700兲
membrane was prepared by casting a mixed solution of 25.5%
PSF, 55.5% N,N-dimethylacetamide, and 19.0% acetone by
weight. Purity of CO2 not specified.
Estimated Error:
No information given.
References:
1
E. Sada, H. Kumazawa, and Y. Yoshio, J. Polym. Sci., Polym.
Phys. Ed. 26, 1035 共1989兲.
TABLE 2. Dual mode sorption parameters
Gas
k D /cm3共STP兲/cm3 atm
N2
CO2
0.166
CH4
⬘ /cm3共STP兲/cm3
CH
0.957
0.728
0.257
19.6
6.58
b/atm⫺1
0.104
0.260
0.0901
Auxiliary Information
MethodÕApparatusÕProcedure
The measurement of sorption was carried out using a pressure
decay method.1
Source and Purity of Materials:
PSF was synthesized according to Ref. 2. It had a density 1.240
g/cc and the glass transition temperature 459 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
2
R. N. Johnson, A. G. Farnham, R. A. Clendinning, W. F. Hale,
and C. N. Merriam, J. Polym. Sci.: Part A-1 5, 2375 共1967兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴
Carbon dioxide; CO2; 关124-38-9兴
Methane; CH4; 关74-82-8兴
共2兲 Dimethyl bisphenol A polysulfone 共DMPSF兲; 关58978-16-8兴
Original Measurements:
J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840
共1991兲.
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Tetramethyl bisphenol A polysulfone 共TMPSF兲;
关32034-67-6兴
Original Measurements:
J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840
共1991兲.
Variables:
T/K⫽308
p/MPa⫽0–2.0 共0–20 atm兲
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽308
p/MPa⫽0–2.0 共0–20 atm兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Solubility of gases C/cm3共STP兲/cm3 in DMPSF*
Experimental Data
Dual mode sorption parameters
Pressure/atm
5
10
15
20
N2
CO2
CH4
1.05
11.8
3.1
1.8
17.2
5.0
2.5
21.3
6.3
3.05
25.0
7.4
*Smoothed values taken from the plot by compiler.
k D /cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm3
CH
b/atm⫺1
N2
CO2
CH4
0.225
0.597
0.460
3.74
26.0
7.26
0.0461
0.261
0.233
Auxiliary Information
MethodÕApparatusÕProcedure
The measurement of sorption was carried out using a pressure
decay method.1
TABLE 2. Dual mode sorption parameters*
Gas
k D /cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm/3
CH
b/atm⫺1
CO2
CH4
0.505
0.135
17.8
8.64
0.235
0.0564
*Fit for nitrogen did not converge.
Auxiliary Information
MethodÕApparatusÕProcedure
The measurement of sorption was carried out using a pressure
decay method.1
Source and Purity of Materials:
DMPSF was synthesized according to Ref. 2. It had a density
1.213 g/cc and the glass transition temperature 453 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
2
D. K. Mohanty, Y. Sachdeva, J. L. Hedrick, J. F. Wolfe, and J.
E. McGrath, Polymer Preprints, ACS, Div. Polym. Chem. 25, 2,
19 共1984兲.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
2
R. N. Johnson, A. G. Farnham, R. A. Clendinning, W. F. Hale,
and C. N. Merriam, J. Polym. Sci.: Part A-1 5, 2375 共1967兲.
1381
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Estimated Error:
No information given.
Source and Purity of Materials:
TMPSF was synthesized according to Ref. 2. It had a density
1.151 g/cc and the glass transition temperature 515 K.
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
Gas
Original Measurements:
J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 2618
共1991兲.
Variables:
T/K⫽308
p/MPa⫽0–2.0 共0–20 atm兲
Prepared By:
Yu. P. Yampol’skii
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴
共2兲 Bisphenol F polysulfone 共PSF-F兲; 关31694-05-0兴
Original Measurements:
J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 2618
共1991兲.
Variables:
T/K⫽308
p/MPa⫽0–2.0 共0–20 atm兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters
Experimental Data
Dual mode sorption parameters
Gas
k D /cm 共STP兲/cm atm
⬘ /cm 共STP兲/cm
CH
CO2
CH4
0.785
0.180
21.0
7.32
3
3
1382
3
3
⫺1
b/atm
0.285
0.146
Gas
k D /cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm3
CH
b/atm⫺1
CO2
CH4
0.505
0.246
22.6
8.84
0.162
0.0571
Auxiliary Information
Auxiliary Information
MethodÕApparatusÕProcedure
The measurement of sorption was carried out using a pressure
decay method.1
Source and Purity of Materials:
HFPSF was synthesized according to Ref. 2. It had a density
1.427 g/cc and the glass transition temperature 465 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
2
R. N. Johnson, A. G. Farnham, R. A. Glendinning, W. F. Hale,
and C. N. Merriam, J. Polym. Sci.: Part A-1 5, 2375 共1967兲.
MethodÕApparatusÕProcedure
The measurement of sorption was carried out using a pressure
decay method.1
Source and Purity of Materials:
PSF-F was synthesized according to Ref. 2. It had a density
1.282 g/cc and the glass transition temperature 452 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
2
D. K. Mohanty, Y. Sachdeva, J. L. Hedrick, J. E. Wolfe, and J.
E. McGrath, Polymer Preprints, ACS, Div. Polym. Chem. 25, 2,
19 共1984兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Hexafluorobisphenol A polysulfone 共HFPSF兲; 关31694-07-2兴
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Dimethyl bisphenol Z polysulfone 共DMPSF-Z兲;
关134140-27-5兴 共XLIII兲
Original Measurements:
J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840
共1991兲.
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon
dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polyethersulfone 共PES兲 Victrex 600 P; 关25667-42-9兴
共XLIV兲
Original Measurements:
E. S. Sanders, J. Membr. Sci. 37, 63 共1988兲.
Variables:
T/K⫽308
p/MPa⫽0–2.0 共0–20 atm兲
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽308
p/MPa⫽0–4.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters
Experimental Data
Dual mode sorption parameters for various gases in polyethersulphone at 308 K
k D /cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm3
CH
b/atm⫺1
Gas
k D /cm3共STP兲/cm3 atm⫺1
⬘ /cm3共STP兲/cm3
CH
b/atm⫺1
N2
CO2
CH4
0.153
0.560
0.330
0.694
18.6
5.21
0.196
0.252
0.0907
Ar
CO2
CH4
N2
0.147
0.631
0.168
0.086
7.23
29.78
10.80
5.98
0.054
0.313
0.123
0.047
Auxiliary Information
TABLE 2. Sorption isotherms of various gases in polyethersulphone at 308 K. 共The original data were represented graphically兲
MethodÕApparatusÕProcedure
The measurement of sorption was carried out using a pressure
decay method.1
Source and Purity of Materials:
DMPSF-Z was synthesized according to Ref. 2. It had a density
1.227 g/cc and the glass transition temperature 470 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
2
D. K. Mohanty, Y. Sachdeva, J. L. Hedrick, J. E. Wolfe, and J.
E. McGrath, Polymer Preprints, ACS, Div. Polym. Chem. 25, 2,
19 共1984兲.
Pressure/MPa
Sorption
(V *
1 (STP)/V *
2)
Pressure/MPa
Sorption
(V *
1 (STP)/V *
2)
0.20
0.32
0.51
0.89
1.02
1.00
1.48
2.32
3.68
4.06
1.35
1.47
1.83
1.87
2.12
5.00
5.26
6.32
6.39
6.84
2.52
2.67
3.06
3.32
—
7.90
8.10
9.03
9.52
—
0.15
0.18
0.27
0.27
0.30
0.40
0.46
0.58
0.69
11.38
12.79
14.60
15.91
15.90
18.02
20.63
23.04
24.75
0.77
1.07
1.21
1.27
1.45
1.74
1.78
1.83
2.09
25.76
29.37
31.58
31.47
34.19
36.89
36.79
37.49
39.90
2.15
2.21
2.23
2.40
2.49
2.61
2.62
2.61
2.86
39.89
39.89
41.10
41.39
41.89
43.80
42.89
42.29
44.79
0.32
0.51
0.93
0.97
1.18
3.81
5.21
7.51
7.71
8.61
1.72
1.79
1.89
2.35
2.37
10.39
10.69
10.89
12.28
12.17
2.66
2.88
2.91
3.31
3.65
12.87
13.56
13.26
14.34
15.13
0.22
0.35
0.45
0.49
0.62
0.77
0.89
1.03
0.77
1.13
1.35
1.52
1.94
2.23
2.52
2.81
1.17
1.27
1.41
1.47
1.84
1.98
2.23
—
3.10
3.26
3.58
3.68
4.29
4.55
4.87
—
2.33
2.57
3.02
3.24
3.41
3.69
3.91
—
5.16
5.58
5.90
6.45
6.48
6.97
7.26
—
Ar
CO2
CH4
N2
1383
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Sorption
(V *
1 (STP)/V *
2)
Pressure/MPa
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
1384
MethodÕApparatusÕProcedure
A high pressure sorption apparatus used was very similar to
equipment described in Ref. 1.
Source and Purity of Materials:
Amorphous PES 共grade 600 P, VICTREX兲: ICI, glass transition
temperature 508 K.
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Cellulose; 关9004-34-6兴 共XLV兲
G. M. Eaton, dissertation: The University of Tennessee,
Knoxville, 1986.
Estimated Error:
No information given.
Variables:
T/K⫽298–323
Prepared By:
Yu. P. Yampol’skii
References:
E. S. Sanders, W. I. Koros, H. B. Hopfenberg, and V. T.
Stannett, J. Membr. Sci. 13, 161 共1983兲.
1
Original Measurements:
Experimental Data
Four types of cellulosic fibers were studied: native cellulose 共ethanol extracted cotton兲, modified cellulose 共NaOH mercerized cotton
and liquid ammonia treated cotton兲, and regenerated cellulose 共viscose rayon兲.
Sorption of sulfur dioxide by cellulose fibers 共mg/g fiber兲
Dried fiber
Temperature/K
Fiber type
Extracted cotton
Mercerized cotton
Ammonia treated cotton
Viscose rayou
Conditioned fiber*
298
303
308
323
298
9.23
26.28
18.89
3.06
8.56
16.19
10.49
0.51
11.85
15.15
5.16
0.53
7.05
13.29
1.10
—
72.08
74.27
63.03
4.19
*The tabular data for this fiber in the dissertation appear to be inconsistent with the graphical data while the graphical data appear to be
consistent with those for the dried fiber. The compiler concludes that typographical errors were made in the data table and the solubility
values for the conditioned fiber were therefore taken directly from the graph by digitization. These data should therefore be considered
as highly tentative.
Auxiliary Information
MethodÕApparatusÕProcedure
An exposure chamber was developed which would simulate
ambient conditions. Fiber samples were dried or conditioned to
69% rel. humidity and exposed to 3 ppm sulfur dioxide for 5
h at 170 cc/min. Then the samples were exposed to a stream
of dry air at the same flow rate for 4 h. The concentration of
gas exiting the chamber was monitored and compared with the
known concentration of gas introduced into the chamber to
evaluate the amount of gas sorbed.
Source and Purity of Materials:
Native cotton 共Starlab, Knoxville兲 and unfinished rayon staple
共American Enka兲 were studied. The cotton was extracted in a
Soxhlet for 4 h. with ethanol. Mercerization was carried out in
18% solution of NaOH for 15 min at ambient temperature. The
duration of ammonia treatment was 30 s 3 ppm certified standard
sulfur dioxide in dry air 共Matheson Co兲 was used.
Estimated Error:
No information given.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.27. Cellulose—Sulfur Dioxide
Auxiliary Information
3.29. Ethyl Cellulose—Various Gases
3.28. Nitrocellulose—Various Gases
Components:
共1兲 He; Ar; N2; O2 ; CO2 ; SO2 ; NH3 ; C2H6; C3H8; n-C4H10.
共2兲 Nitrocellulose; 共NC兲; 关9004-70-0兴 共XLVI兲
Variables:
T/K: 298
p/kPa: 5.3–6.9
Original Measurements:
Components:
共1兲 He; Ar; N2 ; O2 ; CO2; SO2 ; NH3 ; C2H6; C3H8; n-C4H10.
共2兲 Ethyl Cellulose 共EC兲; 关9004-57-3兴 共XLVII兲
P. Y. Hsieh, J. Appl. Polym. Sci. 7, 1743 共1963兲.
Prepared By:
A. K. Bokarev
Variables:
T/K: 298
p/kPa: 6–8
Experimental Data
Solubility coefficients of gases for nitrocellulose films at 298 K
Prepared By:
A. K. Bokarev
Experimental Data
Solubility coefficients of gases for ethyl cellulose films at 298 K
Solubility coefficient/cm3共STP兲 cm⫺3 cm Hg⫺1;
Solubility coefficient;
cm3共STP兲 cm⫺3 cm Hg⫺1;
Gas
Gas
Volumetric
Gravimetric
—
0.0009
0.0019
0.0016
0.0131
0.2215
1.2359
0.0533
0.0534
0.0248
0.0016
0.0006
0.0013
0.0014
0.0096
0.0977
0.7265
0.0483
0.0394
0.0147
共2兲 Helium; 关7440-59-7兴
共3兲 Nitrogen; 关7727-37-9兴
共4兲 Oxygen; 关7782-44-7兴
共5兲 Argon; 关7440-37-1兴
共6兲 Carbon dioxide; 关124-38-9兴
共7兲 Sulfur dioxide; 关7446-09-5兴
共8兲 Ammonia; 关7664-41-7兴
共9兲 Ethane; 关115-07-1兴
共10兲 Propane; 关74-98-6兴
共11兲 n-Butane; 关106-97-8兴
Volumetric
Gravimetric
—
0.0021
0.0024
0.0026
0.0207
0.4978
0.605
0.0748
0.1534
0.3887
0.0024
0.0019
0.0023
0.0025
0.0200
0.3596
0.484
0.0484
0.1263
0.2655
Auxiliary Information
Auxiliary Information
Source and Purity of Materials:
NC from the Hercules Powder Co. had a density of 1.46 g/cm3.
Gases from the Matheson Co. had the minimum purity of 99.5%,
except ethane for which the purity was 99%.
Estimated Error:
No information given.
MethodÕApparatusÕProcedure
Both gravimetric and volumetric methods were used. In
gravimetric one sorption isotherms were determined with a
quartz helix microbalance. The change in elongation of the
quartz helix was detected by a linear variable differential
transformer, Type 060 SLB and was amplified and read by
means of a linear variable differential transformer indicator,
Model 300B. No details on volumetric method were given.
Source and Purity of Materials:
EC 共T50, content ethoxy groups 49.5%兲 was obtained from the
Hercules Powder Company. The density was 1.10 g cm⫺3.
Gases from the Matheson Co. had the minimum purity of 99.5%,
except ethane for which the purity was 99%.
Estimated Error:
No information given.
1385
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
Both gravimetric and volumetric methods were used. In
gravimetric one, sorption isotherms were determined with a
quartz helix microbalance. The change in elongation of the
quartz helix was detected by a linear variable differential
transformer, Type 060 SLB and was amplified and read by
means of a linear variable differential transformer indicator,
Model 300B.
No details on volumetric method were given.
IUPAC-NIST SOLUBILITY DATA SERIES
共2兲 Helium; 关7440-59-7兴
共3兲 Nitrogen; 关7727-37-9兴
共4兲 Oxygen; 关7782-44-7兴
共5兲 Argon; 关7440-37-1兴
共6兲 Carbon dioxide; 关124-38-9兴
共7兲 Sulfur dioxide; 关7446-09-5兴
共8兲 Ammonia; 关7664-41-7兴
共9兲 Ethane; 关115-07-1兴
共10兲 Propane; 关74-98-6兴
共11兲 n-Butane; 关106-97-8兴
Original Measurements:
P. Y. Hsieh, J. Appl. Polym. Sci. 7, 1743 共1963兲.
Original Measurements:
A. H. Chan, W. J. Koros, and D. R. Paul, J. Membr. Sci. 3, 117
共1978兲.
Variables:
T/K⫽308
p/MPa⫽0–2.6
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for carbon dioxide in ethyl cellulose at 308 K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
4.847
0.365
1.189
Sorption isotherm of carbon dioxide in ethyl cellulose at 308 K. 共The original data were represented graphycally兲
Sorption V *
1 (STP)/V *
2
0.15
0.24
0.37
0.66
1.32
1.97
2.35
2.62
3.44
5.09
7.44
11.50
19.76
27.19
32.29
35.59
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption apparartus used was described in Ref. 1.
Source and Purity of Materials:
EC: Dow Chemical Co., presumed ethoxy groups content 48.6%,
glass transition temperature in the region 393–398 K.
Estimated Error:
No information given.
References:
W. J. Koros, and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed.
14, 1903 共1976兲.
1
Original Measurements:
R. M. Barrer, J. A. Barrie, and J. Slater, J. Polym. Sci. 27, N 115,
177 共1958兲.
A. H. Chan, W. J. Koros, and D. R. Paul, J. Membr. Sci. 3, 117
共1978兲.
Variables:
T/K⫽303.7–353
p/kPa⫽0–24
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Enthalpies of sorption of hydrocarbon gases in ethyl cellulose
⫺⌬H H
⫺⌬H D
Gas
n-Butane
2-Methylpropane
2,2-Dimethylpropane
/kcal mol⫺1
/kJ mol⫺1
/kcal mol⫺1
/kJ mol⫺1
4.33
2.01
9.10
18.12
8.41
38.07
3.28
2.25
9.36
13.72
9.41
39.16
PATERSON, YAMPOL’SKII, AND FOGG
Pressure/MPa
Components:
共1兲 n-Butane; C4H10; 关106-97-8兴 2-Methylpropane; C4H10;
关75-28-5兴 2.2-Dimethylpropane C5H12; 关463-82-1兴
共2兲 Ethyl Cellulose 共EC兲; 关9004-57-3兴 共XLVII兲
1386
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Ethyl Cellulose 共EC兲; 关9004-57-3兴 共XLVII兲
TABLE 2. Sorption isotherms of various gases in ethyl cellulose measured by Barrer et al. 共The original data were represented graphically兲
n-C4H10
Pressure/cm Hg
5.86
9.75
13.27
17.26
20.58
23.22
5.34
8.81
11.87
15.34
17.88
4.82
7.78
10.47
11.30
13.17
—
2.85
4.20
6.58
8.81
9.69
—
2.33
3.42
5.49
6.12
7.36
Pressure/cm Hg
T⫽303.7 K
1.93
5.20
7.06
10.86
14.80
—
T⫽313.5 K
2.77
4.59
6.85
11.59
14.52
T⫽323.3 K
3.54
5.79
8.39
11.15
14.04
16.16
T⫽333 K
2.02
4.28
7.00
10.06
13.16
15.64
T⫽343 K
2.39
5.11
8.24
11.67
14.93
Sorption, 105 s/
共mol1 cm⫺3
2 兲
4.38
8.79
10.87
13.70
16.35
—
3.83
5.81
7.65
10.82
12.42
3.38
4.98
6.61
8.04
9.30
10.01
1.40
2.83
4.19
5.61
6.8
7.44
1.12
2.34
3.53
4.62
5.66
Pressure/cm Hg
T⫽323.3 K
2.80
4.91
7.23
11.23
13.62
15.40
T⫽338.6 K
2.12
4.10
6.65
9.68
14.34
T⫽348 K
4.87
7.86
11.15
16.15
—
—
T⫽353 K
2.65
5.27
8.49
11.95
15.67
—
T/K
Sorption, 105 s/
(mol1 cm⫺3
2 兲
4.00
5.70
7.61
9.65
11.19
12.52
1.77
3.20
4.63
5.99
7.52
2.69
3.81
5.13
6.38
—
—
1.33
2.41
3.39
4.61
5.52
—
n-C4H10
303
313
323
333
343
iso-C4H10
303
313
323
333
343
neo-C5H12
323
338
348
353
k D /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/cm Hg⫺1
0.1656
0.1161
0.1020
0.1007
0.0610
3.71
3.73
2.30
1.28
1.30
0.2173
0.1232
0.1297
0.1395
0.1005
0.0909
0.0614
0.0978
0.0552
0.0698
3.34
2.94
0.75
2.03
0.51
0.1810
0.0087
0.4587
0.0688
0.1362
0.1023
0.0699
0.0390
0.0346
1.68
1.45
2.37
1.26
0.2074
0.1149
0.0638
0.0894
Auxiliary Information
MethodÕApparatusÕProcedure
A glass volumetric apparatus was employed. The sorption
system was immersed in a thermostat and the pressure was
read by a cathetometer.
A nonlinear least squares program was used to calculate
sorption parameters as in Ref. 1
Source and Purity of Materials:
EC: Standard Ethocel, density 1.13 g/cm3, M n ⫽35 000.
Estimated Error:
Relative precision: p⫾6.6%.
Precision in T: ⫾0.05 K.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
1387
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
6.70
9.99
11.51
14.50
—
T⫽333 K
2.93
4.61
8.38
12.15
14.03
—
T⫽343 K
3.57
5.62
9.99
11.57
14.43
Sorption, 105 s/
(mol1 cm⫺3
2 兲
neo-C5H12
IUPAC-NIST SOLUBILITY DATA SERIES
T⫽303.7 K
1.78
3.57
5.69
8.82
11.71
14.53
T⫽313.5 K
2.56
5.18
7.81
11.61
15.14
T⫽323.3 K
3.60
iso-C4H10
TABLE 3. Dual mode sorption parameters for gases in EC calculated by Chan et al. by treatment o sorption isotherms 共The original
data were represented graphically兲
1388
Original Measurements:
E. Casur and T. G. Smith, J. Appl. Polym. Sci. 31, 1425 共1986兲.
Variables:
T/K⫽303– 343
p/kPa⫽0 – 26
Prepared By:
A. K. Bokarev
Pressure/kPa
Experimental Data
TABLE 1. Dual mode sorption parrameters for various gases in ethyl cellulose
Gas
T/K
k D /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/cm Hg⫺1
C2H6
303
313
323
333
343
349
303
313
323
333
343
303
313
323
333
343
0.0476
0.0378
0.0295
0.0248
0.0199
0.1181
0.1319
0.1012
0.0769
0.0613
0.0493
0.2282
0.1884
0.1635
0.1439
0.1181
0.348
0.300
0.299
0.280
0.250
0.303
0.479
0.295
0.217
0.096
0.089
3.718
2.650
1.577
0.809
0.303
0.0349
0.0307
0.0225
0.0179
0.0169
0.4251
0.2914
0.2601
0.2347
0.3280
0.3267
0.3128
0.2684
0.2645
0.3043
0.4251
C3H8
C4H10
T⫽303 K
1.81
3.11
4.36
5.75
7.09
9.86
12.55
15.27
18.00
21.93
26.09
T⫽333 K
1.71
3.05
4.21
5.59
6.93
9.61
12.38
15.20
17.83
21.80
25.87
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
T⫽313 K
1.76
3.10
4.44
5.79
7.08
9.81
12.44
15.21
17.94
21.91
25.93
T⫽343 K
1.66
2.96
4.25
5.77
6.97
9.70
12.38
15.15
17.78
21.89
25.90
1.43
1.99
2.46
2.97
3.42
4.19
4.87
5.48
6.03
6.83
7.63
0.38
0.63
0.82
1.03
1.22
1.55
1.87
2.19
2.51
2.98
3.45
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
0.93
1.36
1.78
2.15
2.48
3.05
3.61
4.09
4.60
5.24
5.83
T⫽323 K
1.76
2.96
4.44
5.73
7.07
9.75
12.39
15.16
17.79
21.86
25.97
0.61
0.91
1.20
1.48
1.71
2.19
2.59
2.99
3.34
3.93
4.46
0.26
0.42
0.57
0.71
0.81
1.09
1.35
1.61
1.85
2.19
2.57
TABLE 4. Sorption isotherms of ethane in EC at various temperatures
TABLE 2. Heats of sorption in ethyl cellulose/共kcal/mol兲. Values obtained from van’t Hoff plots for k D ,b and the solubility coeffi⬘ b), respectively
cient S (S⫽k D ⫺C H
Gas
⌬ HD
⌬ HH
⌬ HS
Ethane
Propane
n-Butane
⫺4.46
⫺5.10
⫺3.27
⫺4.12
⫺2.10
⫺1.65
⫺4.68
⫺7.13
⫺8.46
共For Tables 3, 4 and 5, the orriginal data were represented graphically.兲
Pressure/kPa
T⫽303 K
2.99
5.67
8.33
11.02
13.63
17.65
25.87
T⫽333 K
2.99
5.61
8.26
10.92
13.50
17.56
25.82
Sorption
(V 1* (STP)/V 2* )
0.11
0.23
0.36
0.47
0.58
0.74
1.08
0.07
0.12
0.18
0.24
0.29
0.38
0.55
Pressure/kPa
T⫽313 K
2.88
5.60
8.40
11.02
13.68
17.66
25.84
T⫽343 K
2.95
5.57
8.26
11.03
13.50
17.60
25.72
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)V 2* )
0.09
0.19
0.29
0.38
0.46
0.59
0.85
T⫽323 K
2.80
5.64
8.30
10.99
13.65
17.63
25.82
0.08
0.15
0.22
0.29
0.36
0.46
0.66
0.06
0.10
0.14
0.20
0.23
0.30
0.44
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 3. Sorption isotherms of n-butane in ethyl cellulose
Components:
共1兲 Ethane; C2H6; 关115-07-1兴 Propane: C3H8; 关74-98-6兴
n-Butane; C4H10; 关106-97-8兴
共2兲 Ethyl Cellulose 共EC兲; 关9004-57-3兴 共XLVII兲
3.30. Cellulose Acetate—Carbon Dioxide
TABLE 5. Sorption isotherms of propane in EC at various temperatures
Pressure/kPa
0.60
0.81
0.99
1.31
1.61
1.92
2.17
2.56
2.92
0.30
0.45
0.58
0.71
0.91
1.09
1.28
Pressure/kPa
T⫽313 K
4.37
5.62
7.07
9.81
12.43
15.14
17.80
21.84
25.98
T⫽343 K
5.66
8.33
10.92
13.70
17.66
21.84
25.95
Sorption
(V 1* (STP)/V 2* )
Pressure/kPa
Sorption
(V 1* (STP)/V 2* )
0.44
0.57
0.72
0.92
1.20
1.39
1.60
1.92
2.22
T⫽323 K
5.74
8.37
11.07
13.81
17.80
21.80
25.99
—
—
0.42
0.60
0.78
0.97
1.20
1.44
1.68
—
—
0.25
0.34
0.46
0.57
0.73
0.88
1.05
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was determined by a gravimetric method using a
Cahn microbalance 共Model KG兲. Corrections were made for
buoyancy effects.
Source and Purity of Materials:
Gases: purity 99.99%.
EC 共Ethocel 10 cp兲: Dow Chemical Co., contained 48%–49.5%
ethoxy groups, density 1.13 g/cm3, glass transition temperature
396 K.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Cellulose acetate 共CA兲; 关9004-35-7兴 共XLVIII兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Three papers are available on the system cellulose acetate–carbon dioxide.1–3 In all the cases the degree of esterification and the
origin of the samples were the same: CA obtained from Eastman Kodak Co. contained 39.8% of acetyl groups. Stern and De Meringo1
studied sorption of CO2 in CA at 273–343 K and reported the dual mode sorption parameters for somewhat narrower range of temperature. In a subsequent paper2 of the same group the reported isotherm at 303 K was confirmed, but no sorption parameters were given. Sada
et al.3 studied the sorption in the temperature range 293–313 K. The table summarizes the sorption parameters found in Refs. 1 and 3 for
this system. It can be seen that there is a reasonable agreement for Henry’s law solubility coefficient k D , but not for other two model
⬘ and b values reported in both papers monotonously decrease with temperature, but there is a significant discrepancy
parameters. The C H
between two sets of values.
Dual mode sorption parameters at different temperatures
T/K
kD
⬘
CH
b
⬘b
S⫽k D ⫹C H
Ref.
273.2
283.2
293.2
302.9
303.2
313.2
318.2
3.4
2.9
1.83
1.24
1.24
1.10
0.79
44.57
35.26
22.7
20.3
42.6
17.7
36.5
0.511
0.441
0.500
0.437
0.134
0.280
0.107
26.2
18.5
13.2
10.1
6.9
6.0
4.7
1
1
3
3
1
3
1
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H
The temperature dependencies of S and k D are shown in Figs. 67 and 68.
Estimated Error:
No information given.
FIG. 67. Temperature dependence of apparent solubility coefficient S/共cm3共STP兲 cm⫺3 atm⫺1兲.
1389
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
T⫽303 K
4.40
5.77
7.10
9.80
12.51
15.17
17.83
21.94
25.94
T⫽333 K
5.70
8.33
11.03
13.73
17.73
21.88
25.95
Sorption
(V 1* (STP)/V 2* )
Original Measurements:
S. A. Stern and A. H. De Meringo, J. Polym. Sci., Polym. Phys.
Ed. 16, 735 共1978兲.
Variables:
T/K⫽273.0– 343.0
p/MPa⫽0 – 4.0
Prepared By:
A. K. Bokarev
1390
Experimental Data
Dual mode sorption parameters for carbon dioxide in cellulose 2,4-acetate
FIG. 68. Temperature dependence of Henry’s law solubility coefficient k D /共cm3共STP兲 cm⫺3 atm⫺1兲.
T/K
k D /cm3共STP兲 g⫺1 atm⫺1
⬘ /cm3共STP兲 g⫺1
CH
b/atm⫺1
273.0
283.0
303.0
318.0
2.50
2.13
0.911
0.580
32.77
25.93
31.31
26.81
0.511
0.441
0.134
0.107
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Cellulose 2,4-acetate 共CA兲; 关9004-35-7兴 共XLVIII兲
From the temperature dependence of k D and S it was found, respectively,
log共 S/ 共 cm3共STP兲cm3 atm⫺1兲兲 ⫽⫺3.8226⫹1438.7/共 T/K兲
log共 k D / 共 cm3共STP兲cm3 atm⫺1兲兲 ⫽⫺3.9595⫹1236.3/共 T/K兲
⌬H D ⫽⫺23.7⫾1.8 kJ/mol
⌬H S ⫽⫺27.5⫾2.3 kJ/mol.
It is difficult to give much credit to the parameters reported in any of these works. Nevertheless, as one may tentatively suspect the
effects of exposing the polymer to high pressure of CO2 as a main reason for these differences, the data of Sada et al.3 should be regarded
as describing the sample ‘‘as received,’’ while those of Stern and De Meringo1 as characterizing the polymer swollen in high pressure gas.
⬘ are typical for such samples.
Much larger values of the Langmuir capacity parameter C H
References:
1
S. A. Stern and A. H. De Meringo, J. Polym. Sci., Polym. Phys. Ed. 16, 735 共1978兲.
2
S. A. Stern and S. S. Kulkarni, J. Membr. Sci. 10, 235 共1982兲.
3
E. Sada, H. Kumazawa, Y. Yoshio, S.-T. Wang, and P. Xu, J. Polym. Sci., Part B: Polym. Phys. 26, 1035 共1988兲.
FIG. 69. Sorption isotherms of carbon dioxide. Continuous curves: Gas solubilities calculated from the dual mode sorption model.
Dotted curve: Gas solubility at 343 K calculated from the empirical relation C⫽1.4p exp(⫺0.02p).
Auxiliary Information
MethodÕApparatusÕProcedure
A volumetric method was used in measurement of the
solubility. The gas pressure decay with time was followed by
means of a gauge. Corrections for the equation of state of CO2
were made according to Ref. 1.
Source and Purity of Materials:
CO2: purity 99.9%.
CA: Eastman Kodak, Trademark Edukit; content of acetyl
groups 39.8%, density 1.36 g/cm3.
Estimated Error:
Standard error of estimate of CO2 concentration: from 5.5% at
273 K to 14% at 343 K.
References:
1
N. E. Van Huff, G. Houghton, and J. Coull, J. Chem. Eng. Data
8, 336 共1963兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Cellulose 2,4-acetate 共CA兲; 关9004-35-7兴 共XLVIII兲
Original Measurements:
S. A. Stern and S. S. Kulkarni, J. Membr. Sci. 10, 235 共1982兲.
Variables:
T/K⫽263– 303
p/MPa⫽0 – 4 (0 – 40 atm)
Prepared By:
A. K. Bokarev
Experimental Data
TABLE 1. Dual mode sorption parameters for methane in cellulose 2.4-aceteate 共sample I兲
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
303
293
288
283
273
263
0.024⫾0.035
0.067⫾0.018
0.083⫾0.061
0.099⫾0.019
0.101⫾0.043
0.119⫾0.028
10.03⫾2.99
8.32⫾1.21
8.35⫾3.54
8.22⫾1.14
10.22⫾2.71
11.48⫾1.61
0.052⫾0.016
0.076⫾0.013
0.087⫾0.043
0.109⫾0.022
0.104⫾0.040
0.117⫾0.024
Heats of solution of CH4 in cellulose 2,4-acetate 共sample I兲
Apparent heat of ordinary dissolution: ⌬H D ⫽⫺5.4 kcal/mol; ⫺22.6 kJ/mol.
Apparent heat of ‘‘hole-filling’’: ⌬H H ⫽⫺2.9 kcal/mol; ⫺12.1 kJ/mol.
Solubility⫽共vol. of gas at STP/cm3兲/共mass of unswollen polymer /g兲
TABLE 2. Solubility isotherm of carbon dioxide in cellulose 2,4-acetate 共sample II兲 at 303 K 共The original data were represented
graphically兲
Time
sequence
Pressure/MPa
Solubility
(V 1* (STP)/m*
2)
Time
sequence
1
2
3
4
2.07
0.97
0.57
2.67
38.80
25.63
18.13
44.60
5
6
7
—
Pressure/MPa
Solubility
(V 1* (STP)/m*
2)
2.61
2.53
43.70
42.21
—
—
Sample III, prior to exposure to CO2
Sample I, after exposure to CO2
Pressure/MPa
Solubility
(V *
1 (STP)/m*
2)
Time
sequence
Pressure/MPa
Solubility
(V *
1 (STP/m*
2)
0.47
0.68
1.03
1.51
1.68
2.15
2.48
2.83
3.12
3.59
—
—
2.56
3.41
4.39
5.45
5.84
6.59
7.04
7.56
7.93
8.43
—
—
1
2
3
4
5
6
7
8
9
10
11
12
1.80
2.50
0.83
0.30
2.13
0.58
2.81
1.28
1.43
3.22
3.79
2.55
3.73
4.12
2.65
1.43
4.00
2.28
4.34
3.25
3.26
4.71
4.89
4.22
1391
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 3. Effect of CO2 exposure on the solubility isotherm of CH4 in cellulose 2,4-acetate at 293 K 共The original data were represented graphically兲
IUPAC-NIST SOLUBILITY DATA SERIES
T/K
1392
Polymer sample
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
Sample I after
CO2 exposure
Sample II prior
CO2 exposure
Sample II after
CO2 exposure
Sample III prior
CO2 exposure
0.067⫾0.018
8.32⫾1.21
0.076⫾0.013
0.046⫾0.033
3.09⫾2.92
0.159⫾0.070
0.082⫾0.019
6.23⫾2.27
0.120⫾0.059
0.038⫾0.019
4.12⫾1.62
0.151⫾0.031
The fact that the Henry’s law dissolution was found to be more exothermic than Langmuir ‘‘hole-filling’’ process lead the authors to test
a different type of sorption isotherm-‘‘two Langmuir sorption model’’ proposed by Vieth et al.2
⬘ 共 1 兲 b 共 1 兲 p/ 关 1⫹b 共 1 兲 p 兴 ⫹C H⬘ 共 2 兲 b 共 2 兲 p/ 关 1⫹b 共 2 兲 p 兴 .
C⫽C H
The parameters of this model are presented in Table 5.
TABLE 5. ‘‘Two Langmuir sorption model’’ parameters
T/K
⬘ (1)/cm3共STP兲 g⫺1
CH
⬘ (2)/cm3共STP兲 cm⫺3
CH
b(1)/atm⫺1
b(2)/atm⫺1
303
293
288
283
273
263
12.09
14.14
15.11
16.26
17.21
20.61
2.76
3.18
3.56
4.39
5.01
6.03
0.021
0.020
0.020
0.018
0.021
0.018
0.126
0.146
0.158
0.165
0.177
0.220
FIG. 71. Reproducibility of solubility isotherms of methane in cellulose 2,4-acetate at 293 K. Solubility⫽共vol. of gas at STP/cm3兲/共mass
of unswollen polymer/g兲. 共Solid line兲 calculated from the dual mode sorption model with sample I, after exposure to CO2. 共䊊兲
measurements with sample II prior to CO2 exposure. 共䊉兲 measurements with sample II after exposure to high-pressure CO2.
Auxiliary Information
MethodÕApparatusÕProcedure
The solubility of CO2 and CH4 in cellulose 2.4-acetate was
measured by a volumetric method. The apparatus and
experimental procedure used have been described in Ref. 1.
Source and Purity of Materials:
CO2 : Matheson, purity 99.99%. CH4 : Matheson, purity 99.97%.
CA: Eastman Kodak Co., density 1.36 g/cm3. Sample I:
previously exposed to carbon dioxide in the temperature range
from 273 to 343 K and at pressure up to 45 atm.
Estimated Error:
Relative precision of solubilities: CO2 10%, CH4 between 16%
and 20%.
References:
1
S. A. Stern and A. H. De Meringo, J. Polym. Sci., Polym. Phys.
Ed. 16, 735 共1978兲.
2
W. R. Vieth and M. A. Amini, Ind. Eng. Chem. Fundam. 16, 82
共1977兲.
FIG. 70. Solubility isotherms of methane in cellulose 2.4-acetate 共sample I兲. Solubility⫽共vol. of gas at STP/cm3兲/共mass of unswollen
polymer/g兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 4. Effect of exposure to CO2 at high pressures on the dual mode sorption parameters for CH4 in cellulose 2,4-acetate at 293 K
3.31. Poly„␥-Methyl Glutamate…—Carbon Dioxide
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Cellulose Acetate 共CA兲; 关9004-35-7兴 共XLVIII兲
Original Measurements:
E. Sada, H. Kumazawa, Y. Yoshio, S.-T. Wang, and P. Xu, J.
Polym. Sci., Part B: Polym. Phys. 26, 1035 共1988兲.
Variables:
T/K⫽293– 313
p/MPa⫽0 – 1.5
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for carbon dioxide in cellulose acetate
Components:
共1兲 Xenon; Xe; 关7440-63-3兴 Carbon dioxide; CO2 ; 关124-38-9兴
共2兲 Poly共␥-methyl-L-glutamate兲 共PMG兲; 关25086-16-2兴 共XLIX兲
Original Measurements:
T. Yoshida, A. Takizawa, and Y. Tsujita. J. Appl. Polym. Sci.
22, 279 共1978兲.
Variables:
T/K⫽293– 308
p/kPa⫽6.6– 52.5
Prepared By:
Yu. P. Yampol’skii
Experimental Data
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
293
302
313
1.83
1.24
1.10
22.7
20.3
17.7
0.500
0.437
0.280
FIG. 73. Sorption isotherms of carbon dioxide 共a兲 and xenon 共b兲 in PMG. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊐兲 293 K,
共䊉兲 298 K, 共䊊兲 303 K, 共⫹兲 308 K. Broken line is heat treated sample.
Auxiliary Information
Source and Purity of Materials:
PMG: Kyowa Hakko K. K; viscosity average degree of
polymerization about 1150.
Estimated Error:
Weight determination accuracy: ⫾10 mg for 50–100 mg
samples. Precision in T: ⫾0.5 K.
FIG. 72. Sorption isotherms of carbon dioxide in cellulose acetate.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was measured by the pressure decay method. The
procedure and apparatus were similar to those described in
Ref. 1.
Source and Purity of Materials:
CA: Eastman Kodak 共E 398-3兲; content of acetyl groups 39.8%.
The film cast from acetone solution was annealed in a water bath
at 363 K for 10 min. The film was dried in vacuum for 24 h
before measurement of sorption.
References:
1
T. H. Hildebrand and R. Scott, The Solubility of Nonelectrolytes
共New York, 1964兲.
2
T. M. Prausnitz. J. Phys. Chem. 66, 640 共1962兲.
Estimated Error:
No information given.
References:
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 667 共1976兲.
1
1393
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
Cahn microbalance was used to determine sorption. Fugacity
ratio was calculated by means of corresponding state
principle.1,2
IUPAC-NIST SOLUBILITY DATA SERIES
⌬H H ⫽⫺22.7 kJ/mol; ⌬H D ⫽⫺17.8 kJ/mol.
Original Measurements:
Y. Tsujita, T. Sumitomo, M. Nomura, and A. Takizawa, J. Appl.
Polym. Sci. 30, 2723 共1985兲.
Variables:
T/K⫽298– 308
p/kPa⫽0 – 40
Prepared By:
Yu. P. Yampol’skii
MethodÕApparatusÕProcedure
Method of sorption measurement was described in Ref. 1.
1394
Source and Purity of Materials:
PMG: Ajimoto Co.; M w ⫽100 000. Films were cast from
CHCl3, DMFA, mixture of DMFA and CH2Cl2.
PMG in ␤-form was cast from CH2Cl2, then treated by 80%
water solution of HCOOH and dried.
Estimated Error:
No information given.
Experimental Data
Different forms of PMG:PMG cast from chloroform 共C兲, dimethyl-formamide 共D兲, mixture of methylene chloride–
dimethylformamide 共D-D兲, and ␤-form of PMG 共␤兲.
Sorption⫽(vol. of gas at STP/cm3)/mol of residue.
References:
1
H. Kodama, Y. Tsujita, and A. Takizawa, J. Macromol. Sci.
Phys. 17, 57 共1980兲.
TABLE 1. Parameters of Langmuir equation p/n⫽1/ab⫹ p/b
Sample
a/(cm Hg) ⫺1
b/cm3共STP兲 mol⫺1
0.036
0.022
0.035
0.018
660
370
480
371
C
D
D-D
␤
TABLE 2. Sorption isotherms of carbon dioxide in the different forms of PMG at 共a兲 298 K and 共b兲 308 K 共The original data were represented graphically兲
Fugacity ratio
104 f 1 / f 01
共a兲
Form C
12.25
21.64
38.96
Form D-D
22.01
39.50
59.01
Form D
7.44
11.64
21.07
Form ␤
13.50
23.29
30.99
共b兲
Form C
22.53
39.48
Form D-D
18.18
36.17
Form D
19.94
29.74
Sorption
(V 1* 共STP兲/n 2* )
Fugacity ratio
104 f 1 / f 01
Sorption
(V 1* 共STP兲/n 2* )
Fugacity ratio
104 f 1 / f 01
Sorption
(V 1* 共STP兲/n 2* )
106.36
145.08
198.34
46.00
54.17
63.06
219.72
242.58
260.50
70.69
84.52
—
286.40
319.70
—
115.18
165.03
210.67
—
—
—
—
—
—
—
—
—
—
—
—
25.15
40.93
56.57
29.91
38.41
48.98
66.93
82.59
101.98
61.01
72.12
83.78
116.04
132.77
146.08
38.99
52.73
60.47
39.25
51.88
62.23
69.33
89.04
102.39
70.51
83.85
—
113.90
129.05
—
138.62
191.14
56.05
65.70
244.8
265.73
73.47
84.10
283.30
312.15
100.53
140.91
53.91
71.55
172.97
217.15
92.31
—
254.05
—
54.33
70.33
39.92
52.90
85.58
102.26
64.36
—
115.19
—
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共␥-methyl-L-glutamate兲 共PMG兲; 关25086-16-2兴 共XLIX兲
Components:
共1兲 Xenon; Xe; 关7440-63-3兴
共2兲 Poly共␥-ethyl-L-glutamate兲 共PELG兲; 关25189-52-0兴 共LI兲
Original Measurements:
T. Yoshida, A. Takizawa and Y. Tsujita, J. Appl. Polym. Sci. 22,
279 共1978兲.
Components:
共1兲 Xenon; Xe; 关7440-63-3兴
共2兲 Poly共n-alkyl-L-glutamates兲 共LI兲
Original Measurements:
T. Yoshida, A. Takizawa, and Y. Tsujita, J. Appl. Polym. Sci.
22, 279 共1978兲.
Variables:
T/K⫽293– 308
p/kPa⫽6.6– 52.5
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽293
p/kPa⫽6.6–52.5
Yu. P. Yampol’skii
Experimental Data
Auxiliary Information
Source and Purity of Materials:
Xe: purity 99.99%.
PELG: Ajinimoto K. K.; viscosity average degree of
polymerization about 1150.
Estimated Error:
Weight determination accuracy: ⫾10 mg for 50–100 mg
samples.
Precision in T: ⫾0.5 K.
References:
1
T. H. Hildebrand and R. Scott, The Solubility of Nonelectrolytes
共New York, 1964兲.
2
T. M. Prausnitz, J. Phys. Chem. 66, 640 共1962兲.
FIG. 75. Sorption isotherms of xenon in poly共n-alkyl-L-glutamates兲 at 298 K. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊏兲Me,
共䊐兲 Et, 共䊉兲 Pr, 共䊊兲 Bu, 共⫹兲 Amyl.
Auxiliary Information
MethodÕApparatusÕProcedure
Cahn electrobalance was used to measure sorption.
Corresponding state principle was applied for calculation of
fugacity ratio.1,2
Source and Purity of Materials:
Xe: purity 99.999%.
Poly共n-alkyl-L-glutamates兲 and alkyls C3 –C5: prepared
according to Ref. 3 by ester exchange method.
Other alkyl derivatives: Kyuowa Hakko K. K. and Ajimoto Co.;
degree of polymerization 1150.
Estimated Error:
Weight determination accuracy: ⫾10 mg for 50–100 mg
samples.
Precision in T: ⫾0.5 K.
References:
1
T. H. Hildebrand and R. Scott, The Solubility of Nonelectrolytes
共New York, 1964兲.
2
T. M. Prausnitz, J. Phys. Chem. 66, 640 共1962兲.
3
A. Takizawa, H. Okada, S. Kadota, and H. Nonovama, J. Appl.
Polym. Sci. 18, 1443 共1974兲.
1395
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
MethodÕApparatusÕProcedure
Cahn electrobalance was used to measure sorption.
Corresponding state principle was applied for calculation of
fugacity ratio.1,2
Experimental Data
IUPAC-NIST SOLUBILITY DATA SERIES
FIG. 74. Sorption isotherms of xenon in PELG. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊐兲 293 K, 共䊉兲 298 K, 共䊊兲 303 K,
共⫹兲 308 K. Broken line is heat treated sample.
Prepared By:
Original Measurements:
T. Yoshida, A. Takizawa, and Y. Tsujita, J. Appl. Polym. Sci.
22, 279 共1978兲.
Variables:
T/K⫽293– 303
p/kPa⫽6.6– 52.5
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Sorption isotherms of carbon dioxide in poly共␥-octyl-L-glutamate兲 based on fugacity. 共The original data were represented graphically.兲
3
Sorption⫽vol. of gas at STP/mol of polymer 共cm 共STP兲/n polymer兲
T⫽293 K
T⫽298 K
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共␥-benzyl-L-glutamate兲 共PBLG兲; 关25014-27-1兴 共LII兲
Original Measurements:
Y. Oohachi, H. Hamano, T. Yoshida, Y. Tsujita, and A.
Takizawa, J. Appl. Polym. Sci. 22, 1469 共1978兲.
T. Yoshida, A. Takizawa, and Y. Tsujita, J. Appl. Polym. Sci.
22, 279 共1978兲.
Variables:
T/K⫽293–308
p/kPa⫽6.6–52.5
Prepared By:
Yu. P. Yampol’skii
Experimental Data
T⫽303 K
Sorption
共cm3 mol⫺1兲
Fugacity ratio
104 f r / f 01
Sorption
共cm3 mol⫺1兲
Fugacity ratio
104 f 1 / f 01
Sorption
共cm3 mol⫺1兲
15.38
32.19
52.59
73.39
—
89.52
119.68
153.57
181.53
—
13.27
27.16
44.05
60.92
78.14
78.75
114.45
131.26
150.66
173.40
11.52
21.48
39.73
54.42
68.76
68.72
96.98
127.89
150.62
170.74
Auxiliary Information
Source and Purity of Materials:
CO2: purity 99.999%.
Poly共␥-octyl-L-glutamate兲: prepared according to Ref. 1 by a
ester exchange method.
Estimated Error:
Weight determination accuracy: ⫾10 mg for 50–100 mg sample.
Relative precision in T: ⫾0.5 K.
References:
1
A. Takizawa, H. Okada, S. Kadota, and H. Nonovama, J. Appl.
Polym. Sci. 18, 1443 共1974兲.
FIG. 76. Fugacity ratio calculated by corresponding state principle, Refs. 1,2. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. Sorption
isotherms of carbon dioxide in PBLG. 共䊏兲 PBLG cast from benzene at 318 K, 共䊐兲 same film heat treated, 共䊉兲 PBLG cast from benzene
at 333 K, 共䊊兲 same film heat treated, 共⫹兲 cast from ethylene dichloride at 298 K.
Auxiliary Information
MethodÕApparatusÕProcedure
Cahn electrobalance was used to measure sorption.
Source and Purity of Materials:
PBLG: prepared by benzylation of L-glutamic acid with
subsequent polymerization. The degree of polymerization was
always 1200, except the sample cast from ethylene dichloride
where it was equal to 550. Heat treatment was performed at 413
K for several hours.
Estimated Error:
Weight determination accuracy: ⫾10 mg for 50–100 mg
samples.
Precision in T: ⫾ 0.5 K.
References:
T. H. Hildebrand and R. Scott, The Solubility of Nonelectrolytes
共New York, 1964兲.
2
T. M. Prausnitz, J. Phys. Chem. 66, 640 共1962兲.
1
PATERSON, YAMPOL’SKII, AND FOGG
Fugacity ratio
104 f 1 / f 01
MethodÕApparatusÕProcedure
A Cahn electrobalance was used to measure the sorption.
1396
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共␥-octyl-L-glutamate兲
3.32. Poly„␤-Benzyl-L-Aspartate…—Carbon-Dioxide
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共␥-benzyl-L-glutamate兲 共PBG兲; 关25014-27-1兴 共LII兲
Original Measurements:
S. Vivatpanachart, Y. Tsujita, and A. Takizawa, Makromol.
Chem. 182, 1197 共1981兲.
Variables:
T/K⫽283
p/kPa⫽6.5– 46
Prepared By:
S. M. Shishatskii
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共␤-benzyl-L-aspartate兲 共PBLA兲 共LIII兲
Original Measurements:
H. Kodama, Y. Tsujita, and A. Takizawa, J. Macromol. Sci.
Phys. B 17, 57 共1980兲.
Variables:
T/K⫽303–313
p/kPa⫽9.3–43.9
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Experimental Data
The sorption isotherms can be presented by the Langmuir equation:
p/n⫽1/ab⫹ p/b,
where p is pressure and n is the volume of carbon dioxide in cm3共STP兲/mol of residue. The parameters have the following values:
b⫽0.065 cm3共STP兲/residue, a⫽250 cm Hg⫺1.
Auxiliary Information
Source and Purity of Materials:
Racemic PBG was obtained by dissolution of equal amounts of
L and D forms of the polymer. Both forms were prepared by
polymerization of corresponding N-carboxyanhyrides.
Estimated Error:
No information given.
References:
H. Kodama, Y. Tsujita, and A. Takizawa, J. Macromol. Sci.
Phys. 17, 57 共1980兲.
1
FIG. 77. Sorption isotherms of carbon dioxide in the ␣ and ␻ forms of PBLA. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊐兲
303 K, 共䊉兲 308 K, 共䊊兲 313 K. Continuous line: ␣ form; broken line: ␻ form.
Source and Purity of Materials:
PBLA: M w ⫽12 000.
Hexagonal or ␣-form: prepared by casting from 4 mass % CHCl4
solution.
Tetragonal or ␻-form: prepared by annealing of ␣-form films at
423 K.
Estimated Error:
No information given.
1397
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were performed by means of
electrobalance Cahn RG.
IUPAC-NIST SOLUBILITY DATA SERIES
MethodÕApparatusÕProcedure
The method of sorption determination was the same as
described in Ref. 1.
1398
TABLE 3. Sorption and desorption isotherms of hydrogen chloride in nylon at 273 and 293 K
Components:
共1兲 Hydrogen chloride; HCl; 关7647-01-0兴 Ammonia; NH3;
关7664-41-7兴
共2兲 Poly共hexamethylene adipinamide兲 共Nylon 66兲;
关32131-17-2兴 共LIV兲
Variables:
T/K⫽194.3–303.6
p/kPa⫽0–120
Original Measurements:
T⫽273 K
L. H. Reverson and L. E. Peterson, J. Phys. Chem. 60, 1172
共1956兲.
Prepared By:
Yu. P. Yampol’skii
Experimental Data
共For the following tables the original data were represented graphically.兲
Relative pressure⫽ratio of partial pressure and its saturated vapor pressure at the temperature of the experiment.
TABLE 1. Sorption and desorption isotherms of ammonia in nylon at 241.9 and 303.6 K
T⫽241.9 K
T⫽303.6 K
Sorption
Desorption
Sorption
Desorption
Relative
pressure
Solubility
(103 m 1 /m 2 )
Relative
pressure
Solubility
(103 m 1 /m 2 )
Relative
pressure
Solubility
(103 m 1 /m 2 )
Relative
pressure
Solubility
(103 m 1 /m 2 )
0.004
0.010
0.016
0.021
0.027
0.034
0.046
0.057
0.076
0.089
0.111
0.85
1.36
1.80
2.06
2.45
2.74
3.19
3.64
4.31
4.96
5.64
0.004
0.047
0.069
0.092
0.111
—
—
—
—
—
—
1.37
3.82
4.45
5.10
5.64
—
—
—
—
—
—
0.07
0.22
0.43
0.65
0.81
0.89
—
—
—
—
—
7.65
15.58
26.39
37.94
46.65
52.50
—
—
—
—
—
0.06
0.55
0.78
0.89
—
—
—
—
—
—
—
16.62
42.34
48.31
52.50
—
—
—
—
—
—
—
TABLE 2. Sorption and desorption isotherms of hydrogen chloride in nylon at 194.3 K
Sorption
Desorption
3
Pressure/kPa
Solubility (10 m 1 /m 2 )
Pressure/kPa
Solubility (103 m 1 /m 2 )
0.13
1.77
4.19
11.84
26.19
51.66
71.08
98.89
121.75
484
718
789
915
1072
1217
1306
1453
1633
0
7.49
32.29
81.65
121.75
—
—
—
—
610
1022
1160
1376
1633
—
—
—
—
T⫽293 K
Sorption
Desorption
Sorption
Desorption
Pressure/kPa
Solubility
(103 m 1 /m 2 )
Pressure/kPa
Solubility
(103 m 1 /m 2 )
Pressure/kPa
Solubility
1000 m1 /m2
Pressure/kPa
Solubility
(103 m 1 /m 2 )
0
0
4.13
12.57
26.35
54.09
91.29
111.45
81.7
183.8
395.1
445.4
480.7
505.0
524.3
530.9
0
7.23
—
—
—
—
—
—
289.2
400.1
—
—
—
—
—
—
0
0
5.17
14.3
33.42
66.83
108.00
—
142.4
257.2
360.4
392.9
416.1
442.6
464.7
—
0.34
2.93
—
—
—
—
—
—
307.9
347.1
—
—
—
—
—
—
Sorption isotherms of ammonia and hydrogen chloride at lower temperature exhibit hysteresis 共sorption curves are below desorption
curves兲. It vanishes for the sorption of hydrogen chloride at 273 and 293 K.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were made using a McBain type
microbalance described in Ref. 1.
Source and Purity of Materials:
NH3: purity 99.9%, traces of water removed by melted sodium.
HCl: liberated by dropping hydrochloric acid into sulfuric acid;
water vapor removed by P2O5 trap, redistilled using dry
CO2/acetone bath. Nylon 6,6: undrawn bright yarn contained
0.02% of TiO2.
Estimated Error:
No information given.
References:
1
L. H. Ryerson and J. H. Honig, J. Amer. Chem. Soc. 75, 3925
共1953兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.33. Polyamides „Nylons…—Various Gases
Components:
共1兲 Neon; Ne; 关7440-01-9兴 Argon; Ar; 关7440-37-1兴 Hydrogen;
H2; 关1333-74-0兴 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyundecaneamide; Nylon 11; 关25035-04-5兴 共LV兲
Original Measurements:
R. Ash, R. M. Barrer, and D. G. Palmer, Polymer 11, 421 共1970兲.
Variables:
T/K⫽293.2–333.2
p/kPa⫽6.65–33.25
Prepared by:
Yu. P. Yampol’skii
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Polyamide 共Nylon 11兲; 关25035-04-5兴 共LV兲
Original Measurements:
E. G. Davis and M. L. Rooney, Kolloid Z.-Z. Polym. 249, 1043
共1991兲.
Variables:
T/K: 298
p/kPa: 0–101.3
Prepared By:
A. K. Bokarev
Experimental Data
Experimental Data
Solubility isotherms obeyed Henry’s law; the solubility coefficients S/(cm3/cm3 atm) determined from their slopes are given below, as
well as the enthalpies of solution ⌬H/共kcal/mol兲
T/K
S 102
Ne
293.2
303.2
313.2
323.2
333.2
313.2
323.2
333.2
0.54
0.56
0.62
0.65
0.66
3.91
3.88
3.77
Ar
⌬H
1.0
⫺0.4
Gas
T/K
S 102
H2
293.2
303.2
313.2
323.2
333.2
313.2
323.2
333.2
1.45
1.48
1.50
1.58
1.63
36.8
31.4
28.0
CO2
Auxiliary Information
MethodÕApparatusÕProcedure
After the equilibrium was attained the remaining gas was
swept by mercury. The measurement of the pressure of gas
desorbed was performed by means of McLeod type gauge.
Corrections for loss of gas by desorption during flushing
process were introduced.
Source and Purity of Materials:
Nylon 11 was obtained from Griflex Ltd.
Gases 共British Oxygen Co兲 were spectrally pure.
Estimated Error:
␦ T⫽⫾0.1 K.
␦ S/S⫽⫾0.02.
⌬H
C * cm 共STP兲 cm
3
⫺3
13.3
26.6
39.9
53.2
66.5
79.8
93.1
6.6
9.8
12.3
14.8
17.3
20.1
22.2
*Smoothed values taken from the graph by compiler.
0.5
Dual-mode sorption parameters for SO2 in PA at 298 K
⫺3.2
k D /cm3 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/共cm Hg兲⫺1
0.248
5.8
0.169
Auxiliary Information
MethodÕApparatusÕProcedure
A modified McBain balance technique described in Ref. 1 was
used to measure the solubility coefficient of sulfur dioxide in
Nylon 11.
Source and Purity of Materials:
PA 共Nylon 11兲: density 1.030 g/cm3; from Societe Organico
共France兲. T g ⫽319 K.
Sulfur dioxide of 99.95% purity was used.
Estimated Error:
No estimates possible.
References:
1
S. Prager and A. F. Long, J. Am. Chem. Soc. 73, 4072 共1951兲.
1399
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Gas
p/kPa
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyimide Kapton H; 关25036-53-7兴 共LVI兲
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April. 1994
Critical Evaluation:
Sorption of carbon dioxide in poly共4,4⬘-oxydiphenylene pyromellitimide兲 known under trademark Kapton H was studied in a number
of works.1–6 The majority of researchers dealt with commercial samples of this material. Only Okamoto et al.5 investigated the specimens of this polymer prepared in the laboratory by imidization at different temperatures. The parameters of sorption isotherms obtained
for this material differ from those measured for Kapton H. The table shows the selected dual mode sorption parameters for the system
Kapton H–CO2. It is seen that smooth temperature dependence is observed for all three model parameters and for the apparent solubility
coefficient S.
Dual mode sorption parameters for the system Kapton H–CO2
kD
⬘
CH
b
⬘b
S⫽k D ⫺C H
Ref.
308
323
323
353
353
383
383
0.594
0.630
0.650
0.436
0.40
0.28
0.292
23.5
13.3
12.8
8.5
8.9
6.1
5.7
0.300
0.394
0.42
0.239
0.23
0.16
0.153
7.6
5.9
6.0
2.5
2.4
1.3
1.2
3
5
2
5
2
2
5
Original Measurements:
R. Y. Chern, W. J. Koros, B. Yui, H. B. Hopfenberger, and V. T.
Stannett, J. Polym. Sci., Polym. Phys Ed. 22, 1061 共1984兲.
Variables:
T/K⫽333
p/MPa⫽0–2.0 共0–20 atm兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for carbon dioxide and methane in Kapton H at 333 K
Gas
Based on pressure
CO2
CH4
Based on fugacity
CO2
CH4
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.380⫾0.054
0.700⫾0.011
12.280⫾1.48
2.684⫾0.376
0.296⫾0.023
0.174⫾0.032
0.439⫾0.058
0.073⫾0.011
11.817⫾1.486
2.653⫾0.384
0.316⫾0.069
0.175⫾0.034
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1 .
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H
A larger scatter is observed for the affinity parameter b especially at lower temperatures. The enthalpies corresponding to van’t Hoff
plots of k D , b, and S are as follows:
⌬H D ⫽⫺11.3 kJ/mol
⌬H H ⫽⫺11.9 kJ/mol
⌬H S ⫽⫺25.1 kJ/mol.
The Langmuir capacity parameters decrease with temperature. It is noteworthy that temperature dependence is strongly nonlinear. so
⬘ vanishes. However, it is probably lower than the glass transition temperature of
it is difficult to determine the temperature at which C H
this polymer for which the values higher than 600 K2,3 and even 780 K 1 have been reported.
References:
1
R. T. Chern, W. J. Koros, B. Yui, H. B. Hopfenberg, and V. T. Stannett, J. Polym. Sci., Plym. Phys. Ed. 22, 1061 共1984兲.
2
K. Tanaka, H. Kita, and K. Okamoto, Japan-US Polymer Symposium, 1985, p. 249.
3
T. Uragami, H. B. Hopfenberg, W. J. Koros, D. K. Yang, V. T. Stannett, and R. T. Chern, J. Polym. Sci., Part B: Polym. Phys. 24,
779 共1986兲.
4
K. C. O’Brien, W. J. Koros, and G. R. Husk, Polym. Eng. Sci. 27, 211 共1987兲.
5
K. Okamoto, K. Tanaka, O. Yokoshi, and H. Kita, J. Polym. Sci., Part B: Polym. Phys. 27, 643 共1989兲.
6
H. Hachisuka, Y. Tsujita, A. Takizawa, and T. Kinoshita, Polym. J. 21, 681 共1989兲.
FIG. 78. Sorption isotherms of carbon dioxide in Kapton H at 333 K. Different symbols stand for different runs.
PATERSON, YAMPOL’SKII, AND FOGG
T/K
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polyimide Kapton H; 关25036-53-7兴 共LVI兲
1400
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.34. Polyimide Kapton H—Carbon Dioxide, Methane, Sulfur Dioxide
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyimide Kapton H; 关2536-53-7兴 共LVI兲
Original Measurements:
K. Tanaka, H. Kita, and K. Okamoto, Japan–US Polymer
Symposium, 1985, pp. 249–250.
Variables:
T/K⫽323– 383
p/MPa⫽0 – 2.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters*
T/K
k D /共cm3共STP兲/cm3 atm兲
⬘ /共cm3共STP兲/cm3兲
CH
b/共atm⫺1兲
323
353
383
0.65
0.4
0.28
12.8
8.9
6.1
0.42
0.23
0.16
Auxiliary Information
FIG. 79. Sorption isotherms of methane in Kapton H at 333 K. Different symbols stand for different runs.
Auxiliary Information
MethodÕApparatusÕProcedure
A pressure decay method of sorption measurement used was
described in detail in Ref. 1. Each isotherm included several
consecutive series of runs with stepwise pressure increase. The
virgin films were degassed at 333 K for 120 h before
measurement.
Source and Purity of Materials:
CO2: Coleman-grade 99.999%.
CH4: instrument-grade 99.7%.
Kapton H: E. I. DuPont Co.; no glass transition temperature
revealed in DSC measurement up to 777 K.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
MethodÕApparatusÕProcedure
Sorption was measured by the pressure decay method. The
same isotherms were obtained for ‘‘as received’’ samples and
the specimens preliminary exposed to 50 atm of carbon
dioxide at 323 K for 24 h.
Source and Purity of Materials:
Polyimide Kapton H 共Du Pont Co兲 had glass transition
temperature ⬎573 K. No other information given.
Estimated Error:
No information given.
1401
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
共Sorption enthalpies: ⌬H D ⫽⫺14.4 kJ/mol. ⌬H H ⫽⫺18.9 kJ/mol.兲
*Taken from a graph by the compiler.
Original Measurements:
T. Uragami, H. B. Hopfenberg, W. J. Koros, D. K. Yang, V. T.
Stannett, and R. T. Chern, J. Polym. Sci., Part B: Plym. Phys. 24,
779 共1986兲.
Variables:
T/K⫽308– 328
p/kPa⫽0 – 78
Prepared By:
A. K. Bokarev
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polyimide Kapton H; 关25036-53-7兴 共LVI兲
Original Measurements:
K. C. O’Brien, W. J. Koros, and G. R. Husk, Polym. Eng. Sci.
27, 211 共1987兲.
Variables:
T/K⫽308
p/MPa⫽0 – 1.1
Prepared By:
Yu. P. Yampol’skii
1402
Experimental Data
TABLE
Experimental Data
1. Dual mode sorption parameters for carbon dioxide in Kapton Film at 308 and 318 K
T/K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
308
318
0.461
0.389
18.19
13.29
0.287
0.275
TABLE 2. Equilibrium sorption isotherms of carbon dioxide in Kapton film 共The original data were represented graphically兲
T⫽308 K
T⫽318 K
T⫽328 K
Pressure/kPa
Sorption
(V 1* 共STP兲/V 2* )
Pressure/kPa
Sorption
(V 1* 共STP兲/V 2* )
Pressure/kPa
Sorption
(V 1* 共STP兲/V 2* )
2.61
3.75
5.68
7.50
10.01
11.60
13.98
17.51
22.28
28.42
35.82
44.91
51.62
57.76
64.59
72.78
76.98
0.20
0.26
0.39
0.55
0.70
0.83
0.98
1.24
1.58
1.99
2.46
2.98
3.34
3.72
4.13
4.56
4.75
3.18
4.89
7.39
10.01
13.53
17.06
21.61
27.07
35.15
42.20
47.66
58.24
66.65
72.80
77.46
—
—
0.17
0.26
0.39
0.50
0.72
0.88
1.14
1.41
1.78
2.12
2.36
2.82
3.14
3.39
3.57
—
—
3.53
4.78
6.03
7.40
9.44
11.38
14.45
17.63
22.87
28.33
35.61
44.37
56.20
63.14
70.77
76.34
—
0.12
0.18
0.20
0.26
0.34
0.40
0.52
0.65
0.83
1.02
1.27
1.55
1.94
2.16
2.41
2.57
—
Auxiliary Information
MethodÕApparatusÕProcedure
A quartz spring balance and experimental procedure similar to
that reported in Ref. 1 were used to measure the sorption of
CO2 in Kapton.
Source and Purity of Materials:
CO2: Air Products and Chemical Inc., purity 99.999%.
Polyimide Kapton: E. I. du Pont de Nemours & Co., film density
1.42 g/cm3, glass transition temperature in the range 620–720
K.2
Estimated Error:
No information given.
References:
1
C. H. M. Jaques and H. B. Hopfenberg, Polym. Eng. Sci. 14,
441 共1974兲.
2
W. J. Wrasidlo, Macromol. Sci. Phys. B6, 559 共1972兲.
FIG. 80. Sorption isotherms in commercial Kapton H 共䊊兲 and synthesized samples of polyimide 共䊉兲 obtained by reaction of pyromellitic
dianhydride and oxydianiline PMDA-ODA.
Auxiliary Information
MethodÕApparatusÕProcedure
A method based on the principle of material balance for all
gas introduced into the cell was employed.1,2
Source and Purity of Materials:
Kapton H: density 1.430 g/cm3, M w ⫽39 200. PMDA-ODA:
density 1.402 g/cm3.
M w ⫽36 900; structure confirmed by IR spectroscopy.
Estimated Error:
No information given.
References:
1
E. S. Sanders, Ph.D. dissertation, N. C. State University, 1983.
2
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyimide Kapton H; 关25036-53-7兴 共LVI兲
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Copoly共pyromellitic dianhydride-oxydianiline兲;
PMDA-ODA 共polyimide Kapton H兲; 关25036-53-7兴 共LVI兲
Original Measurements:
K. C. O’Brien, W. J. Koros, and G. R. Husk, J. Membr. Sci. 35,
217 共1988兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyimide 共PMDA-ODA兲 共Kapton H兲; 关25036-53-7兴 共LVI兲
Original Measurements:
K. Okamoto, K. Tanaka, O. Yokoshi, and H. Kita, J. Polym. Sci.,
Part B: Polym. Phys. 27, 643 共1989兲.
Variables:
T/K⫽308
p/MPa⫽0.1– 1.4
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽323– 383
p/MPa⫽0 – 2.7
Prepared By:
S. M. Shishatskii
Experimental Data
Dual mode sorption parameters for carbon dioxide in polyimide films
Experimental Data
Sorption isotherms of carbon dioxide and methane in PMDA-ODA at 308 K. 共The original data were represented graphically兲
Sample
T/K
k D /cm⫺3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
Imidization
at 473 K
323
353
383
0.900
0.599
0.424
24.2
17.7
12.0
0.375
0.206
0.133
Imidization
at 673 K
353
0.444
10.6
0.226
Kapton-H
323
353
383
0.630
0.436
0.292
13.3
8.5
5.7
0.394
0.239
0.153
CH4
CO2
Sorption (V 1* 共STP兲/V 2* )
Pressure/MPa
Sorption (V 1* 共STP兲/V 2* )
0.16
0.36
0.52
0.76
0.98
1.37
—
14.36
22.17
26.96
32.12
36.22
42.11
—
0.21
0.31
0.47
0.71
0.91
1.00
1.12
3.21
4.46
5.84
7.36
8.61
9.07
9.80
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were carried out using a single
transducer apparatus described in Ref. 1.
Source and Purity of Materials:
PMDA-ODA: polymerization performed in dimethylacetamide
at 288–293 K to form polyamic acid precursor according to
standard procedure.2 The polyamic acid solution was wet cast on
a glass substrate heated for 1 h at 353 K under Ar to remove the
solvent and then imidized by a two-step cure under vacuum 共24
h at 483 K and 4 h at 553 K兲. The polymer studied did not reveal
a glass transition temperature at temperatures up to 750 K.
Density was 1.402 g/cm3.
Estimated Error:
Relative precision of solubilities: 5%.
MethodÕApparatusÕProcedure
Pressure decay method was used for sorption measurements.
The cell employed was similar to the one described in Ref. 1.
Source and Purity of Materials:
Polyimide was obtained by condensation of pyromellitic acid
dianhidride and oxydiphenylenediamine with subsequent
thermal imidization at 473 and 673 K. These samples and
commercial polyimide Kapton H 共Toray-DuPont Inc.兲 had the
following densities: 1.405, 1.429, and 1.431 g/cm3, respectively.
No information given on carbon dioxide purity.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed.,
14, 1903 共1976兲.
1403
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
References:
1
S. E. Sanders, Ph.D. dissertation, NC State University, 1983.
2
C. E. Scroog, A. L. Endrey, S. V. Abravio, C. E. Berro, W. M.
Edwards, and K. L. Olivier, J. Pol. Sci., Part A 3, 1373 共1965兲.
Auxiliary Information
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/MPa
Original Measurements:
H. Hachisuka, Y. Tsujita, A. Takizawa, and T. Kinoshita,
Polymer J. 21, 681 共1989兲.
Variables:
T/K⫽298
p/kPa⫽0 – 1.200
Prepared By:
Yu. P. Yampol’skii
Experimental Data
TABLE 1. Dual mode sorption parameters as a function of imide content 共%兲 for CO2 in polyimide films. 共The original data were
represented graphically.
k D /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/cm Hg⫺1
3.62
34.76
40.61
51.28
57.93
100
0.0596
0.0810
0.0872
0.0956
0.0922
0.0720
2.14
72.84
273.54
211.76
175.26
34.44
0.0047
0.0061
0.0072
0.0073
0.0075
0.0084
TABLE 2. Sorption isotherms of CO2 in the films imidized for various periods at 423 K 共The original data were represented graphically兲
Pressure/kPa
Film not imidized
49
97
199
301
Film imidized for 50 h
68
135
268
398
Film imidized for 100 h
134
295
399
Film imidized for 200 h
64
135
264
400
Film imized for 400 h
132
266
395
Sorption
(V *
1 /共STP兲/V *
2)
Pressure/kPa
Sorption
(V *
1 /共STP兲/V 2* )
Pressure/kPa
Sorption
(V *
1 /共STP兲/V *
2)
3.08
5.32
9.37
12.67
400
501
596
696
15.97
18.67
20.97
23.17
800
900
—
—
25.54
27.33
—
—
6.47
9.91
14.91
18.20
534
665
799
906
21.43
24.03
26.50
28.36
1052
1191
—
—
30.45
32.60
—
—
12.62
19.18
22.55
533
665
782
25.97
29.01
31.74
910
1056
1174
34.09
36.68
38.47
9.94
13.88
19.82
23.87
553
667
800
924
27.85
30.46
33.25
35.41
1044
1178
—
—
37.44
39.54
—
—
14.89
20.83
24.94
519
660
791
28.62
31.72
34.89
936
1048
—
37.48
39.46
—
Source and Purity of Materials:
CO2: purity 99.9%.
Polyimide: prepared by imidization of the polyamide produced
by the reaction of pyromellitic acid dianhydride with 4,4⬘
diaminodiphenyl ether in N-methylpyrrolidone solution.
Imidization was carried out at 423 K for 50–400 h in vacuo.
An additional sample with 100% imide content was also studied.
For the thermally treated samples, the imide content lay in the
range 35%–58%.
T g of unimidized polymer and polyimide were equal to 428 and
683 K, respectively.
Estimated Error:
No information given.
PATERSON, YAMPOL’SKII, AND FOGG
%
MethodÕApparatusÕProcedure
Sorption weasurement was carried out by Cahn 2000
electromicro-balance.
1404
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Copoly共pyromellitic dianhydride-oxydianiline兲
PMDA-ODA 共polyimide Kapton H兲; 关25036-53-7兴 共LVI兲
Components:
共1兲 Sulfur dioxide; SH2; 关7446-09-5兴
共2兲 Polyimide Kapton; 关25036-53-7兴 共LVI兲
Original Measurements:
W. J. Koros, C. J. Patton, R. M. Felder, and S. J. Fincher, J.
Polym. Sci., Polym. Phys. Ed. 18, 1485 共1980兲.
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Polyimide Kapton H; 关25036-53-7兴 共LVI兲
Original Measurements:
R. M. Felder, C. J. Patton, and W. J. Koros, J. Polym. Sci.,
Polym. Phys. Ed. 19, 1895 共1981兲.
Variables:
T/K: 298
p/kPa: 0–75
Prepared By:
A. K. Bokarev
Variables:
T/K⫽298– 308
p/kPa⫽0 – 80
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Solubility of SO2 in Kapton at 298 K*
p/atm
C/cm3共STP兲 cm⫺3
0.1
18.1
0.2
24.2
0.3
28.1
0.4
32.3
Experimental Data
Dual mode sorption parameters for sulfur dioxide in polymide Kapton H
0.5
35.6
0.6
39.3
0.7
42.8
0.8
46.0
* Smooth values taken from the graph by compiler.
Dual mode sorption parameters of SO2 sorption in Kapton film at 298 K
⫺3
atm
⫺1
0.389
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
13.29
0.275
Auxiliary Information
MethodÕApparatusÕProcedure
The sorption apparatus and procedures used in the present
sorption experiments was described earlier.1
k D /cm3共STP兲 cm3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
298
308
318
328
32.51
28.48
21.94
18.71
21.29
16.78
14.22
11.11
20.40
18.06
16.31
16.02
The following parameters of temperature dependence of k D and b are reported:
k D ⫽k D 0 exp关 3.7共 kcal mol⫺1兲 /RT 兴
b⫽b 0 exp关 1.6共 kcal mol⫺1兲 /RT 兴 .
Source and Purity of Materials:
The polyimide Kapton 共E.I. du Pont de Nemours Co.兲 had
density 1.42 g/cm3, and the glass transition temperature 600 K.
The SO2 was obtained from Air Products and Chemical, Inc., at
purity of 99.9%.
Estimated Error:
No information given.
References:
1
C. H. M. Jaques and H. B. Hopfenberg, Polym. Eng. Sci. 14,
441 共1974兲.
FIG. 81. Sorption isotherms of sulfur dioxide in polyimide Kapton H.
Auxiliary Information
MethodÕApparatusÕProcedure
A quartz spring balance was used to measure the sorption.
Source and Purity of Materials:
Kapton H: DuPont Co, density 1.42 g/cm3.
Estimated Error:
No information given.
1405
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
k D /cm 共STP兲 cm
3
T/K
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyimide Upilex R; 关26615-45-2兴 共LVII兲
1406
Evaluator:
Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical
Synthesis, Russian Academy of Sciences, April, 1994
Critical Evaluation:
Three investigations are available on sorption of CO2 in the polyimide obtained from 3.3⬘, 4,4⬘-biphenyltetracarboxydianhydride and
4.4⬘-oxydianiline known under the tradename Upilex R.1–3 The authors studied commercial samples of Upilex R, but in one case
specimens synthesized and pretreated under different conditions were investigated as well.3 For the temperature range 308–383 K and at
pressures up to 3 MPa, the sorption isotherms can be described by parameters shown in the table which are based on data reported in two
papers1,3 by the same group. The results of Sada et al.2 are somewhat different, particularly at lower temperatures.
Selected dual mode sorption parameters for the system Upilex R–CO2
T/K
kD
⬘
CH
b
⬘b
S⫽k D ⫹C H
Ref.
308
323
323
353
353
383
383
0.596
0.50
0.456
0.335
0.35
0.254
0.25
12.0
8.6
10.3
5.9
5.0
3.4
3.0
0.478
0.44
0.348
0.252
0.30
0.162
0.19
6.3
4.3
4.0
1.8
1.8
0.8
0.8
3
1
3
3
1
3
1
FIG. 83. Temperature dependence of the affinity parameter b/共atm⫺1兲.
⬘ /cm3共STP兲 cm⫺3; b/atm⫺1.
Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H
Figures 82–84 show the temperature dependences of S, b, and k D , respectively.
FIG. 84. Temperature dependence of Henry’s law solubility coefficient k D /共cm3共STP兲 cm⫺3 atm⫺1兲.
A least squares treatment of the temperature dependence of k D , b, and S resulted in the following values of enthalpies:
⌬H D ⫽⫺11.10 kJ/mol
⌬H H ⫽⫺13.13 kJ/mol
⌬H S ⫽⫺27.35 kJ/mol.
⫺3
FIG. 82. Temperature dependence of apparent solubility coefficient S/共cm 共STP兲 cm
3
⫺1
atm 兲.
⬘ shows that it vanishes in the vicinity of 450 K or at
The temperature dependence of Langmuir capacity adsorption parameter C H
temperatures much lower than the glass transition temperature of this polymer. The dual mode sorption parameters can be found based on
fugacity instead of pressure.2 The values calculated in two cases do not differ greater than by 10%, although the enthalpies ⌬H D and ⌬H H
are greater when the parameters are found via fugacity.
A study of the effects of pretreatment of the films indicated3 that the presence of the solvent led to the increase in the apparent
solubility coefficient, while the annealing resulted in the opposite effect.
References:
1
K. Tanaka, H. Kita, and K. Okamoto, Japan–US Polymer Symposium, 1985, p. 249.
2
E. Sada, H. Kumazawa, and P. Xu, J. Appl. Polym. Sci. 35, 1497 共1988兲.
K. Okamoto, K. Tanaka, H. Kita, A. Nakamura, and Y. Kusuki, J. Polym. Sci., Part B: Polym. Phys. 27, 1221 共1989兲.
3
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
3.35. Polimide Upilex R—Carbon Dioxide
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyimide Upilex R; 关26615-45-2兴 共LVII兲
Original Measurements:
K. Tanaka, H. Kita, and K. Okamoto. Japan–US Polymer
Symposium, 1985, pp. 249–250.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyimide Upilex R; 关26615-45-2兴 共LVII兲
Original Measurements:
E. Sada, H. Kumazawa, and P. Xu, J. Appl. Polym. Sci. 35, 1497
共1988兲.
Variables:
T/K⫽323– 383
p/MPa⫽0 – 2.0
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽303– 333
p/MPa⫽0 – 1.7
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters*
Experimental Data
Dual sorption parameters for carbon dioxide in Upilex polymide
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
T/K
323
353
383
0.50
0.35
0.25
8.6
5.0
3.0
0.44
0.30
0.19
Based on pressure
303
313
323
333
Based on fugacity
303
313
323
333
*Read by the compiler from the plot.
Sorption enthalpies: ⌬H D ⫽⫺12.3 kJ/mol, ⌬H H ⫽⫺15.7 kJ/mol.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was measured by the pressure decay method. The
same isotherms were obtained for ‘‘as received’’ samples and
the specimens preliminary exposed to 50 atm of carbon
dioxide at 323 K for 24 h.
Source and Purity of Materials:
Polyimide Upilex R 共Ube Industries兲 had the glass transition
temperature 558 K.
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
1.24
1.04
0.817
0.692
7.39
5.67
4.27
3.34
1.70
1.23
0.865
0.635
1.35
1.12
0.875
0.736
6.93
5.28
3.95
3.09
1.91
1.35
0.954
0.683
Van’t Hoff parameterrs ⌬H D from k D (T) and ⌬H H from b(T) plots
Estimated Error:
No information given.
Parameter
Pressure
Fugacity
⌬H D /kJ. mol⫺1
⌬H H /kJ. mol⫺1
⫺16.6
⫺27.9
⫺15.9
⫺29.0
1407
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
T/K
Original Measurements:
K. Okamoto, K. Tanaka, H. Kita, A. Nakamura, and Y. Kusuki,
J. Poly. Sci.: Part B: Polym. Phys. 27, 1221 共1989兲.
K. Okamoto, K. Tanaka, K. Yokoshi, K. Hidetoshi, and A.
Nakamura.
Variables:
T/K⫽308– 383
p/MPa⫽0 – 3.0
Prepared By:
Yu. P. Yampol’skii
1408
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyimide from 3.3⬘, 4,4⬘-Biphenyltetracaboxylic
dianhydride 共BPDA兲 and 4.4⬘-Oxydianiline 共ODA兲 共Upilex-R兲;
关26615-45-2兴 共LVII兲
Experimental Data
Dual mode sorption parameterrs for CO2 in commercial and laboatory samples of BPDA-ODA polyimides
T/K
k D /cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm3
CH
b/atm⫺1
Upilex-R
308
323
353
383
323
353
353
383
353
0.596
0.456
0.335
0.254
0.609
0.449
0.316
0.327
0.267
12.0
10.3
5.9
3.4
17.9
10.6
11.0
7.0
4.7
0.478
0.348
0.252
0.162
0.392
0.236
0.167
0.140
0.216
1
FIG. 85. Sorption isotherms of carbon dioxide in polyimide Upilex R.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was measured by pressure decay method. The
apparatus was similar to that described in Ref. 1.
Source and Purity of Materials:
Polyimide Upilex R: Ube Industries; glass transition temperature
558 K.
Estimated Error:
No information given.
References:
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
1
2
Auxiliary Information
MethodÕApparatusÕProcedure
Apparatus and procedure of sorption measurement was similar
to one described in Ref. 1
Source and Purity of Materials:
Films of the polymer prepared from BPDA and ODA in
p-chlorphenol were cast from the same solvent, dried 共373 K, 3
h兲, immersed in ethanol, dried once more at 443 K for 20 h
共sample 1兲. Sample 2 was prepared by annealing it at 543 K, 3 h.
Commercial Upilex-R 共Ube Industries兲 had T g ⫽558 K, ␳
⫽1.402 g/cc. Sample 1 had the same T g .
Estimated Error:
No information given.
References:
1
W. J. Koros, and D. R. Paul J. Polym. Phys., Polym. Phys. Ed.
14, 1903 共1976兲.
PATERSON, YAMPOL’SKII, AND FOGG
Sample
3.36. Other Polyamides—Various Gases
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲Copoly共pyromellitic dianhydride-methylene dianiline兲;
PMDA-MDA 共LVIII兲
Original Measurements:
K. C. O’Brien, W. J. Koros, and G. R. Husk, J. Membr. Sci, 35,
217 共1988兲.
Variables:
T/K⫽308
p/MPa⫽0.2– 1.3
Prepared By:
Yu. P. Yampol’skii
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Copoly共pyromellitic dianhydride-isopropylidene dianiline兲;
PMDA-IPDA 共LIX兲
Variables:
T/K⫽308
p/MPa⫽0.1– 1.7
Experimental Data
Sorption of carbon dioxide and methane in PMDA-MDA at 308 K. 共The original data were represented graphically兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Sorption isotherms of carbon dioxide and methane in PMDA-IPDA at 308 K. 共The original data were represented graphically兲
CH4
CO2
CH4
CO2
Sorption (V 1* (STP)/V 2* )
Pressure/MPa
Sorption (V 1* (STP)/V 2* )
0.20
0.27
0.57
0.85
0.99
1.31
16.66
19.32
28.03
32.67
34.27
38.56
0.22
0.49
0.80
1.12
—
—
3.48
5.84
8.24
10.08
—
—
Pressure/MPa
Sorption (V *
1 (STP)/V *
2)
Pressure/MPa
Sorption (V *
1 (STP)/V *
2)
0.15
0.46
0.88
1.31
1.63
14.35
35.63
47.54
55.91
63.02
0.22
0.59
1.03
1.50
—
3.86
9.90
13.46
16.26
—
Auxiliary Information
Auxiliary Information
Source and Purity of Materials:
PMDA-MDA: polymerization performed in dimethylacetamide
at 288–293 K to form polyamic acid precursor according to
standard procedure.2 The polyamic acid solution was wet cast on
a glass substrate heated for 1 h at 353 K under Ar to remove the
solvent and then imidized by a two-step cure under vacuum 共24
h at 483 K and 4 h at 553 K兲.
T g was not reached even though the polymer was heated to 750
K.
Density was 1.352 g/cm3.
MethodÕApparatusÕProcedure
Sorption measurements were carried out using a single
transducer apparatus described in Ref. 1.
Source and Purity of Materials:
PMDA-IPDA: polymerization performed in dimethylacetamide
at 288–293 K to form polyamic acid precursor according to
standard procedure.2 The polyamic acid solution was wet cast on
a glass substrate heated for 1 h at 353 K under Ar to remove the
solvent and then imidized by a two-step cure under vacuum 共24
h at 483 K and 4 h at 553 K兲.
T g was not reached even through the polymer was heated to 750
K.
Density was 1.285 g/cm3.
Estimated Error:
Relative precision of solubilities: ⫾5%.
References
1
S. E. Sanders, Ph.D. dissertation, NC State University, 1983.
2
C. E. Scroog, A. L. Endrey, S. V. Abravio, C. E. Berro, W. M.
Edwards, and K. L. Olivier, J. Pol. Sci., Part A 3, 1373 共1965兲.
References:
1
S. E. Sanders, Ph.D. dissertation, NC State University, 1983.
2
C. E. Scroog, A. L. Endrey, S. V. Abravio, C. E. Berro, W. M.
Edwards, and K. L. Olivier, J. Pol. Sci., Part A 3, 1373 共1965兲.
1409
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Estimated Error:
Relative precision of solubilities: ⫾5%.
IUPAC-NIST SOLUBILITY DATA SERIES
Pressure/MPa
MethodÕApparatusÕProcedure
Sorption measurements were carried out using a single
transducer apparatus described in Ref. 1.
Original Measurements:
K. C. O’Brien, W. J. Koros, and G. R. Husk, J. Membr. Sci. 35,
217 共1988兲.
Original Measurements:
T. H. Kim, W. J. Koros, G. R. Husk, and K. C. O’Brien, J. Appl.
Polym. Sci. 34, 1767 共1987兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.1
Prepared By:
Yu. P. Yampol’skii
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴
Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polyimides derived from hexafluoroisopropylidene
dianhydrides and diamines 共see formulas兲
Original Measurements:
M. R. Coleman and W. J. Koros, J. Membr. Sci. 50, 285 共1990兲.
Variables:
T/K⫽308
p/MPa⫽1.013 共10 atm兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Sorption isotherms of methane and nitrogen in PMDA-IPDA at 308 K. 共The original data were represented graphically兲
1410
Experimental Data
Solubility coefficients S/cm3共STP兲/cm3 atm of gases in polyimides
N2
CH4
Gases
Pressure/MPa
Sorption (V 1* (STP)/V 2* )
Pressure/MPa
Sorption (V 1* STP)/V 2* )
0.60
1.05
1.53
2.02
—
—
—
—
—
10.01
13.62
16.44
18.47
—
—
—
—
—
0.29
0.47
0.55
0.76
0.83
1.17
1.51
1.81
2.09
1.55
2.29
2.54
3.36
3.70
4.84
5.99
6.84
7.51
Polymer
Auxiliary Information
MethodÕApparatusÕProcedure
The pressure decay method of measurement of sorption was
described in Ref. 1.
Source and Purity of Materials:
PMDA-IPDA: prepared by reaction of pyromellitic dianhydride
with isopropylidene diamine. No details on synthesis or
properties of the polymer are given.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
6FDA-ODA
6FDA-MDA
6FDA-IPDA
6FDA-6FpDA
6FDA-6FmDA
O2
N2
CO2
CH4
1.03
0.82
0.90
0.99
0.61
0.54
0.46
0.50
0.67
0.35
4.89
3.96
4.24
4.72
2.89
1.32
1.18
1.20
1.44
0.81
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were made with a pressure decay cell
described in Ref. 1
Source and Purity of Materials:
Polyimides from Hoechst-Celanesc Co.
characteristics:
Polymer
Tg K
6FDA-ODA
6FDA-MDA
6FDA-IPDA
6FDA-6FpDA
6FDA-6FmDA
577
577
583
593
527
had
the
following
␳, g/cc
1.432
1.400
1.352
1.466
1.493
The gases had purity ⬎99.97%.
Estimated Error:
No information given.
References:
1
W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14,
1903 共1976兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Methane; CH4; 关74-82-8兴
共2兲 Copoly共pyromellitic dianhydride-isopropylidene dianiline兲;
PMDA-IPDA 共LIX兲
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyimide Ultem; 关61128-24-3兴 共LXVIII兲
Original Measurements:
K. Okamoto, K. Tanaka, O. Yokoshi, K. Hidetoshi, and A.
Nakamura, Intern. Congress on Membranes ICOM-87 1987,
9-P15, pp. 542–543.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polyimide: product of biphenyltetracarboxylic dianhidride
and sulfonodianiline; 共BPDA-SDA兲
Original Measurements:
K. Okamoto, K. Tanaka, O. Yokoshi, K. Hidetoshi, and A.
Nakamura, Intern. Congress on Membranes ICOM-87, 1987,
9-P15, pp. 542–543.
Variables:
T/K: 353
p/MPa: 0 – 3.0
Prepared By:
Yu.P. Yampol’skii
Variables:
T/K: 353
p/MPa: 0 – 2.5
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual-mode sorption parameters for carbon dioxide
Experimental Data
Dual-mode sorption parameters for carbon dioxide
k D ,/cm3共STP兲cm⫺3 atm⫺1
⬘ ,/cm3共STP兲 cm⫺3
CH
b/atm⫺1
k D ,/cm⫺3共STP兲 cm⫺3 atm⫺1
⬘ ,/cm3共STP兲 cm⫺3
CH
b/atm⫺1
0.527
6.1
0.286
0.647
19.8
0.279
Auxiliary Information
Source and Purity of Materials:
Commercial sample of Ultem-1000 共General Electric Co兲 had a
density 1.289 g/cm3, glass transition temperature 488 K, and had
an amorphous structure.
Estimated Error:
No information given.
Auxiliary Information
MethodÕApparatusÕProcedure
Equilibrium sorption was measured by the pressure decay
method using a dual-volume sorption cell.
Source and Purity of Materials:
Polyimide BS-1 had the following characteristics: density 1.417
g/cm3, glass transition temperature 623 K.
Estimated Error:
No information given.
1411
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
MethodÕApparatusÕProcedure
Equilibrium sorption was measured by the pressure decay
method using a dual-volume sorption cell.
Original Measurements:
T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part
B: Polym. Phys. 26, 729 共1988兲.
Variables:
Prepared By:
T/K⫽308
p/MPa⫽0–2.3
A. K. Bokarev
Experimental Data
TABLE 1. Dual-mode sorption parameters for various gases in polyetherimide at 308 K
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
CO2
CH4
N2
0.758
0.207
0.063
25.02
7.31
4.15
0.366
0.136
0.045
Components:
共1兲 Helium; He; 关7440-59-7兴 Nitrogen; N2; 关7727-37-9兴
Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴
Methane; CH4; 关74-82-8兴
共2兲 Poly共amide aminoacid兲 6FDA-TADPO; 关132634-94-7兴
共LXVII兲
Original Measurements:
D. R. B. Walker and W. J. Koros, J. Membr. Sci. 55, 99 共1991兲.
Variables:
T/K⫽308
p/MPa⫽0.3–1.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Solubility coefficient S/cm3共STP兲/cm3 atm
He
N2
O2
CO2
CH4
0.058
0.33
0.56
3.05
0.8
CH4
MethodÕApparatusÕProcedure
Pressure decay method and apparatus was used.
N2
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
Pressure/MPa
Sorption
(V 1* (STP)/V 2* )
0.19
0.24
0.27
0.33
0.56
0.64
0.70
0.78
0.98
1.08
1.16
1.25
1.45
1.55
1.64
1.72
1.93
2.02
2.20
10.88
12.85
14.26
15.38
20.05
21.83
23.23
23.79
26.96
28.17
29.10
29.75
32.17
33.10
33.93
34.39
36.43
37.36
38.37
0.12
0.24
0.29
0.37
0.45
0.67
0.81
0.90
1.07
1.14
1.25
1.29
1.48
1.57
1.66
1.79
1.89
2.06
—
1.12
2.10
2.51
3.08
3.59
4.78
5.35
5.81
6.55
6.59
7.29
7.17
7.98
8.15
8.53
8.69
9.15
9.60
—
0.27
0.34
0.40
0.45
0.71
0.77
0.88
0.94
1.14
1.25
1.34
1.42
1.59
1.75
1.79
1.89
2.26
2.35
—
0.65
0.81
0.83
0.98
1.44
1.59
1.65
1.78
2.11
2.24
2.26
2.35
2.70
2.93
2.85
2.94
3.39
3.52
—
Auxiliary Information
MethodÕApparatusÕProcedure
The sorption apparatus and procedures used in the present
sorption experiments are the same as described earlier.1
Source and Purity of Materials:
Gas: purity⬎99.99% 共chromatographic quality兲.
PEI 共Ultem兲: General Electric Co., density 1.28 g/cm3, glass
transition temperature 488 K.
Estimated Error:
No information given.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
Source and Purity of Materials:
The polymer was synthesized according to Ref. 1. It had a
density 1.413 g/cc.
All the gases were Linde UHP 共purity more than 99.97%兲.
Estimated Error:
No information given.
References:
R. T. Foster and C. S. Marvel, J. Polym. Sci., A 3, 417 共1965兲.
1
PATERSON, YAMPOL’SKII, AND FOGG
Auxiliary Information
TABLE 2. Sorption isothems of various gases in polyetherimide at 308 K 共The original data were represented graphically兲
CO2
1412
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2;
关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Polyetherimide 共PEI兲; 关61128-24-3兴 共LXXI兲
3.38. Block Copolymers and Polymer Blends—Various Gases
3.37. Polypyrrolone—Various Gases
Components:
共1兲 Helium; He; 关7440-59-7兴 Nitrogen; N2; 关7727-37-9兴
Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴
Methane; CH4; 关74-82-8兴
共2兲 Polypyrrolone; 关12634-94-7兴
Original Measurements:
D. R. B. Walken and W. J. Koros, J. Membr. Sci. 55, 99 共1991兲.
Variables:
T/K⫽308
p/MPa⫽0.3– 1.0
Prepared By:
Yu. P. Yampol’skii
Original Measurements:
M. Yoshikawa, T. Ezaki, K. Sanui, and N. Ogata, J. Appl.
Polym. Sci. 35, 145 共1988兲.
Variables:
T/K⫽303
p/kPa⫽0 – 80 共0–0.8 atm兲
Prepared By:
S. M. Shishatskii
Experimental Data
The solubility of gases in two statistical copolymers having a mole fraction of 4-vinylpyridine equal to 0.038
共copolymers I兲 and 0.098 共copolymer II兲 was studied.
Experimental Data
Solubility coefficient S/cm3共STP兲 cm3 atm
He
N2
O2
CO2
CH2
0.091
0.72⫾0.08
1.04
4.41
1.7
Source and Purity of Materials:
The polymer was synthesized according to Ref. 1. It had a
density 1.405 g/cc.
All the gases were Linde UHP 共purity more than 99.97%兲.
Estimated Error:
No information given.
TABLE 1. Dual mode sorption parameters and solubility coefficient, S, for various gases in the copolymers 共I兲 and 共II兲 at 303 K
Gas
S/cm3共STP兲 cm⫺3 atm⫺1
N2
共I兲
共II兲
共I兲
共II兲
共I兲
共II兲
O2
CO2
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
—
—
—
—
46.5
52.6
—
—
—
—
10.2
7.5
—
—
—
—
25.3
44.9
6.92
8.54
16.8
18.2
—
—
TABLE 2. Sorption isotherms of various gases in the copolymers 共I兲 and 共II兲 at 303 K 共The original data were represented graphically兲
References:
R. T. Foster and C.S. Marvel, J. Polym. Sci., A. 3, 417 共1965兲.
1
CO2
N2
O2
Pressure/kPa
Sorption
(V *
1 (STP)/V *
2)
Pressure/kPa
Sorption
(V *
1 (STP)/V *
2)
Pressure/kPa
Sorption
(V *
1 (STP)/V *
2)
3.89
12.31
27.18
40.13
57.57
6.91
13.66
21.47
27.81
35.79
30.10
58.23
73.74
—
—
2.18
4.69
5.31
—
—
40.84
61.26
75.66
—
—
6.68
9.79
12.79
—
—
4.26
11.63
26.37
40.85
57.11
7.31
11.77
21.16
28.74
38.52
24.98
40.52
63.97
—
—
2.17
3.12
5.27
—
—
35.71
53.18
65.95
—
—
6.55
9.95
11.94
—
—
共I兲
1413
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
共II兲
IUPAC-NIST SOLUBILITY DATA SERIES
Auxiliary Information
MethodÕApparatusÕProcedure
Pressure decay method and apparatus was used.
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴
Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共4-vinylpyridine-co-acrylonitrile兲; 关25232-41-1兴
MethodÕApparatusÕProcedure
Solubility measurement was performed in a gravimetric
sorption apparatus with a quartz spring. The films were cast
from DMF solutions.
Source and Purity of Materials:
Poly共4-vinylpyridine-co-acrylonitrile兲: synthesized
radical polymerization according to Ref. 1.
Copolymer I: glass transition temp. 407 K.
Copolymer II: glass transition temp. 377 K.
by
the
Estimated Error:
No information given.
References:
1
M. Yoshikawa, S. Shudo, K. Sanui, and N. Ogata, J. Membr.
Sci. 26, 51 共1986兲.
Components:
共1兲 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴
共2兲 Copoly共vinylidene cyanide-vinyl acetate兲 共CVC-VA兲;
关9003-24-1兴
Original Measurements:
H. Hachisuka, H. Kito, Y. Tsujita, A. Takizawa, and T.
Kinoshita, J. Appl. Polym. Sci. 35, 1333 共1988兲.
Variables:
T/K⫽298
p/MPa⫽0.13– 1.3
Prepared By:
Yu. P. Yampol’skii
1414
Experimental Data
Dual mode sorption parameters for nitrogen and oxygen in CVC-VA memberances at 298 K for different times of annealing at 433 K
Time of annealing
N2
O2
‘‘as cast’’
5h
15 h
‘‘as cast’’
5h
15 h
104 k D /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
103 b/cm Hg⫺1
2.0
2.0
2.0
2.6
2.6
2.6
1.74
1.70
1.66
2.18
2.12
2.06
0.8
0.8
0.8
1.1
1.1
1.1
FIG. 86. Sorption isotherms of nitrogen and oxygen in CVC-VA at 298 K for different times of annealing at 433 K: 共a兲 as cast; 共b兲 5 h
annealing; 共c兲 15 h annealing.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were carried out by means of Cahn
Electrobalance 2000 instrument. A correction for a buoyancy
contribution was introduced. The films were cast from DMF.
Source and Purity of Materials:
Gases: purity⬎99.9%.
Alternating coplymer of VC and VA: Mitsubishi Petrochemical
Co., amorphous polymer, glass transition temp. 449 K, density
of as cast film, and ones anneled for 5 and 15 h equal to 1.212,
1.217, and 1.220 g/cm, respectively 共at 433 K兲.
Estimated Error:
No information given.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Copoly共vinylidene cyanide-vinyl acetate兲 共CVC-VA兲;
关9003-24-1兴
Original Measurements:
H. Hachisuka, Y. Tsujita, A. Takizawa, and T. Kinoshita,
Polymer 29, 2050 共1988兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Random copolymers styrene/methyl methacrylate 共SMMA兲
Original Measurements:
P. C. Raymond and D. R. Paul, J. Polym. Sci.: Part B: Polym.
Phys. 28, 2079 共1990兲.
Variables:
T/K⫽298
p/MPa⫽0 – 1.33
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽308
p/MPa⫽0–2.5 共0–25 atm兲
Weight % MMA⫽20.5–88.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
The effects of annealing time at 433 K on dual mode sorption parameters for carbon dioxide in CVC-VA at 298 K 共taken from the
plot by compiler兲
102 k D /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
103 b/cm Hg⫺1
0
1
5
10
15
1.65
1.50
1.50
1.48
1.48
17.3
16.4
15.0
14.3
14.2
3.65
3.65
3.65
3.65
3.65
N
Weight % MMA
1
2
3
20.5
58.5
88.0
1
2
3
20.5
58.5
88.0
k D /cm3共STP兲/cm3 atm
⬘ /cm3共STP兲/cm3
CH
b/atm⫺1
3.06
2.03
1.72
0.085
0.156
0.152
Methane*
0.132
0.145
0.181
Carbon dioxide**
0.539
0.812
1.07
10.7
10.5
13.8
0.182
0.249
0.193
*Unconditioned film never exposed to CO2.
**The isotherms obtained after exposing to CO2 at 25 atm for 24 h.
Auxiliary Information
MethodÕApparatusÕProcedure
The equipment and procedure for sorption measurement were
the same as in Ref. 1.
Source and Purity of Materials:
For the copolymers 1, 2, and 3 the glass transition temperatures
were 371, 375, and 378 K, respectively, and the densities 1.075,
1.132, and 1.168 g/cc.
Estimated Error:
No information given.
References:
Y. Maeda and D. R. Paul, Polymer 26, 2055 共1985兲.
1
FIG. 87. Sorption isotherms of carbon dioxide in CVC–VA at 298 K for different times of annealing at 433 K: 共a兲 as cast; 共b兲 1 h; 共c兲
5 h; 共d兲 10 h; 共e兲 15 h.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was determined using gravimetric apparatus with
Cahn Electrobalance 2000 instrument. A buoyancy correction
was made.
Source and Purity of Materials:
Alternating copolymer VC-VA: amorphous polymer, intrinsic
viscosity 4.9 dl/g, glass transition temperature of the films ‘‘as
cast’’ 449 K.
Estimated Error:
No information given.
1415
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
Time of annealing/h
Experimental Data
Dual mode sorption parameters in SMMA coplymers
Original Measurements:
T. Nakagawa, M. Sekiguchi, K. Nagai, and A. Higuchi, Int.
Congress on Membranes 共ICOM-90兲, Chicago, 1990, pp. 824–
826.
Variables:
T/K⫽303
p/kPa⫽0 – 100
Copolymer composition: 关 TMSP兴 ⫽90%; 关 PHP兴 ⫽10%
Prepared By:
Yu. P. Yampol’skii
Variables:
T/K⫽293.2
p/MPa⫽0–100
Prepared By:
O. M. Ilinitch
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲/cm⫺3
CH
b/atm⫺1
6.93
8.35
5.84
50.14
43.59
12.47
2.15
2.77
5.48
p/kPa
C
Gas
p/kPa
C
Methane
CH4
关74-82-8兴
28.0
34.7
50.0
66.6
86.6
96.0
0.6
0.4
0.7
1.2
1.4
1.5
Ethane
C2H6
关74-84-0兴
Propane
C 3H8
关74-98-6兴
3.3
6.3
9.6
13.3
18.7
24.0
29.3
29.3
33.3
34.4
40.0
46.7
53.3
61.3
2.8
3.6
4.3
5.1
5.8
6.6
7.3
4.9
5.5
7.9
8.4
9.4
10.2
11.2
2.7
5.3
8.0
10.7
13.3
17.3
21.3
25.3
0.9
1.6
2.2
2.6
2.9
3.4
3.8
4.4
Propene
C3H6
关115-07-1兴
1.6
4.0
6.7
10.6
14.0
20.0
26.7
33.3
38.7
53.3
2.0
2.9
4.0
4.9
5.6
6.8
7.6
9.0
9.6
11.5
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were done by means of Cahn
electrobalance, model 2000.
Source and Purity of Materials:
The copolymer and PPHP were synthesized in the presence of a
catalyst TaCl5 –Ph3Bi–H2O. The synthesis of PTMSP was
described in Ref. 1.
References:
1
K. Takada, H. Mituta, T. Masuda, and T. Higashimura, J. Appl.
Polym. Sci. 30, 1605 共1983兲.
Auxiliary Information
MethodÕApparatusÕProcedure
The conventional McBain sorption spring balance was used.
Source and Purity of Materials:
The copolymer was prepared via oxidative copolycondensation
of two monomers.
The purity of product 99.9%, it had density 1.10 g/cm3 and T g
⫽754 K.
All the gases had a purity ⬎99.9%.
Estimated Error:
␦ T⫽⫾0.1 K; ␦ p⫽⫾0.2 kPa.
␦ C/C⫽0.1 共compiler兲.
PATERSON, YAMPOL’SKII, AND FOGG
PTMSP
Compolymer
PPHP
Original Measurements:
O. M. Ilinitch, G. L. Semin, M. V. Chertova, and K. I. Zamaraev,
J. Membr. Sci. 66, 1 共1992兲.
Experimental Data
Solubility C/cm3共STP兲 cm⫺3 of hydrocarbonds in the copolymer
Experimental Data
Sorption isotherms for three propyne polymers were reported. Their parameters are given below
Polymer
Components:
共1兲 Hydrocarbons C1 –C3
共2兲 Statistical copolymer of 2,6-dimethyl-1,4-phenylene oxide
共97.5 mol %兲 and 2,6-diphenyl-1,4-phenylene oxide 共2.5
mol %兲
1416
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Copoly共trimethylsilylpropyne-phenylpropyne兲
Poly共trimethylsilylpropyne兲 共PTMSP兲;
关87842-32-8兴
Poly共1-phenyl-1-propyne兲 共PPHP兲
Components:
共1兲 Hydrocarbons C1 –C3
共2兲 Statistical copolymer of 2,6-dimethyl-1,4-phenylene oxide
共75 mol %兲 and 2,6-diphenyl-1,4-phenylene oxide 共25 mol %兲
Original Measurements:
O. M. Ilinitch, G. L. Semin, M. V. Chertova, and K. I. Zamaraev,
J. Membr. Sci. 66, 1 共1992兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Copolyimide
Original Measurements:
K. Okamoto, K. Tanaka, O. Yokoshi, K. Hidetoshi, and A.
Nakamura, Intern. Congress on Membranes ICOM-87, 9-P15,
pp. 542–543.
Variables:
Prepared By:
T/K⫽293.2
p/MPa⫽0–100
O. M. Ilinitch
Variables:
T/K⫽353
p/MPa⫽0 – 2.5
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Solubility C/cm3共STP兲 cm⫺3 of hydrocarbons in the copolymer
Gas
Experimental Data
Dual-mode sorption parameters for carbon dioxide
C
Gas
p/kPa
C
34.0
53.3
66.7
82.6
0.4
0.8
1.2
1.5
Propane
C3H8
关74-98-6兴
Ethane
C2H6
关74-84-0兴
7.3
14.0
21.3
26.9
34.4
1.1
1.4
2.1
2.5
3.6
5.1
10.0
14.0
20.0
24.0
29.3
34.4
40.0
46.6
53.3
61.3
3.1
4.4
5.1
5.9
6.6
7.2
7.8
8.4
9.4
10.2
11.2
Ethylene
C2H4
关74-85-1兴
8.0
12.0
14.3
18.7
22.0
26.0
34.7
1.0
1.3
1.6
1.8
2.1
2.6
3.2
1.6
4.0
6.7
10.6
14.0
20.0
26.7
33.3
38.7
53.3
2.0
2.9
4.0
4.9
5.6
6.8
7.6
9.0
9.6
11.5
Methane
CH4
关74-82-8兴
Propylene
C3H6
关115-07-1兴
MethodÕApparatusÕProcedure
The conventional McBain sorption spring balance was used.
Cast
Annealed
k D /(cm3共STP兲/cm3 atm)
⬘ /(cm3共STP兲/cm3)
CH
b/atm⫺1
0.588
0.573
20.9
18.5
0.281
0.249
Auxiliary Information
MethodÕApparatusÕProcedure
Equilibrium sorption was measured by the pressure decay
method using a dual-volume sorption cell.
Source and Purity of Materials:
The polymers films 共both cast and annealed at 603 K for 5 h兲 had
the following characteristics: density 1.357 g/cm3, glass
transition temperature 623 K. Cast and annealed films had
amorphous structure.
Estimated Error:
No information given.
Source and Purity of Materials:
The copolymer was prepared via oxidative copolycondensation
of two monomers.
The purity of product 99.9%, it had density 1.10 g/cm3 and T g
⫽483 K.
All the gases had a purity ⬎99.9%.
Estimated Error:
␦ T⫽⫾0.1 K; ␦ p⫽⫾0.2 kPa.
␦ C/C⫽0.1 共compiler兲.
1417
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Auxiliary Information
Sample
IUPAC-NIST SOLUBILITY DATA SERIES
p/kPa
Original Measurements:
V. V. Volkov, A. K. Bokarev, and S. G. Durgaryan, Vyoskomol.
Soedin, Ser. B 26, 107 共1985兲.
Variables:
T/K⫽298
p/MPa⫽0–0.4
Prepared By:
S. M. Shishatskii
1418
Experimental Data
FIG. 89. Sorption isotherms of sulfur dioxide in silane-siloxane copolymers with mass % siloxane content of: 0% 共1兲, 4% 共2兲, 13% 共3兲,
22% 共4兲, 34% 共5兲, 38% 共6兲, 42% 共7兲, 62% 共8兲, 100% 共9兲.
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption was measured by means of a McBain balance using
the technique described in Ref. 1.
FIG. 88. Sorption 共open symbols兲 and desorption 共closed symbols兲 isotherms of sulfur dioxide in block-copolymers with mass % siloxane
content of 13% 共circles兲 and 42% 共squares兲.
Source and Purity of Materials:
PVTMS: M n ⫽200 000.
PDMS: M n ⫽150 000.
Silane-siloxane block-copolymers of the A-B type: prepared by
anionic polymerization; M n 共silane block兲⫽200 000, weight
contents of siloxane block indicated in Fig. 89.
Estimated Error:
No information given.
References:
1
V. V. Volkov, A. K. Bokarev, and S. G. Durgaryan,
Vysokomol, Soedin., Ser. A. 26, 1294 共1984兲.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Sulfur dioxide; SO2; 关7446-09-5兴
共2兲 Poly共dimethylsiloxane兲 共PDMS兲;
关9016-00-6兴
共3兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Copolymer of ethylene-vinyl acetate 共CEVA兲;
关24937-78-8兴
共3兲 Chlorosulphonated polyethylene Hypalon-48 共CPE兲
Original Measurements:
J. A. Barrie and W. D. Webb, Polymer 30, 327 共1989兲.
Variables:
T/K⫽303– 323 p/kPa⫽0 – 33.25
CEVA conc. in blends, wt. %: 0–100
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Solubility in miscible blends of CEVA and CPE obeys Henry’s law.
Solubility coefficients S 102 /(cm3共STP兲/cm3 cm Hg) of CO2 in the blends
Original Measurements:
J. S. Chiou, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci.
30, 1137 共1985兲.
Variables:
T/K: 308
p/MPa: 0 – 2.0
Prepared By:
A. K. Bokarev
Experimental Data
At 308 K sorption isotherms of simple gases in PMA/PECH blends are completely linear at pressures as high as 2 MPa, and sorption
can be described by Henry’s law.
Solubility coefficients k D •104 /(cm3共STP兲/cm3 cm Hg)
Temperature K
303
313
323
T g /K
␳ /(g/cm3)
100
90
80
70
60
50
40
30
20
0
2.00
1.87
1.81
1.71
1.56
1.52
1.42
1.33
1.27
1.10
1.73
1.59
1.57
1.44
1.35
1.32
1.22
1.15
1.10
0.96
1.48
1.38
1.37
1.26
1.18
1.17
1.08
1.00
0.98
0.85
257
0.98
Gases
PMA
75 PMA/25 PECH
50 PMA/50 PECH
25 PMA/75 PECH
PECH
He
Ar
N2
CH4
CO2
1.35
9.96
4.86
19.4
261.0
1.26
9.19
4.34
17.6
225.0
1.14
8.73
4.17
16.6
181.0
—
8.33
3.98
16.4
152.0
0.990
7.73
3.66
15.6
124.0
Auxiliary Information
293
1.27
Auxiliary Information
Source and Purity of Materials:
The PMA 共from Celanese Chemical Co.兲 had M w ⫽576 000;
T g ⫽291 K; ␳ ⫽1.21 g/cm3.
The PECH 共Hydrin 100兲 was obtained from B. F. Goodrich Co.
T g ⫽251 K; ␳ ⫽1.37 g/cm3.
Gases: no information.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
Estimated Error:
No information given.
1419
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Source and Purity of Materials:
CEVA containing 45 wt % of vinyl acetate with M w ⫽37 700
from Bayer Co and CPE 共Hypalon 48兲 from DuPont, UK
obtained by sulphochlorination of PE having M n ⫽23 900 Cl
content 44 wt % were studied. A small but not specified content
of SO2Cl groups in CPE is possible. Both polymers were shown
by x-ray diffraction to be amorphous. Some phase separation is
reported for the blends with CEVA content lower than 50%
共DSC data兲.
MethodÕApparatusÕProcedure
The apparatus and experimental procedure used for sorption
measuring have been described elsewhere.1
IUPAC-NIST SOLUBILITY DATA SERIES
CEVA, wt %
MethodÕApparatusÕProcedure
Sorption measurements were performed using a vacuum
electronic microbalance 共Sartorius Instruments兲.
Components:
共1兲 Helium; He; 关7440-59-7兴 Argon; Ar; 关7440-37-1兴 Nitrogen;
N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane;
CH4; 关74-82-8兴
共2兲 Poly共methyl acrylate兲 共PMA兲; 关9003-21-8兴 共V兲
共3兲 Poly共epichlorohydrin兲 共PECH兲; 关24969-06-0兴
Original Measurements:
J. S. Chiou and D. R. Paul, J. Appl. Polym. Sci. 34, 1037 共1987兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
共3兲 Poly共vinylidene fluoride兲 (PVF2); 关24937-79-9兴
Original Measurements:
J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 30,
4019 共1985兲.
Variables:
T/K⫽308
p/MPa⫽0.2– 2.6 (2 – 26 atm)
Prepared By:
S. M. Shishatskii
Variables:
T/K⫽308
p/MPa⫽0 – 2.53 共0–25 atm兲
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Experimental Data
FIG. 91. Sorption isotherm of carbon dioxide in an amorphous blend containing 65% PMMA and 35% PVF2 at 308 K.
Auxiliary Information
Auxiliary Information
Source and Purity of Materials:
PMMA: Rohm and Haas Plexiglas V共811兲. M w ⫽105 400, M n
⫽52 400, density 1.188 g/cm3, glass transition temperature 379
K.
CPSAN: Union Carbide RMD-4511. M w ⫽223 000, M n
⫽88 600, density 1.080 g/cm3, glass transition temperature 377
K.
Estimated Error:
No information given.
MethodÕApparatusÕProcedure
Sorption isotherm was obtained using the dual-transducer cell
design based on the pressure decay principle.
Source and Purity of Materials:
Polymers: conditioned at highest pressure of carbon dioxide
before measurement, completely amorphous and miscible blend,
glass transition temperature 335 K.
Estimated Error:
No information given.
PATERSON, YAMPOL’SKII, AND FOGG
FIG. 90. Sorption of carbon dioxide was studied in homogeneous and phase separated blends PMMA/CPSAN 共50/50 by mass兲. The
composition of CPSAN is 28 mass % of acrylonitrile. The parameters of dual mode sorption isotherm for carbon dioxide in the blends at
⬘ ⫽16.6 cm3共STP兲/cm3; b⫽0.183 atm⫺1. Sorption isotherm of carbon dioxide in homoge308 K are k D ⫽0.89 cm3共STP兲/cm3 atm; C H
neous 共䊉兲 and phase-separated 共䊊兲 PMMA/CPSAN blends.
MethodÕApparatusÕProcedure
A pressure decay method was used but no details are given.
The films cast from tetrahydrofuran had a morphology of
homogeneous blends. Subsequent heating at 488 K resulted in
phase separated blends.
1420
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
共3兲 Styrene/acrylonitrile copolymer 共CPSAN兲
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
共3兲 Poly共vinylidene fluoride兲 (PVF2); 关24937-79-9兴
Original Measurements:
J. S. Chiou and D. R. Paul, J. Appl. Polym. Sci. 32, 2897 共1986兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.5 共0–25 atm兲
mass % PVF⫽0–100
Prepared By:
Yu. P. Yampol’skii
Experimental Data
The sorption isotherms for some blends 共PVF2 content in the range 35–60 mass %兲 showed an unusual form and could not be
⬘ from the
described by dual mode sorption model. A modified DMS model was proposed where for the Langmuir capacity parameter C H
DMS model an equation was suggested:
⬘ ⫽CH0
⬘ 共Tg⫺T兲/共Tg0⫺T兲,
CH
Sorption parameters for carbon dioxide in PMMA/PVF2 blends*
PVF2
mass %
Volume
fraction
of amorph
phase ␣
100
80
60
50
40
35
20
0
0.426
0.621
0.812
0.886
0.953
0.971
1.0
1.0
From isotherm slope
From regression analysis
kD
kD /␣
kD
⬘ /␣
C H0
b
0.664
0.865
1.105
1.215
1.283
1.319
—
—
1.559
1.394
1.362
1.371
1.346
1.358
—
—
—
—
1.494
—
1.403
1.417
1.352
1.409
—
—
7.26
—
8.15
10.9
16.3
25.6
—
—
0.0859
—
0.101
0.126
0.103
0.0993
⬘ , cm3共STP兲/cm3; b, atm⫺1.
Units: ␣, dimensionless; k D , cm3共STP兲/cm3 atm; C H0
FIG. 93. Sorption isotherms of carbon dioxide in PMMA/PVF2 blends at 308 K for 35 and 50 mass % of PVF2.
Auxiliary Information
MethodÕApparatusÕProcedure
No details of the experimental procedure are given.
Apparently, sorption is measured by pressure decay method.1
Source and Purity of Materials:
PMMA Rohm and Haas Co. 共Plexiglas V共811兲兲, fully
amorphous, glass transition temp. 378 K.
PVF2: Pennwalt Co. 共Kynar 460 N兲, crystallinity 60%, melting
point 433 K.
Blends: prepared as described in Ref. 2. Miscible blends were
studied.
References:3
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲
2
J. S. Chiou, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci.
30, 2633 共1985兲.
FIG. 92. Sorption isotherms of carbon dioxide in PMMA/PVF2 blends at 308 K 共mass % PVF2兲.
1421
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Estimated Error:
No information given.
IUPAC-NIST SOLUBILITY DATA SERIES
⬘ is initial Langmuir capacity parameter prior to any reduction in T g due to CO2 plastisization, T g0 is the glass transition
where C H0
temperature for the pure polymer. T g is the glass transition temperature in the presence of sorbed gas, and T is the temperature of
measurement, i.e., 308 K.
Original Measurements:
J. S. Chiou and D. R. Paul, J. Appl. Polym. Sci. 32, 4793 共1986兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.7 (0 – 27 atm)
mass % PVF⫽0 – 100
Prepared By:
Yu. P. Yampol’skii
1422
Experimental Data
TABLE 1. Solubility coefficients of various gases in PVF2 at 308 K
Gas
S/cm 共STP兲 cm
3
⫺3
⫺1
atm
Ar
N2
CH4
0.0350
0.0206
0.0488
TABLE 2. Dual mode sorption parameters for various gases in PMMA at 308 K
Gas
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
Ar
N2
CH4
0.1150
0.0737
0.1820
1.450
0.814
3.620
0.0480
0.0301
0.0560
FIG. 94. Sorption isotherms of Ar, CH4, and N2 in PVF2 at 308 K.
TABLE 3. Dual mode sorption parameters for argon in extruded PMMA/PVF2 blends at 308 K.
PVF2 mass %
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
(k D / ␣ )/cm3共STP兲 cm⫺3 atm⫺1
100
90
80
60
40
20
0
0.0350
0.0480
0.0568
0.0742
0.0893
0.1040
0.1150
—
—
—
—
—
0.982
1.450
—
—
—
—
—
0.0345
0.0480
0.0779
0.0857
0.0849
0.0817
0.0893
0.1040
0.1150
␣ is the crystallinity of PVF2 in the blend.
FIG. 95. Sorption isotherms of Ar, CH4, and N2 in PMMA at 308 K.
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon
dioxide; CO2; 关124-38-9兴 Methane CH4; 关74-82-8兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
共3兲 Poly共vinylidene fluoride兲 (PVF2); 关24937-79-9兴
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴
共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲
共3兲 Bisphenol chloral polycarbonate 共BCPC兲; 关31546-39-1兴
共XXX兲
Original Measurements:
P. C. Raymond and D. R. Paul, J. Polym. Sci.: Part B: Polym.
Phys. 28, 2103 共1990兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.5
Prepared By:
V. I. Bondar
Experimental Data
Dual mode sorption parameters for carbon dioxide and methane in polymers at 308 K
PMMA Vol.%
Auxiliary Information
MethodÕApparatusÕProcedure
The apparatus and procedure were the same as described in
Ref. 1.
Source and Purity of Materials:
PMMA: Rohm and Haas 共Plexiglas V共811兲兲, glass transition
temp. 378 K, completely amorphous.
PVF2: Pennwalt 共Kynar 460N兲, crystallinity 60%, melting point
433 K.
Blends: films prepared by extrusion. Miscible blends were
studied.
Carbon dioxide 共in conditioned polymers兲
0
28.0
53.9
77.8
100
Methane 共in unconditioned polymers兲
0
28.0
53.9
77.8
100
0.718
0.736
0.778
1.03
1.20
0.130
0.116
0.144
0.133
0.199
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
14.9
14.8
15.7
11.9
15.6
0.271
0.240
0.190
0.245
0.172
6.64
6.92
4.58
4.60
1.53
Estimated Error
No information given.
FIG. 97. Sorption isotherms of carbon dioxide in conditioned blends and homopolymers at 308 K.
1423
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 30, 2633 共1985兲.
0.088
0.069
0.077
0.061
0.153
IUPAC-NIST SOLUBILITY DATA SERIES
FIG. 96. Sorption isotherms of argon in PMMA/PVF2 blends at 308 K.
k D /cm3共STP兲 cm⫺3 atm⫺1
Original Measurements:
H. G. Spencer and J. A. Yavorsky, J. Appl. Polym. Sci. 28, 2937
共1983兲.
Variables:
T/K⫽312– 370
p/kPa⫽0 – 40
PS mass content/%⫽25– 75
Prepared By:
A. K. Bokarev
1424
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Propane; C3H8; 关74-98-6兴
共2兲 Polystyrene 共PS兲; 关9003-53-62兴 共IX兲
共3兲 Poly共vinylmethyl ether兲 共PVME兲; 关9003-09-2兴
Experimental Data
In the pressure range indicated above solubility obeys Henry’s law. Temperature dependence for the solubility coefficient S of propane
in PS/PVME blends is given by the equation:
S⫽S0 exp共⫺⌬H/RT兲.
TABLE 1. Mass content dependence for the solubility coefficient S of propane in PS/PVME blends at 353 K
⫺⌬H/共kJ/mol兲
ln(S0 /(cm3共STP兲/cm3 cm Hg))
ln(S/(cm3共STP兲/cm3 cm Hg))
25
50
75
10
7
5
⫺7.49
⫺6.61
⫺6.15
⫺3.99
⫺4.36
⫺4.54
FIG. 98. Sorption isotherms of methane in unconditioned blends and homopolymers at 308 K.
TABLE 2. Temperature dependence of the solubility coeficient S of propane in PS/PVME blends
Auxiliary Information
MethodÕApparatusÕProcedure
A pressure decay method was used. Methane sorption was
measured on samples that had not previously been exposed to
CO2. For CO2 these measurements were preceded by
conditioning the films at 25 atm of CO2 for 24 h.
Source and Purity of Materials:
BCPC: General Electric Co.
PMMA: Rohm and Haas Co.
PMMAmass %
0
25
50
75
100
T/K
ln(S/(cm3共STP兲/cm3 cm Hg))
328.3
333.7
346.4
350.4
358.7
364
⫺3.82
⫺3.73
⫺3.79
⫺4.08
⫺4.17
⫺4.06
324.9
337.2
361.3
370.9
⫺4.19
⫺4.29
⫺4.48
⫺4.46
313.6
323.8
333.2
353.5
⫺4.35
⫺4.49
⫺4.35
⫺4.59
PS 25 mass %
T g /K
density/g cm⫺3
437
413
401
386
379
1.392
1.336
1.285
1.235
1.188
PS 50 mass %
Estimated Error:
No information given.
PS 75 mass %
PATERSON, YAMPOL’SKII, AND FOGG
PS content mass %
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurements were carried out in a low pressure,
constant-volume cell previously described.1
Source and Purity
of Materials:
C3H8: Matheson, purity 99.99%.
PS, PVME: Polysciences, Inc.
PS: M w ⫽23 000; PVME: M w ⫽34 000.
PS/%
T g /K
25
50
75
253
275
303
␳/g, cm⫺3
—
1.052
1.060
Estimated Error:
No information given.
Components:
共1兲 Propane; C3H8 ; 关74-98-6兴
共2兲 Polystyrene 共PS兲; 关9003-53-62兴 共IX兲
共3兲 Poly共vinylmethyl ether兲 共PVME兲; 关9003-09-2兴
Original Measurements:
J. A. Yavorsky, Ph.D. dissertation, 1984.
Variables:
T/K⫽278– 374
p/kPa⫽0 – 798
Prepared By:
A. K. Bokarev
Experimental Data
The PS/PVME blends studied contained 90.0% and 75.0% by weight PS. M s ⫽0.90 and M s ⫽0.75, respectively.
TABLE 1. Sorption isotherms of propane below 350 K in the copolymer blend for which M s ⫽0.90 共The original data were represented
graphically兲
T⫽283 K
T⫽303.5 K
T⫽322 K
Pressure/kPa
Sorption
*)
(V 1* 共STP兲/V 23
Pressure/kPa
Sorption
*)
(V 1* 共STP兲/V 23
Pressure/kPa
Sorption
(V 1* 共STP兲/V 23)
28.83
70.22
79.17
167.26
239.05
299.18
—
0.80
1.30
2.81
3.06
6.22
5.68
—
31.97
75.92
185.78
353.37
378.07
710.15
791.00
0.47
0.98
2.75
5.19
7.15
11.39
12.15
32.66
78.92
172.72
172.07
306.54
368.64
745.61
0.28
0.50
1.44
1.67
2.28
4.08
5.89
Sorption isotherms above 350 K show a linear relationship, and the solubility coefficient is independent of pressure.
TABLE 2. Dual mode sorption parameters and solubility coefficient, S, for propane in the copolymer blend for which M s ⫽0.90 共pressure range 0–798 kPa兲
k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/cm Hg⫺1
S/cm3共STP兲 cm⫺3 cm Hg⫺1
283
303.5
322
353
364
369
2.29%⫾9%
1.15%⫾19%
0.86%⫾12%
0.90%⫾6%
0.82%⫾12%
1.11%⫾9%
10.9%⫾15%
10.8%⫾35%
11.4%⫾22%
4.5%⫾50%
—
—
0.50%⫾35%
1.30%⫾53%
0.70%⫾44%
0.15%⫾100%
—
—
2.84%⫾10%
2.55%⫾9%
1.66%⫾12%
0.97%⫾10%
0.82%⫾12%
1.11%⫾9%
1425
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
T/K
IUPAC-NIST SOLUBILITY DATA SERIES
References:
1
J. A. Yavorsky and H. G. Spencer, J. Appl. Polym. Sci. 25, 2109
共1980兲.
T⫽278 K
T⫽293 K
T⫽308 K
Pressure/kPa
Sorption
(V 1* 共STP兲/V 23)
Pressure/kPa
Sorption
(V 1* 共STP兲/V 23)
Pressure/kPa
Sorption
(V 1* 共STP兲/V 23)
14.2
31.83
62.01
—
—
—
—
—
—
—
1.07
2.24
5.20
—
—
—
—
—
—
—
6.45
10.30
22.19
26.45
46.51
57.04
—
—
—
—
0.38
0.58
1.16
1.06
2.46
2.64
—
—
—
—
6.04
6.86
10.47
13.37
15.44
16.86
18.81
22.72
31.42
55.68
0.13
0.24
0.42
0.41
0.29
0.50
0.59
0.94
1.06
2.21
TABLE 4. Dual mode sorption parameters and solubility coefficient, S, for propane in the copolymer blend for which M s ⫽0.75 共pressure range 0–66 kPa兲
T/K
k D 102 /
cm3共STP兲 cm⫺3 cm Hg⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/cm Hg⫺1
S/
cm3共STP兲 cm⫺3 cm Hg⫺1
278
293
308
323
323
333
343
353
364
374
6.40%⫾11%
4.00%⫾12%
3.50%⫾11%
2.40%⫾12%
2.40%⫾12%
3.06%⫾4%
2.49%⫾4%
1.99%⫾4%
1.89%⫾4%
1.65%⫾4%
3.2%⫾20%
2.2%⫾22%
2.1%⫾19%
1.4%⫾32%
1.4%⫾32%
—
—
—
—
—
2.15%⫾50%
1.80%⫾44%
0.55%⫾40%
0.35%⫾55%
0.35%⫾55%
—
—
—
—
—
13.29%⫾16%
7.99%⫾44%
6.79%⫾12%
4.33%⫾51%
4.33%⫾51%
3.06%⫾4%
2.49%⫾4%
1.99%⫾4%
1.89%⫾4%
1.65%⫾4%
The isotherms when M s ⫽0.75 Q and M s ⫽0.75 QA were linear.
TABLE 5. Solubility coefficient when M s ⫽0.75 Q
T/K
k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1
323
328
333
343
358
3.19%⫾8%
3.67%⫾4%
2.96%⫾4%
2.21%⫾4%
1.99%⫾4%
TABLE 6. Solubility coefficient when M s ⫽0.75 QA
T/K
k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1
323
327
338
358
2.45%⫾4%
3.14%⫾4%
2.71%⫾4%
2.00%⫾4%
MethodÕApparatusÕProcedure
The equilibrium solubility of gases in the polymer was
measured by a manometric technique. High pressure apparatus
共up to 930 kPa兲 and low pressure apparatus 共up to 100 kPa兲
with pressure transducers were employed. One sample with
M s ⫽0.75 was quenched in cold vapor produced by placing a
piece of metal in liquid nitrogen. The sample was cooled in
this manner to below room temperature but well above the
temperature of liquid nitrogen. This sample was coded as M s
⫽0.75 Q. Another sample for which M s ⫽0.75 was brought to
358 K and then cooled at an average rate of 0.05 K/min to
323 K. This sample was coded as M s ⫽0.75 QA.
Source and Purity of Materials:
C3H8 : Matheson Co., purity ⬎99.98%.
PS: Polyscience, Inc., M w ⫽190 000.
PVME: Polyscience, Inc., M w ⫽34 000.
Estimated Error:
No information given.
PATERSON, YAMPOL’SKII, AND FOGG
Sorption isotherms above 323 K are linear in the pressure range studied, and the solubility coefficients are independent of pressure.
Auxiliary Information
1426
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 3. Sorption isotherms of propane below 323 K in the co-polymer blend for which M s ⫽0.75 共The original data were represented
graphically兲
Components:
共1兲 Propane; C3H8; 关74-98-6兴 Miscible blend 共75/25% w/w兲 of
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 and
共3兲 Poly 共vinylmethyl ether兲 共PVME兲; 关9003-09-2兴
Original Measurements:
J. A. Yavorsky and H. J. Spencer, J. Appl. Polym. Sci. 31, 501
共1986兲.
Variables:
T/K: 308–374
p/kPa: 0–80
Prepared By:
A. K. Bokarev
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴
共3兲 Poly共vinylmethyl ether兲 共PVME兲; 关9003-09-2兴 共polymer
blends兲
Original Measurements:
H. Hachisuka, T. Sato, Y. Tsujita, A. Takizawa, and T.
Kinoshita, Polym. J. 21, 417 共1989兲.
Variables:
T/K⫽298
p/MPa⫽0 – 1.33
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Soprtion parameters for the 75/25° 共w/w兲 PS/PVME blends
Series
C-1
SC-2
308
293
278
323
333
343
353
364
374
323
328
333
343
358
323
327
338
356
102 k D /cm3共STP兲 cm⫺3
⬘ /cm Hg⫺1
CH
102 b/cm3共STP兲 cm⫺3 cm Hg⫺1
k*
Composition total
PS/PVME phase
3.5共⫾11%兲
4.0共⫾12%兲
6.4共⫾11%兲
2.4共⫾12%兲a
2.1共⫾19%兲
2.2共⫾22%兲
3.2共⫾20%兲
1.4共⫾32%兲
1.6共⫾40%兲
1.8共⫾44%兲
2.2共⫾50%兲
1.4共⫾55%兲
6.79共⫾12%兲
7.99共⫾13%兲
13.3共⫾16%兲
4.33共⫾51%兲b
3.06共⫾4%兲
2.49共⫾4%兲
1.99共⫾4%兲
1.89共⫾4%兲
1.65共⫾4%兲
3.19共⫾8%兲
3.67共⫾4%兲
2.96共⫾4%兲
2.21共⫾4%兲
1.99共⫾4%兲
2.45共⫾4%兲c
3.14共⫾4%兲
2.71共⫾4%兲
2.00共⫾4%兲
100/0
—
75/25
50/50
20/80
—
—
—
75/25
50/50
20/80
0/100
共83/17兲/共21/79兲
共73/27兲/共31/69兲
共74/26兲/共19/81兲
—
Auxiliary Information
MethodÕApparatusÕProcedure
A dual volume–single transducer manometric system similar
to that previously described1 was used.
Source and Purity of Materials:
PS and PVME 共Poly Sciences, Inc.兲 had M w 190 000 and
34 000, respectively.
Two 75:25% PS/PVME blends were prepared and three thermal
histories developed. Sample SC-1 was cooled slowly, a rate of
0.75 K/min, from 358 K to room temperature. Q was rapidly
quenched from 358 K to room temperature. After investigating
sample Q up to 358 K, it was very slowly cooled, a rate of 0.05
K/min, to 333 K. This sample is designated SC-2.
Propane 共Matheson Co兲 99.98% purity.
⬘ /共cm3共STP兲/cm3兲
CH
b 103 /共cm Hg兲⫺1
4.1
2.36
1.5
—
—
1.45
—
—
2.4
0.4
1.1
—
2.76
4.73
3.95
—
1.12
Single phase blends
1.41
2.01
2.62
Phase separated blends
1.49
2.05
2.93
4.00
Auxiliary Information
MethodÕApparatusÕProcedure
Sorption measurement was carried out using
electromicrobalance Cahn 2000. The correction for buoyancy
was introduced.
Source and Purity of Materials:
Type
PS, %
Single phase
same
same
Phase separated
共75/25兲
Phase separated
共50/50兲
Phase separated
共20/80兲
75
50
20
83
21
73
31
74
19
PVME, %
T g, K
25
50
80
17
79
27
69
26
81
315.0
262.9
248.6
321.2
249.2
301.2
253.2
308.6
248.0
CO2 purity ⬎99.99%
Estimated Error:
No information given.
References:
1
H. J. Spencer and J. A. Yavorsky, J. Appl. Polym. Sci. 28, 2937
共1983兲.
1427
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
⬘ b.
k * ⫽k D ⫹C H
a
k * , after extended annealing in vacuum at 323 K.
b
k * , initial sorption isotherm.
c
k * , after annealing.
k D 102 /cm3共STP兲/cm3 cm Hg
IUPAC-NIST SOLUBILITY DATA SERIES
Q
T/K/
cm3共STP兲 cm⫺3 cm Hg⫺1
Experimental Data
Dual mode sorption paramters for CO2 in PS/PVME blends
Original Measurements:
G. Morel and D. R. Paul, J. Membr. Sci. 10, 273 共1982兲.
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane;
CH4; 关74-82-8兴
共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲
共3兲 Tetramethyl bisphenol A Polycarbonate 共TMPC兲
Original Measurements:
N. Muruganandam and D. R. Paul, J. Polym. Sci., Part B: Polym.
Phys. 25, 2315 共1987兲.
Variables:
T/K: 308
p/MPa: 0–2.3
Prepared By:
A. K. Bokarev
Variables:
T/K⫽308
p/MPa⫽0 – 2.0
Prepared By:
Yu. P. Yampol’skii
Experimental Data
Dual mode sorption parameters for CO2 in miscible blends PPO and PS*
Experimental Data
TABLE 1. Dual mode sorption parameters for carbon dioxide in TMPC/PS blends at 308 K
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0
10
25
50
75
90
100
0.550
0.488
0.482
0.494
0.589
0.683
0.754
9.28
12.22
14.72
20.56
22.78
25.00
29.00
0.133
0.126
0.124
0.155
0.165
0.175
0.198
TMPC mass %
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0
20
40
60
81
100
0.550
0.604
0.579
0.667
0.879
1.011
9.44
11.53
15.37
19.05
20.49
27.66
0.177
0.198
0.186
0.207
0.275
0.283
TABLE 2. Dual mode sorption parameters for methane in TMPC/PS blends at 308 K
*Taken from the plot by compiler.
Auxiliary Information
Source and Purity of Materials:
The PPO used was supplied by General Electric Co.; M n
⫽22 600; M w ⫽34 000.
The PS used was a commercial product. Costen Polystyrene 550.
Films containing different proportions of these polymers were
cast from 10% trichloroethylene solutions on mercury surface.
TMPC mass %
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0
20
40
60
81
100
0.109
0.252
0.192
0.230
0.237
0.244
6.99
3.85
6.80
8.90
12.72
15.34
0.068
0.126
0.094
0.090
0.086
0.100
References:
1
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci 2, 165
共1977兲.
FIG. 99. Sorption isotherms of carbon dioxide in TMPC/PS blends at 308 K.
PATERSON, YAMPOL’SKII, AND FOGG
% PPO in blends
MethodÕApparatusÕProcedure
The experimental equipment and procedures for sorption
measurements have been described previously.1
1428
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Poly共phenylene oxide兲 共PPO兲; 关25134-01-4兴 and
共3兲 Polystyrene 共PS兲; 关9003-34-6兴 共IX兲
miscible blends
Components:
共1兲 Carbon dioxide; CO2; 关124-38-9兴
共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲
共3兲 Copolyester 共Kodar A-150兲
Original Measurements:
P. Masi, D. R. Paul, and J. W. Barlow, J. Polym. Sci., Polym.
Phys. Ed. 20, 15 共1982兲.
Variables:
T/K⫽308
p/MPa⫽0 – 2.1
Prepared By:
A. K. Bokarev
Experimental Data
TABLE 1. Dual mode sorption parameters for CO2 in polycarbonate–copolyester blends at 308 K 共taken from the plot by the compiler兲
Auxiliary Information
MethodÕApparatusÕProcedure
The apparatus and procedure are described in Ref. 1. The films
previously had been exposed to carbon dioxide at 20 atm for
24 h.
Source and Purity of Materials:
PS: Cosden Oil and Chemical Co., M n ⫽100 000, M w
⫽350 000, glass transition temp. 375 K.
TMPC: Bayer AG, glass transition temp. 466 K.
Blends: glass transition temperatures varied monotonously in the
range of the values characteristic for pure components.
Estimated Error:
No information given.
References:
1
W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165
共1977兲.
k D /cm3共STP兲 cm⫺3 atm⫺1
⬘ /cm3共STP兲 cm⫺3
CH
b/atm⫺1
0
25
50
75
100
0.644
0.613
0.613
0.655
0.686
9.4
13.1
13.8
18.0
19.2
0.29
0.23
0.28
0.23
0.26
1429
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
FIG. 100. Sorption isotherms of methane in TMPC/PS blends at 308 K.
PC mass %
Pressure/MPa
Sorption
(V 1* (STP)/V 23)
Pressure/MPa
Sorption
(V 1* (STP)/V 23)
Pressure/MPa
Sorption
(V 1* (STP)/V 23)
2.57
3.34
4.05
4.88
6.18
8.01
9.71
0.71
0.92
0.94
1.05
1.25
1.28
1.35
10.75
12.86
12.49
13.78
15.28
15.76
16.16
1.47
1.67
1.74
1.75
1.86
2.08
—
17.39
18.47
19.29
18.68
19.67
21.11
—
8.50
9.73
10.99
11.03
12.68
15.61
1.11
1.21
1.36
1.34
1.48
1.51
16.42
17.29
17.66
18.09
19.01
19.73
1.58
1.66
1.79
1.90
1.96
—
19.46
20.40
21.75
22.13
22.35
—
8.53
10.06
11.13
13.94
14.94
1.07
1.17
1.26
1.43
1.46
16.97
17.79
18.66
19.93
19.99
1.58
1.72
1.79
1.91
2.02
20.97
22.01
22.29
23.10
24.15
9.26
11.22
13.23
15.52
16.99
19.10
19.87
1.23
1.24
1.29
1.31
1.41
1.47
1.57
20.97
21.45
21.73
21.96
22.60
23.54
24.36
1.76
1.80
1.83
1.90
2.03
2.06
2.12
25.68
26.09
26.14
26.72
27.28
28.36
28.76
5.22
7.49
12.89
14.97
17.38
18.69
0.97
1.12
1.21
1.29
1.49
1.52
20.33
21.61
22.66
23.42
24.68
25.40
1.71
1.84
1.93
2.00
2.09
—
27.21
28.19
29.61
29.10
30.16
—
MethodÕApparatusÕProcedure
Sorption was measured using a pressure decay method
described in Ref. 1. The specimens were exposed to CO2 at 20
atm for 1 day.
Source and Purity of Materials:
Copolyester 共Kodar A-150兲: Products, Inc. contained the units of
isophthalic and terephthalic acid in a ratio 20/80; M n ⫽22 000,
glass transition temperature 360 K.
PC 共Bisphenol A Polycarbonate兲: Lexan 131-111 General
Electric Co., M n ⫽13 300, M w ⫽34 200, glass transition
temperature 421 K. The blends were produced by extrusion at
293 K 共above T m of the copolyester兲.
Estimated Error:
No information given.
References:
1
W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci.,
Polym. Phys. Ed. 14, 687 共1976兲.
PATERSON, YAMPOL’SKII, AND FOGG
PC 0 mass %
0.09
0.13
0.17
0.21
0.31
0.43
0.59
PC 25 mass %
0.42
0.51
0.56
0.60
0.73
1.01
PC 50 mass %
0.32
0.42
0.49
0.73
0.84
PC 75 mass %
0.29
0.40
0.53
0.72
0.84
1.02
1.08
PC 100 mass %
0.11
0.18
0.44
0.54
0.74
0.80
Auxiliary Information
1430
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
TABLE 2. Sorption isotherms of carbon dioxide in polycarbonate–copolyester blends at 308 K
IUPAC-NIST SOLUBILITY DATA SERIES
1431
4. Structure Formulas of Polymers
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1432
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
1433
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1434
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
1435
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1436
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
1437
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1438
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
1439
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1440
PATERSON, YAMPOL’SKII, AND FOGG
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
1441
5. Polymer Index
Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compiled tables.
Bisphenol F polysulfone
Bisphenol chloral polycarbonate
Bisphenol norbornene polycarbonate
Bisphenol Z polycarbonate
Cellulose
Cellulose acetate
Copoly共dimethylphenylene oxide-diphenylphenylene oxide兲
Copolyester Kodar
Copoly共ethylene vinylacetate兲
Copolyimide
Copoly共styrene-acrylonitrile兲
Copoly共styrene-methyl methacrylate兲
Copoly共trimethylsilyl propyne-phenylpropyne兲
Copoly共vinylidene cyanide-vinyl acetate兲
Copoly共vinyltrimethylsilane-dimethylsiloxane兲
Copoly共4-vinylpyridine acrylonitrile兲
Dimethyl bisphenol A polysulfone
Dimethyl bisphenol Z polysulfone
Ethyl Cellulose
6FDA polyimides
Hexafluoropolycarbonate
Hexafluoropolysulfone
Nitrocellulose
Poly共p-acetoxystyrene兲
Polyacrylonitrile
Polyamide Nylon 11
Polyamide Nylon 66
Poly共alkyl glutamate兲s
Polyarylate Ardel
1382
1362, 1423–1424
1361, 1362
1362
1384
E1389–E1390, 1390–1392, 1393
1416, 1417
1371, 1429–1430
1419
1417
1420
1415
1416
1414, 1415
1418
1413–1414
1381
1383
1385–1389
1410, 1412
1359–1360
1382
1385
1307
1273
1399
1398
1395
1364–1366
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1442
PATERSON, YAMPOL’SKII, AND FOGG
Poly共aryl-bis-hexafluoroisopropylidene etherketone兲
Poly共aryl-bis-isopropylidene etherketone兲
Poly共aryl-isopropylidenehexafluoro etherketone兲
Poly共benzyl aspartate兲
Poly共benzyl glutamate兲
Poly共butylene terephthalate兲
Poly共n-butyl methacrylate兲
Polycarbonate
Polyepichlorhydrine
Polyetherimide
Polyethersulfone
Polyethylene, sulfochlorinated
Polyethylene terephthalate
Poly共dimethylsiloxane兲
Poly共ethyl glutamate兲
Poly共ethyl methacrylate兲
Ployhydroxyether
Polyimide aminoacid 6FDA-TADPO
Polyimide BPDA-SDA
Polyimide PMDA-IPDA
Polyimide PMDA-MDA
Polyimide Kapton 共PMDA-ODA兲
Polyimide Upilex
Polyimide Ultem
Poly共p-methoxystyrene兲
Poly共methyl acrylate兲
Poly共␥-methyl-L-glutamate兲
Poly共methyl methacrylate兲
Poly共4-methylpentene-1兲
Poly共octyl glutamate兲
Poly共phenolphthaleine phthalate兲
Poly共phenylene oxide兲
Poly共phenylene oxide兲 brominated
Poly共phenylene oxide兲 carboxylated
Poly共phenyl propyne兲
Polypyrrolone
Polystyrene
Poly共tetrabromophenolphthalein terephthalate兲
Polysulfone
Poly共trimethylsilyl propyne兲
Poly共trimethylsilyl propyne兲 brominated
Poly共vinyl acetate兲
Poly共vinyl benzoate兲
Poly共vinyl butyral兲
Poly共vinyl chloride兲
Poly共vinyl cyclohexanecarboxylate兲
Poly共vinylidene fluoride兲
Poly共vinylmethyl ether兲
Poly共vinyltrimethyl silane兲
Tetrabromohexafluoro polycarbonate
Tetrabromo polycarbonate
Tetrachloro polycarbonate
Tetramethyl bisphenol A polysulfone
Tetramethyl bisphenol A polycarbonate
Tetramethylhexafluoro polycarbonate
Tetramethyl polycarbonate
4,4⬘ -Dichlorodiphenyl sulfone
Dioctyl sebacate
Mineral oil
N-phenyl-2-naphthylamine
Tricresyl phosphate
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1364
1363
1363
1397
1396, 1397
1339
1289
E1340, 1340–1348, E1348, 1349–1350, E1351, 1351–1352, 1353–1357, 1429–1430
1419
1412
1383–1384
1419
E1330, 1331–1339
1418
1395
E1283–E1284, 1284–1289
1367–1368
1412
1411
1409–1410
1409
E1400, 1400–1405
E1406, 1407–1408
1411
1306
1419
1393–1394
E1274, 1274–1283, 1421–1424
E1265, 1265–1267
1396
1368–1370
E1323, 1323–1329, 1428
1326, 1327
1328–1329
1416
1413
E1290, E1291, E1292, E1293, E1294, 1294–1306, 1423–1430
1370
E1371–E1372, E1373, 1373–1381
E1318, 1318–1322, 1416
1322
1271–1273
1309–1311
1312
E1267, 1268–1271
1307–1308
1420–1423
1313, 1424–1427
E1313–E1314, 1314–1317, 1418
1361
1355–1357, 1359
1355–1357
1381
1428–1429
1360
1355–1358
Plasticizers and additives
1376–1378
1325–1326
1299
1376–1378
1270, 1299, 1325–1326, 1376–1378
IUPAC-NIST SOLUBILITY DATA SERIES
1443
6. Gas Index
Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compilation tables.
Ammonia
Argon
n-Butane
Carbon dioxide
Chlorine
Chlorodifluoro methane
Chlorofluoromethane
Dichlorodifluoromethane
Chloromethane
2, 2-Dimethylpropane 共Neopentane兲
Ethane
Ethene 共Ethylene兲
Ethyne 共Acetylene兲
Helium
Hydrogen
Hydrogen chloride
Krypton
Methane
2-Methylpropane 共Isobutane兲
Neon
Nitrogen
Nitrous oxide
Oxygen
Propadiene 共Allene兲
Propane
Propene 共Propylene兲
Propyne 共Methylacetylene兲
Sulfur dioxide
Trichlorofluoromethane
Xenon
1385, 1398
1269, 1275, 1285–1286, 1288–1289, E1290, 1295–1296, 1309, 1314, 1320–1321, 1323, 1331, 1337–1338, 1354,
1371, 1375, 1383–1384, 1385, 1399, 1419, 1422–1423
1268, 1289, 1304, E1313–E1314, 1315, 1385, 1386–1389
E1265, 1265–1266, 1266, E1267, 1268, 1269, 1270, 1272, 1273, E1274, 1274–1277, 1278–1279, 1280–1282,
1282, 1283, E1283, 1284, 1285–1286, 1286–1287, 1273, E1291, 1294–1296, 1297–1298, 1299, 1300–1301,
1302, 1306–1308, 1309, 1310–1311, 1312, 1314, 1317, E1318, 1318, 1319, 1320, 1320–1321, 1322, E1323,
1323–1324, 1327–1328, E1330, 1331–1334, 1335–1336, 1337–1338, 1338–1339, E1340, 1340, 1341,
1342–1344, 1344–1345, 1346, 1346–1347, 1351, 1355–1357, 1358, 1359, 1359–1360, 1361–1363, 1364–1365,
1366, 1367–1368, 1368–1370, E1371–E1372, 1373–1374, 1375, 1376–1378, 1380–1384, 1385–1386, E1389,
1390–1391, 1391–1392, 1393, 1396–1397, E1400, 1400–1401, 1402–1404, E1406, 1407–1408, 1408–1409,
1410–1412, 1413–1414, 1415, 1417, 1419–1421, 1422–1423, 1423–1424, 1427–1430
1271
1305–1306, E1294, 1304
1304
1304
1273, 1304
1386–1387
1273, 1289, E1313–E1314, 1315–1316, 1320, 1327, 1337–1338, 1370, 1373–1374, 1385, 1388–1389,
1416–1417
1273, 1277–1282, E1313–E1314, 1315–1316, 1327, 1417
1294, E1313–E1314, 1315, 1316
1265–1266, 1271, 1275, 1295, 1296, 1314, 1337–1338, 1354, 1359, 1361, 1385, 1412–1413, 1419
1265–1266, 1270, 1271, 1272, 1294, 1314, 1336, 1339
1398
1275, 1296, 1320–1321
E1265, 1265–1267, E1267, 1269, 1270, E1292, 1295–1296, 1301–1302, 1305–1306, E1313, 1314, 1318,
1320–1321, E1323, 1323–1324, 1327–1328, 1337–1338, 1338–1339, 1348, E1351, 1351–1352, 1354,
1355–1357, 1359, 1360–1363, 1364–1365, 1366, 1367–1368, 1370, 1371, E1373, 1373–1374, 1375, 1378, 1380,
1381–1382, 1383, 1391–1392, 1400–1401, 1402, 1403, 1409–1410, 1412, 1419, 1422–1423, 1423–1424, 1428
E1293, 1304, 1319, 1386–1387
1270, 1271, 1275, 1399
1265–1266, E1267, 1268, 1269, 1275, 1285–1286, 1290, 1294–1296, 1309, 1314, 1318, 1320, 1323, 1331,
1337–1338, 1338–1339, 1351, 1354–1357, 1359, 1361, 1364–1365, 1367–1368, 1371, 1375, 1378, 1380, 1381,
1382–1384, 1385, 1410, 1412–1414, 1419, 1422–1423
1280–1282, 1317, 1320–1321
1314, 1318, 1319, 1331, 1337–1339, 1359, 1361, 1385, 1410, 1412–1414
E1313–E1314, 1315, 1316
1288, E1293, 1302–1306, 1313, E1313–E1314, 1315–1316, 1317, 1321, 1322, 1327, E1352, 1353, 1385,
1388–1389, 1416–1417, 1424–1427
E1313–E1314, 1315–1316, 1327, 1416–1417
E1313–E1314, 1315, 1316
1273, 1316–1317, E1348, 1349–1350, 1366, 1384–1385, 1399, 1405
1304
1296, 1315, 1317, 1319, 1320–1321, 1324, 1393, 1395
7. Registry Number Index
Page numbers preceded by E refer to evaluation text whereas those not preceded by E refer to compiled tables.
74-82-8
Methane
74-84-0
Ethane
74-85-1
74-86-2
74-87-3
74-98-6
Ethene 共Ethylene兲
Ethyne 共Acetylene兲
Chloromethane
Propane
74-99-7
75-28-5
Propyne 共Methylacetylene兲
2-Methylpropane 共Isobutane兲
E1265, 1265–1267, E1267, 1269, 1270, E1292, 1295–1296, 1301–1302,
1305–1306, E1313, 1314, 1318, 1320–1321, E1323, 1323–1324, 1327–1328,
1337–1338, 1338–1339, 1348, E1351, 1351–1352, 1354, 1355–1357, 1359,
1360–1363, 1364–1365, 1366, 1367–1368, 1370, 1371, E1373, 1373–1374,
1375, 1378, 1380, 1381–1382, 1383, 1391–1392, 1400–1401, 1402, 1403,
1409–1410, 1412, 1419, 1422–1423, 1423–1424, 1428
1273, 1289, E1313–E1314, 1315–1316, 1320, 1327, 1337–1338, 1370,
1373–1374, 1385, 1388–1389, 1416–1417
1273, 1277–1282, E1313–E1314, 1315–1316, 1327, 1417
1294, E1313–E1314, 1315, 1316
1273, 1304
1288, E1293, 1302–1306, 1313, E1313–E1314, 1315–1316, 1317, 1321, 1322,
1327, E1352, 1353, 1385, 1388–1389, 1416–1417, 1424–1427
E1313–E1314, 1315, 1316
E1293, 1304, 1319, 1386–1387
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1444
PATERSON, YAMPOL’SKII, AND FOGG
75-45-6
75-69-4
75-71-8
106-97-8
115-07-1
124-38-9
Chlorodifluoromethane
Trichlorofluoromethane
Dichlorodifluoromethane
n-Butane
Propene 共Propylene兲
Carbon dioxide
135-88-6
463-49-0
463-82-1
593-70-4
1330-78-5
1333-74-0
2432-87-3
7439-90-9
7440-01-9
7440-37-1
N-phenyl-2-naphthyamine
Propadiene 共Allene兲
2,2-Dimethylpropane 共Neopentane兲
Chlorofluoromethane
Tricresyl phosphate
Hydrogen
Dioctyl sebacate
Krypton
Neon
Argon
7440-59-7
Helium
7440-63-3
7446-09-5
7647-01-0
7664-41-7
7727-37-9
Xenon
Sulfur dioxide
Hydrogen chloride
Ammonia
Nitrogen
7782-44-7
7782-50-5
9002-86-2
9003-09-2
9003-20-7
9003-21-8
9003-24-1
9003-42-3
9003-53-6
9003-63-8
9004-34-6
9004-35-7
9004-57-3
9004-70-0
9011-14-7
9016-00-6
10024-97-2
12634-94-7
24936-44-5
24936-68-3
Oxygen
Chlorine
Poly共vinyl chloride兲
Poly共vinylmethyl ether兲
Poly共vinyl acetate兲
Poly共methyl acrylate兲
Copoly共vinylidene cyanide-vinyl acetate兲
Poly共ethyl methacrylate兲
Polystyrene
Poly共n-butyl methacrylate兲
Cellulose
Cellulose acetate
Ethyl cellulose
Nitrocellulose
Poly共methyl methacrylate兲
Poly共dimethylsiloxane兲
Nitrous oxide
Polypyrrolone
Poly共p-methoxystyrene兲
Polycarbonate
24937-78-8
24937-79-9
24938-86-1
24969-06-0
24979-78-0
24991-32-0
25014-27-1
25014-41-9
Copoly共ethylene vinylacetate兲
Poly共vinylidene fluoride兲
Poly共phenolphthalein phthalate兲
Poly共epichlorohydrin兲
Poly共p-acetoxystyrene兲
Poly共vinyl benzoate兲
Poly共benzyl glutamate兲
Polyacrylonitrile
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1305–1306, E1294, 1294, 1304
1304
1304
1268, 1289, 1304, E1313–E1314, 1315, 1385, 1386–1389
E1313–E1314, 1315–1316, 1327, 1416–1417
E1265, 1265–1266, E1267, 1268, 1269, 1270, 1272, 1273, E1274,
1274–1277, 1278–1279, 1280–1282, 1283, E1283, 1284, 1285–1286,
1286–1287, 1273, E1291, 1294–1296, 1297–1298, 1299, 1300–1301, 1301,
1302, 1306–1308, 1309, 1310–1311, 1312, 1314, 1317, E1318, 1318, 1319,
1320, 1320–1321, 1322, E1323, 1323–1324, 1327–1328, E1330, 1331–1334,
1335–1336, 1337–1338, 1338–1339, E1340, 1340, 1341, 1342–1344,
1344–1345, 1346–1347, 1351, 1355–1357, 1358, 1359–1360, 1361–1363,
1364–1365, 1366, 1367–1368, 1368–1370, E1371–E1372, 1373–1374, 1375,
1376–1378, 1380–1384, 1385–1386, E1389, 1390–1391, 1391–1392, 1393,
1396–1397, E1400, 1400–1401, 1402–1404, E1406, 1407–1408, 1408–1409,
1410–1412, 1413–1414, 1415, 1417, 1419–1421,
1422–1423, 1423–1424, 1427–1430
1376–1378
E1313–E1314, 1315, 1316
1386–1387
1304
1270, 1299, 1325–1326, 1376–1378
1265–1266, 1270, 1271, 1272, 1294, 1314, 1336, 1399
1325–1326
1275, 1296, 1320–1321
1270, 1271, 1274, 1399
1269, 1275, 1285–1286, 1288–1289, E1290, 1295–1296, 1309, 1314,
1320–1321, 1323, 1331, 1337–1338, 1354, 1371, 1375, 1383–1384, 1385, 1399,
1419, 1422–1423
1265–1266, 1271, 1275, 1295, 1296, 1314, 1337–1338, 1354, 1359, 1361, 1385,
1412–1413, 1419
1296, 1315, 1317, 1319, 1320–1321, 1324, 1393, 1395
1273, 1316–1317, E1348, 1349–1350, 1366, 1384–1385, 1399, 1405
1398
1385, 1398
1265–1266, E1267, 1268, 1269, 1275, 1285–1286, 1290, 1294–1296, 1309,
1314, 1318, 1320, 1323, 1331, 1337–1338, 1338–1339, 1351, 1354–1357, 1359,
1361, 1364–1365, 1367–1368, 1368–1370, 1371, 1375, 1378, 1380, 1381,
1382–1384, 1385, 1410, 1412–1414, 1419, 1422–1423
1314, 1318, 1319, 1331, 1337–1339, 1359, 1361, 1385, 1410, 1412–1414
1271
E1267, 1268–1271
1313, 1424–1427
1271–1273
1419
1414, 1415
E1283–E1284, 1284–1289
E1290, E1291, E1292, E1293, E1294, 1294–1306, 1424–1430
1289
1384
E1389–E1390, 1390–1392, 1393
1385–1389
1385
E1274, 1274–1283, 1421–1424
1418
1280–1282, 1317, 1320–1321
1413
1306
E1340, 1340–1348, E1348, 1349–1350, E1351, 1351–1352, E1352, 1353–1357,
1429–1430
1419
1420–1423
1368–1370
1419
1307
1309–1311
1396–1397
1273
IUPAC-NIST SOLUBILITY DATA SERIES
25036-32-2
25036-53-7
25038-59-9
25068-26-2
25135-51-7
25135-52-8
25232-41-1
25639-68-3
25667-42-9
26402-79-9
26615-45-2
26913-25-7
28774-93-8
29316-32-3
31546-39-1
31694-05-0
31694-07-2
32034-67-7
32131-17-2
32291-26-2
38797-88-5
38980-51-7
58978-16-8
61128-24-3
61128-24-3
87842-32-8
122165-94-0
122165-95-1
122165-97-3
125431-72-3
126430-95-3
132634-94-7
134140-27-5
Poly共vinyltrimethyl silane兲
Polyimide Kapton H共PMDA-ODA兲
Polyethylene terephthalate
Poly共4-methylpentene-1兲
Polysulfone
Bisphenol Z polycarbonate
Copoly共4-vinylpyridine acrylonitrile兲
Polyarylate
Polyethersulfone
Polyhydroxyether
Polyimide Upilex
Tetrachloropolycarbonate
Tetrabromopolycarbonate
Poly共vinyl cyclohexane carboxylate兲
Bisphenol chloral polycarbonate
Bisphenol F polysulfone
Hexafluoropolysulfone
Tetramethyl bisphenol A polysulfone
Polyamide Nylon 66
Hexafluoropolycarbonate
Tetramethylpolycarbonate
4,4⬘-Dichlorodiphenyl sulfone
Dimethyl bisphenol A polysulfone
Polyimide Ultem
Polyetherimide
Poly共trimethylsilyl propyne兲
Poly共aryl-bis-isoprolylidene ether ketone兲
Poly共aryl-isopropylidenehexafluoro ether ketone兲
Poly共aryl-bis-hexafluoroisopropylidene ether ketone兲
Tetramethylhexafluoropolycarbonate
Tetrabromohexafluoropolycarbonate
Polyimide aminoacid 6FDA-TADPO
Dimethyl bisphenol Z polysulfone
The following have no CA Registry number
Bisphenol norborene polycarbonate
Copoly共dimethyphenylene oxide-diphenylphenylene oxide兲
Copolyester Kodar
Copolyimide
Copoly共styrene-acrylonitrile兲
Copoly共stryene-methyl methacrylate兲
Copoly共trimethylsilyl propyne-phenylpropyne兲
Copoly共vinyltrimethylsilane-dimethylsiloxane兲
6FDA polyimides
Polyamide Nylon 11
Poly共alkyl glutamate兲s
Poly共benzyl aspartate兲
Poly共butylene terephthalate兲
Polyethylene, sulfochlorinated
Poly共ethyl glutamate兲
Polyimide BPDA-SDA
Polyimide PMDA-IPDA
Polyimide PMDA-MDA
Poly共gamma-methyl-L-glutamate兲
Poly共octyl glutamate兲
Poly共phenylene oxide兲
Poly共phenylene oxide兲 brominated
Poly共phenylene oxide兲 carboxylated
Poly共phenyl propyne兲
Poly共tetrabromophenolphthalein terephthalate兲
Poly共trimethylsilyl propyne兲 brominated
Poly共vinyl butyral兲
Tetramethyl bisphenol A polycarbonate
Mineral oil
1445
E1313–E1314, 1314–1317, 1418
E1400, 1400–1405
E1330, 1331–1339
E1265, 1265–1267
E1371–E1372, E1373, 1373–1381
1362
1413–1414
1364–1366
1383–1384
1367–1368
E1406, 1407–1408
1355–1357
1355–1357, 1359
1307–1308
1362, 1423–1424
1382
1382
1381
1398
1359–1360
1355–1358
1376–1378
1381
1411
1412
E1318, 1318–1322, 1416
1363
1363
1364
1360
1361
1412
1383
1361, 1362
1416, 1417
1371, 1429–1430
1417
1420
1415
1416
1418
1410, 1412
1399
1395
1397
1339
1419
1395
1411
1409–1410
1409
1393–1394
1396
E1323, 1323–1329, 1428
1326, 1327
1328–1329
1416
1370
1322
1312
1428–1429
1299
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1446
PATERSON, YAMPOL’SKII, AND FOGG
8. AUTHOR INDEX
Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compiled tables.
Alcalay H.H.
Arai Y.
Asakawa S.
Ash R.
E1330, 1338–1339
E1293, 1304
1319, 1324, E1323
1399
Bamba Y.
Ballard R.L.
Barbari T.A.
Barlow J.
Barrer R.M.
Barrie J.A.
Berens A.R.
Bokarev A.K.
Bondar V.I.
Bourban D.
E1291, E1292, 1301, E1340, 1348, E1351
E1267, 1270
E1351, 1351, 1367–1368, 1378, 1412
1371, 1419, 1429–1430
1270, 1386–1387, 1399
E1292, E1293, E1294, 1305–1306, E1330, 1337–1338, E1352, 1353, 1386–1387, 1419
E1267, 1268
E1313, 1316, E1318, 1320–1321, 1418
E1318, 1320
1288–1289
Campanile G.
Carfagna C.
Cassidy P.E.
Casur E.
Chan A.H.
Chan D.D.
Chandler R.
Chern R.T.
Chertova M.V.
Chiou J.S.
Coleman M.R.
E1291, 1300–1301
E1291, 1300–1301
1363, 1364
1388–1389
E1340, 1342–1344, E1351, 1354, 1386
E1330, 1333
1366
E1323, 1321, 1326, 1327–1328, 1366, 1368–1370, 1371, E1400, 1400–1401, 1402
E1323, 1327, 1416, 1417
E1283, 1285–1286, E1291, 1299, 1376, 1419–1421
1410
Davies E.G.
Davydova M.B.
De Meringo A.H.
Draisbach H.-C.
Durgaryan S.G.
Durrill P.L.
E1348, 1349, 1349, 1399
E1313, 1316
E1389, 1390–1391
1336
E1313, 1314–1315, 1316, 1317, 1418
E1274, 1274, E1290, E1291, E1294, 1295
Eaton G.M.
Eilenberg J.A.
El-Hibri M.J.
Erb A.J.
Ezaki T.
1384
E1340, 1341
E1267, 1269
E1371–E1372, E1373, 1375
1413–1414
Fechter J.M.H.
Felder R.M.
Fincher S.J.
Fleming G.K.
Frabetti A.J.
Frangoulis C.S.
Fried J.R.
Frimpong S.
Fujii M.
E1283, 1275
1405
1405
E1340, 1344, 1346–1347, E1351, 1352, 1357, 1358, 1360
E1330, 1338–1339
E1292
E1267, 1270
E1348, 1350
E1330, 1332
Gerrens H.
Gladkova N.K.
Goradia U.B.
Grieskey R.G.
E1290
E1313, 1316
1288
E1274, 1274, E1294, 1295
Hachisuka H.
Hamano H.
Harnish D.F.
Hellums M.W.
Hidetoshi K.
Higashimura T.
Higuchi A.
Hirose T.
E1300, 1404, 1414, 1418
1396
E1293, E1259, 1304
1359, 1360
1411, 1417
1319
E1318, 1322
E1283, 1286–1287, 1397–1308, 1309, 1310, 1310–1311, 1312, E1330, 1334, 1335–1336, 1344–1345,
1373–1374
E1274, 1273, 1275, 1277, 1278–1279, E1293, 1303, 1321, E1323, 1326, 1327–1328, E1330, 1332, 1366, E1400,
1400–1401, 1402
Hopfenberg H.B.
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
IUPAC-NIST SOLUBILITY DATA SERIES
1447
Hsieh P.Y.
Huvard G.S.
Husk G.R.
Huyett M.J.
1385
1273
1359, 1361, E1400, 1402, 1403, 1410
E1292, 1297
Ichiraku Y.
Ilinitch O.M.
Iwai Y.
E1318, 1318
E1323, 1327, 1416, 1417
E1293, 1304
Jeschke D.
Jia L.
1336
E1323, 1326, 1327–1328
Kaliuzhnyi N.E.
Kamiya Y.
Khotimskii V.S.
Kim T.H.
Kinoshita T.
Kita H.
Kodama H.
Koros W.J.
Krukonis V.J.
Kukharskii Yu.M.
Kulkarni S.S.
Kumazawa H.
Kurata M.
Kusuki Y.
Laukhauf W.L.S.
Liau I.S.
Litvinova E.G.
Liu D.D.
Lundberg J.L.
Maeda Y.
Mallinder
Masi P.
Masuda T.
Masuoka H.
Mauze G.R.
McCoy N.R.
McHattie J.S.
McHugh M.A.
Meares P.
Michaels A.S.
Mizoguchi K.
Mohr J.M.
Mooney E.J.
Morel G.
Morikawa H.
Munday K.
Muruganandham N.
Nagai K.
Naito Y.
Nakagawa T.
Nakamura A.
Nakamura K.
Nakanishi K.
Nametkin N.S.
Nemoto N.
Newitt D.M.
Nicodemo L.
Nicolais L.
Nishigaki M.
Norton F.J.
E1313, 1315, 1317, E1318, 1320–1321
E1283, 1286–1287, 1288–1289, 1307–1308, 1309, 1310–1311, 1312, E1330, 1334, 1335–1336, 1344–1345,
1373–1374
E1318, 1320–1321
1410
E1400, 1404, 1414, 1415, 1427
E1400, 1401, 1403, E1406, 1407, 1408, 1414
1397
1273, E1274, 1275–1277, 1278–1279, 1280–1282, E1283, 1284, 1293, 1303, E1323, 1324, 1329, E1330,
1331–1332, E1340, 1341, 1344, 1346–1347, E1351, 1351, 1352, 1354–1357, 1359–1360, 1360–1362,
1364–1365, 1367–1368, E1371–1372, E1373, 1378, 1380–1383, 1386, E1400, 1400–1401, 1402, 1403, 1405,
1409–1410, 1412, 1413
1282
E1318, 1320
E1389, 1391–1392
E1291, E1292, 1301, E1340, 1348, E1351, E1371–E1372, E1373, 1379, 1380, E1389, 1393, E1406,
1407–1408
1296, 1319
E1406, 1408
E1348, 1350, 1366
E1274, 1282
1317, E1318, 1320–1321
1273
E1292, 1297
E1291, 1299, 1325–1326, E1371–E1372, 1375, 1376–1378, 1420, 1421
1270
1371, 1429–1430
1319
1272
1289
E1293, 1303
1361–1362, E1371–E1372, E1373, 1380–1383
E1274, 1282
1271
E1290, E1291, E1292, 1295–1296, E1330, 1337–1338
E1283, 1286–1287, 1288–1289, 1307–1308, 1309, 1310–1311, 1312, E1330, 1334, 1335–1336, 1373–1374
1363, 1364
E1292
1323, 1428
1271
E1292, E1293, E1294, 1305–1306, E1352, 1353
1306, 1307, E1340, 1355–1356, 1429–1430
E1313, 1322
E1283, 1286–1287, 1288–1289, 1309, 1310–1311, 1330, 1334
E1318, 1318, 1319, 1322, E1323, 1324, 1416
1272, 1408, 1411, 1417
1272, E1406
1319
E1313, 1314–1315, 1317
1296
E1290, E1291, 1294
E1291, 1300–1301
E1291, 1300–1301
E1371–E1372, E1373, 1379
1340
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1448
PATERSON, YAMPOL’SKII, AND FOGG
Novitskii E.G.
E1313, 1314, 1315
O’Brien K.C.
Odani H.
Ogata N.
Ohzono M.
Okamoto K.
Okonishnikov G.B.
Oohachi Y.
Parker B.E.
Patton C.J.
Paul D.R.
E1400, 1402–1403, 1409–1410
1296, 1319
1413–1414
E1293, 1304
E1400, 1401, 1403, E1406, 1407, 1408, 1411, 1417
E1274, 1275
1396
Paulaitis M.E.
Peterson L.E.
Plank C.A.
Plate N.A.
Pope D.S.
Prausnitz J.M.
Provan C.N.
Puleo A.C.
E1267, 1270
1405
E1265, 1266, E1267, 1269, E1279, E1283, 1285–1286, E1291, E1202, 1297–1298, 1299, 1302, 1306, 1307,
E1323, 1323, 1325–1326, E1330, 1331–1332, E1340, 1341, 1342, E1351, 1351, 1354–1357, 1359,
1361–1363, 1364–1365, 1367–1368, 1371, E1371–E1372, E1373, 1375, 1376–1378, 1380–1383, 1386, 1412,
1415, 1419–1421, 1422, 1423–1424, 1427–1430
E1274, 1283, E1291, 1299, E1340, 1346
1398
E1348, 1350, 1366
E1313, 1317, E1317
E1351, 1352, 1358, 1360
1273
1370
E1265, 1266, 1306, 1307
Radosz M.
Ranade G.R.
Raymond P.C.
Reyerson L.H.
Rionda J.A.
Rocha A.
Rogers C.E.
Rooney M.L.
1282
1366
E1283, E1291, E1292, 1302, 1415, 1423–1424
1398
E1292
1341
E1292
E1348, 1349, 1399
Sada E.
Saitoh Y.
Sakata K.
Sanders E.S.
Sasaki M.
Sato T.
Schulz G.V.
Sefcik M.D.
Sekiguchi M.
Semin G.L.
Sheu F.P.
Shimoda S.
Shimomura H.
Skripov V.P.
Sladek K.J.
Slater J.
Smith G.N.
Smith T.G.
Spencer H.G.
Springer J.
Stannett V.T.
Stern S.A.
Stewart M.E.
Stiel I.
Story B.J.
Stuart H.A.
Sumimoto T.
E1291, E1292, 1301, E1340, 1348, E1351, E1371–E1372, E1373, 1379, 1380, E1389, E1406, 1406,
1407–1408
1319, E1323, 1324
E1291, E1292, E1340, E1348, E1351
E1274, 1277, 1278–1279, 1280–1282, 1383–1384
1272
1427
E1290
E1330, 1333
E1318, 1322
E1323, 1327, 1416, 1417
1326, 1366, 1368–1370
E1323, 1327–1328
1319
E1274, 1275
1331
1386–1387
E1274, 1276, E1283, 1284
1388–1389
1288, 1302, 1313, E1352, 1353, 1427
1339
1273, E1274, 1276, 1277, E1283, 1284, 1326, 1332, 1366, E1400, 1400–1401, 1402
1272, 1289, E1318, 1318, E1389, 1390–1391, 1391–1392
E1293, 1303
E1293, E1294, 1304
E1323, 1324, 1329
1336
1394
Taira K.
Takishima S.
Takizawa A.
Tam P.M.
Tanaka K.
Terada K.
Thuy L.
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1296
1272, E1400
1393, 1394, 1395–1397, 1414, 1415, 1427
E1290, E1291, E1292, 1295–1296
E1400, 1401, 1403, E1406, 1407, 1408, 1411, 1417
1310, 1312, E1330, E1330, 1335–1336, 1373–1374
1339
IUPAC-NIST SOLUBILITY DATA SERIES
Tigina O.N.
Toi K.
Tsujita Y.
Tullos G.L.
E1265, 1265–1266, E1330,
E1291, 1323, E1330,
1393, 1394, 1395–1397, E1400, 1404, 1414, 1415,
1363,
Uragami T.
Vakil U.M.
Vieth W.R.
Vivatpanachart S.
Volkov V.V.
1333
1331
1427
1364
E1400, 1402
1289
E1290–E1292, 1295–1296, E1330, 1337–1339, E1340, 1341
1397
E1313–E1314, 1314–1315, 1316–1317, E1318, 1320–1321, 1418
Wachi S.
Walker D.R.B.
Wang S.-T.
Waragai K.
Weale K.E.
Webb W.D.
Wilk B.M.
Williams M.J.L.
Wissinger R.G.
Witchey-Lakshmanan L.C.
Wonders A.J.
Wong P.K.
Wong P.S.-L.
Xu P.
1449
1271
1413
1393
1324
1294
1419
E1292, 1297
E1292, E1293, E1294, 1305–1306, E1352, 1353
E1274, 1283, E1291, 1299, E1340, 1346
1321
E1340, 1342
1266, E1323
1270
1412,
E1291, E1292, 1301, 1348, E1351, E1389,
1319, E1323,
E1290, E1291,
E1371–E1372, E1373, 1379, 1380, E1389–E1390, 1393, E1406, 1407–1408
Yakushiji H.
Yampolskii Yu. P.
Yang D.K.
Yavorsky J.A.
Yokoshi O.
Yoshida T.
Yoshikawa M.
Yoshio Y.
Yuen H.K.
Yui B.
E1291, E1292, 1301, E1340, 1348, E1351
E1313, 1315, 1316, 1317, E1318, 1320–1321
E1400, 1402
E1293, 1302, 1303, 1313, E1352, 1353, 1424–1427
E1400, 1403, 1411, 1417
1393, 1395, 1395–1396
1413–1414
E1389, 1393
E1330, 1333
E1400, 1400–1401
Zamaraev K.I.
Zhou S.
E1323, 1327, 1416, 1417
1272
9. Solubility Data Series*
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
1
2
3
4
5/6
7
8
9
10
11
12
13
14
15
16/17
18
19
20
21
Volume
Volume
Volume
Volume
Volume
Volume
22
23
24
25
26
27/28
H.L. Clever, Helium and Neon 共1979兲
H.L. Clever, Krypton, Xenon and Radon 共1979兲
M. Salomon, Silver Azide, Cyanide, Cyanamides, Cyanate, Selenocyanate and Thiocyanate 共1979兲
H.L. Clever, Argon 共1980兲
C.L. Young, Hydrogen and Deuterium 共1981兲
R. Battino, Oxygen and Ozone 共1981兲
C.L. Young, Oxides of Nitrogen 共1981兲
W. Hayduk, Ethane 共1982兲
R. Battino, Nitrogen and Air 共1982兲
B. Scrosati and C.A. Vincent, Alkali Metal, Alkaline Earth Metal and Ammonium Halides, Amide Solvents 共1980兲
C.L. Young, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides 共1983兲
S. Siekierski, T. Mioduski, and M. Salomon, Scandium, Yitrium, Lanthanum and Lanthanide Nitrates 共1983兲
H. Miyamoto, M. Salomon, and H.L. Clever, Alkaline Earth Metal Halates 共1983兲
A.F.M. Barton, Alcohols with Water 共1984兲
E. Tomlinson and A. Regosch, Antibiotics: 1, ␤-Lactam Antibiotics 共1985兲
O. Popovych, Tetraphenylborates 共1981兲
C.L. Young, Cumulative Index: Volumes 1–18 共1985兲
A.L. Horvath and F.W. Getzen, Halogenated Benzenes, Toluenes and Phenols with Water 共1985兲
C.L. Young and P.G.T. Fogg, Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents
共1985兲
T. Mioduski and M. Salomon, Scandium, Ytrium, Lanthanum and Lanthanide Halides in Non-aqueous Solvents 共1985兲
T.P. Dirkse, Copper, Silver, Gold and Zinc, Cadmium, Mercury Oxides and Hydroxides 共1986兲
W. Hadyuk, Propane, Butane and 2-Methylpropane 共1986兲
C. Hirayama, Z. Galus, and C. Guminski, Metals in Mercury 共1986兲
M.R. Masson, H.D. Lutz, and B. Engelen, Sulfites, Selenites and Tellurites 共1986兲
H.L. Clever and C.L. Young, Methane 共1987兲
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
1450
PATERSON, YAMPOL’SKII, AND FOGG
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
29
30
31
32
33
34
35
36
Volume
Volume
Volume
Volume
37
38
39
40
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
41
42
43
44
45/46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
Volume
62
63
64
65
66
67
68
69
70
H.L. Clever, Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements 共1987兲
H. Miyamoto and M. Salomon, Alkali Metal Halates, Ammonium Iodate and Iodic Acid 共1987兲
J. Eysseltova and T.P. Dirkse, Alkali Metal Orthophosphates 共1988兲
P.G.T. Fogg and C.L. Young, Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenite 共1988兲
P. Franzosini, Molten Alkali Metal Alkanoates 共1988兲
A.N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part I: Non-cyclic Substituents 共1988兲
A.N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part II: 5-membered Heterocyclic Substituents 共1988兲
A.N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part III: 6-membered Heterocyclic Substituents and Miscellaneous
Systems 共1988兲
D.G. Shaw, Hydrocarbons with Water and Seawater. Part I: Hydrocarbons C5 to C7 共1989兲
D.G. Shaw, Hydrocarbons with Water and Seawater. Part II: Hydrocarbons C8 to C36 共1989兲
C.L. Young, Cumulative Index: Volumes 20–38 共1989兲
J. Hala, Halides, Oxyhalides and Salts of Halogen Complexes of Titanium, Zirconium, Hafnium, Vanadium, Niobium and
Tantalum 共1989兲
C.-Y. Chan, I.N. Lepeshkov, and K.H. Khoo, Alkaline Earth Metal Perchlorates 共1989兲
P.G.T. Fogg and W. Gerrard, Hydrogen Halides in Non-aqueous Solvents 共1990兲
R.W. Cargill, Carbon Monoxide 共1990兲
H. Miyamoto, E.M. Woolley, and M. Salomon, Copper and Silver Halates 共1990兲
R.P.T. Tomkins and N.P. Bansal, Gases in Molten Salts 共1991兲
R. Cohen-Adad and J.W. Lorimer, Alkali Metal and Ammonium Halides in Water and Heavy Water (Binary Systems) 共1991兲
F. Getzen, G. Hefter, and A. Maczynski, Esters with Water. Part I. Esters 2-C to 6- C 共1992兲
F. Getzen, G. Hefter, and A. Maczynski, Esters with Water: Part II: Esters 7-C to 32-C 共1992兲
P.G.T. Fogg, Carbon Dioxide in Non-aqueous Solvents at Pressures Less Than 200 kPa 共1992兲
J.G. Osteryoung, M.M. Schneider, C. Guminski, and Z. Galus, Intermetallic Compounds in Mercury 共1992兲
I. Lambert and H.L. Clever, Alkaline Earth Hydroxides in Water and Aqueous Solutions 共1992兲
C.L. Young, Cumulative Index: Volumes 40–52 共1993兲
W.E. Acree, Jr., Polycyclic Aromatic Hydrocarbons in Pure and Binary Solvents 共1994兲
S. Siekierski and S.L. Phillips, Actinide Nitrates 共1994兲
D. Shaw, A. Skrzecz, J.W. Lorimer, and A. Maczynski, Alcohols with Hydrocarbons 共1994兲
W. Hadyuk, Ethene 共1994兲
W.E. Acree, Jr., Polycyclic Aromatic Hydrocarbons: Binary Non-aqueous Systems, Part I: Solvents A–E 共1995兲
W.E. Acree, Jr., Polycryclic Aromatic Hydrocarbons: Binary Non-aqueous Systems, Part II: Solvents F–Z 共1995兲
A.L. Horvath and F.W. Getzen, Halogenated Methanes with Water 共1995兲
C.-Y. Chan, K.H. Khoo, E.S. Gryzlova, and M.-T. Saugier-Cohen Adad, Alkali Metal and Ammonium Perchlorates, Part I:
Lithium and Sodium Perchlorates 共1996兲
P. Scharlin, Carbon Dioxide in Water and Aqueous Electrolyte Solutions 共1996兲
H.U. Borgstedt and C. Guminski, Metals in Liquid Alkali Metals, Part I: Be to Os 共1996兲
H.U. Borgstedt and C. Guminski, Metals in Liquid Alkali Metals, Part II: Co to Bi 共1996兲
J.J. Fritz and E. Königsberger, Copper(I) Halides and Psuedohalides 共1996兲
J. Eysseltova and T. P. Dirkse, Ammonium Phosphates 共1998兲
A. L. Horvath, F. W. Getzen, and Z. Maczynska, Halogenated Ethanes and Ethenes With Water 共1999兲
A. L. Horvath and F. W. Getzen, Halogenated Aliphatic Compounds C3 –C14 With Water 共1999兲
A. Skrzecz, D. Shaw, and A. Maczynski, Ternary Alcohol–Hydrocarbon–Water Systems 共1999兲
R. Paterson, Y. Yampol’skii, P. G. T. Fogg, A. Bokarev, V. Bondar, O. Ilinich, and S. Shishatskii, Solubility of Gases in Glassy
Polymers 共1999兲
*Updated information on new volumes and on obtaining reprints of previously published volumes are available at the web site 具http://www/unileoben.ac.at/
⬃eschedor/welcome.html典
J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999