IUPAC-NIST Solubility Data Series 70. Solubility of Gases in Glassy Polymers Volume Editors Russell Paterson University of Glasgow, Glasgow, United Kingdom Yuri Yampol’skii Topchiev Institute of Petrochemical Synthesis, Moscow, Russia with the assistance of Peter G. T. Fogg University of North London, London, United Kingdom Contributors Alexandre Bokarev Topchiev Institute of Petrochemical Synthesis, Moscow, Russia Valerii Bondar North Carolina State University, Raleigh, North Carolina Oleg Ilinich Boreskov Institute of Catalysis, Novosibirsk, Russia Sergey Shishatskii Topchiev Institute of Petrochemical Synthesis, Moscow, Russia Contributor and Evaluator Yuri Yampol’skii Topchiev Institute of Petrochemical Synthesis, Moscow, Russia Received December 11, 1998 Solubility of gases in polymers is an important property of polymeric materials relevant to many practical applications. Sorption of small molecules in polymers is a fundamental concern in such areas as food packaging, beverage storage, and polymer processing. However, by far the main interest in the solubility of gases in polymers, and especially in glassy polymers, is related to development of novel advanced materials for gas separation membranes. This is because the concentration gradient of a dissolved gas is the driving force of membrane processes. Development of these novel separation methods resulted in a rapid accumulation, in the recent literature, of thermodynamic data related to the solubility of gases in polymers at different temperatures and pressures. Polymers can be regarded as special cases of media intermediate between liquids and solids. As a consequence, modeling of gas sorption in polymers is very difficult and ©1999 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. This copyright is assigned to the American Institute of Physics and the American Chemical Society. Reprints available from ACS; see Reprints List at back of issue. 0047-2689Õ99Õ28„5…Õ1255Õ196Õ$95.00 1255 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1256 PATERSON, YAMPOL’SKII, AND FOGG presents a permanent challenge to theoreticians and experimenters. The collection and critical evaluation of solubility data for various gas–polymer systems is relevant to both practical aspects of polymer applications and to fundamental studies of polymer behavior. This volume of the IUPAC-NIST Solubility Data Series summarizes the compilations and critical evaluations of the data on solubility of gases in glassy polymers. It is implied in this edition that ‘‘gases’’ are the components that are either permanent gases 共supercitical fluids兲 or have saturated vapor pressure more than 1 atm at ambient conditions 共298 K兲. The polymeric components of compilations and critical evaluations are primarily high molecular mass, amorphous, linear 共noncross-linked兲 compounds that have the glass transition temperatures above ambient temperature. The data for each gas–polymer system have been evaluated, if the results of at least three independent and reliable studies have been reported. Where the data of sufficient accuracy and reliability are available, values are recommended, and in some cases smoothing equations are given to represent variations of solubility with changes in gas pressure and temperature. Referenced works are presented in the standard IUPAC-NIST Solubility Data Series format. Depending on the gas–polymer system, reported data are given in tabular form or in the form of sorption isotherms. The data included in the volume comprise solubilities of 30 different gases in more than 80 primarily amorphous homo and copolymers. Where available, the compilation or critical evaluation sheets include enthalpies of sorption and parameters for sorption isotherms. Throughout the volume, SI conventions have been employed as the customary units in addition to the units used in original publications. © 1999 American Institute of Physics and American Chemical Society. 关S0047-2689共99兲00305-0兴 Contents 1. Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2. Introduction to the Solubility Data Series. The Solubility of Gases in Polymers. . . . . . . . . . . . . . . 3. Critical Evaluations and Compilations of Selected Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1. Poly共4-Methylpentene-1兲—Carbon Dioxide, Methane, Other Gases. . . . . . . . . . 3.2. Poly共Vinyl Chloride兲—Nitrogen, Carbon Dioxide, Methane. . . . . . . . . . . . . . . . . . . . . 3.3. Poly共Vinyl Acetate兲—Various Gases. . . . . . 3.4. Poly共Acrylonitrile兲—Carbon Dioxide. . . . . 3.5. Poly共Methyl Methacrylate兲—Carbon Dioxide, Other Gases. . . . . . . . . . . . . . . . . . 3.6. Poly共Ethyl Methacrylate兲—Carbon Dioxide, Other Gases. . . . . . . . . . . . . . . . . . 3.7. Polystyrenes—Various Gases. . . . . . . . . . . . 3.8. Poly共Vinyl Cyclohexane Carboxylate兲— Carbon Dioxide. . . . . . . . . . . . . . . . . . . . . . . 3.9. Poly共Vinyl Benzoate兲—Various Gases. . . . 3.10. Poly共Vinyl Butyral兲—Carbon Dioxide. . . . . 3.11. Poly共Vinylmethylether兲—Propane. . . . . . . . 3.12. Poly共Vinyltrimethyl Silane兲—Various gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.13. Poly共Trimethylsilyl Propyne兲—Various Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.14. Poly共Phenylene Oxides兲—Various Gases. . 3.15. Poly共2,3-Dimethylphenylene Oxide兲— Carbon Dioxide, Methane. . . . . . . . . . . . . . . 3.16. Poly共Ethylene Terephthalate兲—Carbon Dioxide and Other Gases. . . . . . . . . . . . . . . 3.17. Polycarbonate—Carbon Dioxide. . . . . . . . . J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1259 1260 1265 1265 1267 1271 1273 1274 1283 1290 1307 1309 1312 1313 1313 1318 1323 1323 1330 1340 3.18. Polycarbonate—Sulfur Dioxide. . . . . . . . . . 3.19. Polycarbonate—Methane. . . . . . . . . . . . . . . 3.20. Polycarbonates—Propane and Other Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.21. Poly共Aryl-bis-Isopropylidene Ether Ketone兲—Carbon Dioxide and Methane. . . 3.22. Polyarylate—Various Gases. . . . . . . . . . . . . 3.23. Polyhydroxyether—Carbon Dioxide, Methane, Nitrogen. . . . . . . . . . . . . . . . . . . . . 3.24. Poly共Phenolphthalein Phthalate兲—Various Gases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.25. Polysulfone—Carbon Dioxide. . . . . . . . . . . 3.26. Polysulfone—Methane and Other Gases. . . 3.27. Cellulose—Sulfur Dioxide. . . . . . . . . . . . . . 3.28. Nitrocellulose—Various Gases. . . . . . . . . . . 3.29. Ethyl Cellulose—Various Gases. . . . . . . . . 3.30. Cellulose Acetate—Carbon Dioxide. . . . . . 3.31. Poly共␥-Methyl Glutamate兲—Carbon Dioxide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.32. Poly共-Benzyl-L-Aspartate兲—Carbon Dioxide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.33. Polyamides 共Nylons兲—Various Gases. . . . . 3.34. Polyimide Kapton H—Carbon Dioxide, Methane, Sulfur Dioxide. . . . . . . . . . . . . . . . 3.35. Polyimide Upilex R—Carbon Dioxide. . . . 3.36. Other Polyamides—Various Gases. . . . . . . 3.37. Polypyrrolone—Various Gases. . . . . . . . . . . 3.38. Block Copolymers and Polymer Blends— Various Gases. . . . . . . . . . . . . . . . . . . . . . . . 4. Structural Formulas of Polymers. . . . . . . . . . . . . . . 5. Polymer Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6. Gas Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1348 1351 1352 1363 1364 1367 1368 1371 1373 1384 1385 1385 1389 1393 1397 1398 1400 1406 1409 1413 1413 1431 1441 1443 IUPAC-NIST SOLUBILITY DATA SERIES 7. Registry Number Index. . . . . . . . . . . . . . . . . . . . . . 1443 8. Author Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1445 9. Solubility Data Series: Published Volumes 66–70. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1448 20. 21. 1. 2. 3. 4a. 4b. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. List of Figures Sorption isotherms of Ar, N2, CH4 共a兲 and CO2 共b兲 in PVC at 308 K.. . . . . . . . . . . . . . . . . . Solubility coefficients S/(cm3共STP兲 cm⫺3 atm⫺1) for gases in PVA: curves 1: Helium; curves 2: Neon; curves 3: Hydrogen. Continuous curves taken from equilibrium experiments, broken curves from diffusion experiment.. . . . . . Sorption isotherms for hydrogen in PVA at 268 K and 278 K.. . . . . . . . . . . . . . . . . . . . . . . . . Temperature dependence of the solubility coefficient S/共g g atm⫺1兲. . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in PMMA.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mixed-gas sorption of CO2 /C2H4 in PMMA at 1.53⫾0.05 atm CO2.. . . . . . . . . . . . . . . . . . . . . . . Mixed gas sorption of CO2 and C2H4 at 1.53 atm CO2 共a兲 and 3.64 atm CO2 共b兲.. . . . . . . . . . . Mixed gas sorption of CO2 and C2H4 at 3.93 atm C2H4 共a兲 and 2.06 atm C2H4 共b兲.. . . . . . . . . . Sorption isotherms for pure gases in PMMA at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High-pressure mixed-gas sorption of CO2 /NO2 at 5.00 atm N2O.. . . . . . . . . . . . . . . . . . . . . . . . . . High-pressure mixed-gas sorption of CO2 /C2H4 at 5.05 atm CO2.. . . . . . . . . . . . . . . . . . . . . . . . . . High-pressure mixed-gas sorption of CO2 /C2H4 at 4.87 atm C2H4. . . . . . . . . . . . . . . . . . . . . . . . . . Temperature dependence of 共a兲 p g /MPa and 共b兲 C g /(cm3共STP兲cm⫺3).. . . . . . . . . . . . . . . . . . . Temperature dependence of the solubility coefficients.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in PEMA.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in PEMA at 288, 298, 308, and 318 K.. . . . . . . . . . . . . . . . Temperature dependence of Langmuir ⬘ /共cm3共STP兲 cm⫺3兲.. . . . adsorption parameter C H Temperature dependence of apparent solubility coefficient S/共cm3共STP兲 cm⫺3 atm⫺1兲.. . . . . . . . . The solubility of chlorodifluoromethane 共Freone 22兲 in PS was measured only in three papers.1–3 Barrie et al.3 studied this system using a gravimetric technique in the temperature range 293–333 K. At much higher temperatures, this system was investigated by means of inverse gas chromatography.2 The figure shows the temperature dependence T/K of the solubility coefficient S/共cm3共STP兲 g⫺1 atm⫺1兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in various monodisperse polystyrenes at 308 K.. . . 1269 22. 23. 1271 1272 24. 1274 25. 1276 26. 1277 27. 1278 28. 1279 1280 1280 29. 1281 1281 1283 30. 1284 1284 31. 1285 1291 1291 32. 33. 34. 1294 1298 35. 36. Effect of temperature on sorption isotherms of carbon dioxide in PS containing 3% by mass of mineral oil 共a兲 and 10% by mass of TCP 共b兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption and desorption isotherms of carbon dioxide in PVB. Open and filled symbols represent sorption and desorption, respectively... Sorption and desorption isotherms of carbon dioxide in PVB at 298 K: 共䊐兲 first sorption run; 共䊊兲共䊉兲 subsequent sorption and desorption runs.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption and desorption isotherms of carbon dioxide in PVBu at 298 K: 共䊐兲 first sorption run; 共䊊兲共䊉兲 subsequent sorption and desorption runs.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of various gases in PTMSP at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of various gases in PTMSP at 298 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of various gases in PTMSP at 298 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of various gases in PPO at 298 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mixed gas sorption CO2 /CH4 in poly共phenylene oxide兲 at 308 K. 共Solid lines兲 sorption model for mixed gas sorption C i ⫽k Di p i ⬘ b i p i /(1⫹b i p i ⫹b j p j ). 共Dotted lines兲 ⫹C Hi sorption model for pure gases.. . . . . . . . . . . . . . . Mixed gas sorption CO2 /CH4 in CPPO at 308 K and two different pressures. 共Solid lines兲 sorption model for mixed gas sorption ⬘ b i p i /(1⫹b i p i ⫹b j p j ). 共Dotted C i ⫽k Di p i ⫹C Hi lines兲 sorption model for pure gases.. . . . . . . . . . Temperature dependence of Langmuir ⬘ /共cm3共STP兲 cm⫺3兲. 共䊐兲 adsorption capacity C H Ref. 1; 共䊏兲 Ref. 2; 共䊉兲 Ref. 5: 共䊊兲 Ref. 9 共crystallization by exposure to CO2兲; 共⽧兲 Ref. 9 共crystallization by heating兲.. . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in CO2-conditioned crystalline PETP, measured after CO2 sorption experiment at 308 K. Open and filled symbols represent sorption and desorption, respectively.. . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in amorphous PETP. The dotted arrows show the decreases in concentration accompanying crystallization. Open and filled symbols represent sorption and desorption, respectively... Sorption isotherms of carbon dioxide in c-PETP.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in h-PETP.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in PBTP... Effect of temperature on carbon dioxide sorption in PC for ‘‘as-received’’ material conditioned at 20 atm of CO2.. . . . . . . . . . . . . . . 1257 1299 1309 1310 1312 1318 1320 1320 1323 1324 1329 1330 1334 1334 1335 1335 1339 1343 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1258 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. PATERSON, YAMPOL’SKII, AND FOGG Equilibrium sorption of carbon dioxide in PC samples annealed at 398 K. Sorption measurements were made at 308 K after conditioning at 20 atm of CO2.. . . . . . . . . . . . . . Same as for Fig. 37 except that the annealing temperature was equal to 408 K.. . . . . . . . . . . . . Sorption and desorption isotherms of carbon dioxide in polycarbonate at 308 K. Open and filled symbols represent sorption and desorption, respectively.. . . . . . . . . . . . . . . . . . . . Sorption isotherms of CO2 in PC at 308 K for conditioning pressures of 300, 600, and 900 psia. 共䊊兲 ‘‘as-received,’’ 共䊉兲 CO2 conditioned... Initial CO2 sorption and desorption in PC at 308 K after conditioning pressures of 300, 600, and 900 psia. 共䊊兲 ‘‘as-received,’’ 共䊉兲 desorption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of CO2 at 308 K in CO2-conditioned, ‘‘as-received,’’ and annealed PC. The annealed sample was first CO2 conditioned at 900 psia and then annealed at 408 K for 500 h under vacuum. 共䊊兲 ‘‘as-received,’’ 共䊉兲 900 psia conditioned, 共䊐兲 annealed.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of sulfur dioxide in polycarbonate.. . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of methane in polycarbonate for unconditioned, carbon dioxide conditioned and exchange conditioned samples.. . . . . . . . . . . Sorption isotherms for propane in PC.. . . . . . . . . Sorption isotherms of various gases in polycarbonate at 308 K.. . . . . . . . . . . . . . . . . . . . Comparison of sorption isotherms of methane at 308 K in TMPC for unconditioned and conditioned films.. . . . . . . . . . . . . . . . . . . . . . . . . Comparison of sorption isotherms of methane at 308 K in TCPC for unconditioned and conditioned films.. . . . . . . . . . . . . . . . . . . . . . . . . Comparison of sorption isotherms of methane at 308 K in TBPC for unconditioned and conditioned films.. . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide at 308 K in polycarbonates conditioned by prior CO2 exposure.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of methane at 308 K in polycarbonates conditioned by prior CO2 exposure. 共䊊兲 PC; 共⽧兲 TMPC; 共䊐兲 TCPC; 共䊉兲 TBPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of nitrogen at 308 K in polycarbonates without prior CO2 exposure.. . . . Sorption 共open points兲 and desorption 共filled points兲 isotherms of carbon dioxide in TMPC for maximum conditioning pressures of 37.95 共䊊兲, 共䊉兲 and 62.1 共䊐兲, 共䊏兲 atm. 共⽧兲 second desorption. . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in PAEK-6H6F 共䊊兲 and PAEK-6F6H 共䊉兲.. . . . . . . J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 55. 56. 1343 1343 57. 58. 1344 59. 1347 60. 61. 1347 62. 63. 1347 1350 1352 1353 64. 65. 66. 67. 68. 1354 69. 1355 1355 1356 70. 71. 1356 1356 1356 72. 73. 1358 1363 Sorption isotherms of sulfur dioxide in polyarylate.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide 共䊐兲, methane 共䊉兲, and ethane 共䊊兲 in the polymer at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isoterms of various gases in Kodar A-150 at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . 共a兲 log S vs 1/(T/K); 共b兲 log kD vs 1/(T/K); ⬘ vs T/K. 关共䊉兲 共c兲 log b vs 1/(T/K); 共d兲 C H Ref. 1; 共䊊兲 Ref. 4; 共䊐兲 Ref. 5; 共⽧兲 Ref. 6.兴. . . . Sorption isotherms of various gases in ‘‘as-received’’ polysulfone films.. . . . . . . . . . . . . Effects of history of sample treatment on sorption isotherms: CO2 sorption at 308 K. . . . . Effect of temperature on CO2 sorption isotherms in pure polysulfone.. . . . . . . . . . . . . . . Effect of the content of DDS 共mass %兲 on CO2 sorption isotherms for polysulfone at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effect of the content of PNA 共mass %兲 on CO2 sorption isotherms for polysulfone at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effect of the content of TCP 共mass %兲 on CO2 sorption isotherms for polysulfone at 308 K..... Sorption isotherms of carbon dioxide in polysulfone.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of methane in polysulfone... Temperature dependence of apparent solubility coefficient S/共cm3共STP兲 cm⫺3 atm⫺3兲.. . . . . . . . . Temperature dependence of Henry’s law solubility coefficient k D /共cm3共STP兲 cm⫺3 atm⫺1兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide. Continuous curves: Gas solubilities calculated from the dual mode sorption model. Dotted curve: Gas solubility at 343 K calculated from the empirical relation C⫽1.4 p exp(⫺0.02p). . . Solubility isotherms of methane in cellulose 2.4-acetate 共sample I兲. Solubility⫽共vol. of gas at STP/cm3兲/共mass of unswollen polymer/g兲. . . . Reproducibility of solubility isotherms of methane in cellulose 2,4-acetate at 293 K. Solubility⫽共vol. of gas at STP/cm3兲/共mass of unswollen polymer/g兲. 共Solid line兲 calculated from the dual mode sorption model with sample I, after exposure to CO2; 共䊊兲 measurements with sample II prior to CO2 exposure; 共䊉兲 measurements with sample II after exposure to high-pressure CO2.. . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in cellulose acetate. . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide 共a兲 and xenon 共b兲 in PMG. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊐兲 293 K, 共䊉兲 298 K, 共䊊兲 303 K, 共⫹兲 308 K. Broken line is heat treated sample.. . . . . . . . . . . . . . . . . . . . . . . . 1366 1370 1371 1372 1375 1375 1377 1377 1377 1377 1379 1379 1389 1390 1391 1392 1392 1393 1393 IUPAC-NIST SOLUBILITY DATA SERIES 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. Sorption isotherms of xenon in PELG. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊐兲 293 K, 共䊉兲 298 K, 共䊊兲 303 K, 共⫹兲 308 K. Broken line is heat treated sample.. . . . . . . . . Sorption isotherms of xenon in poly共n-alkyl-L-glutamates兲 at 298 K. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊏兲Me, 共䊐兲 Et, 共䊉兲 Pr, 共䊊兲 Bu, 共⫹兲 Amyl.. . . . Fugacity ratio calculated by corresponding state principle, Refs. 1 and 2. Sorption⫽共vol. of gas at STP/cm3兲/mole of residue. Sorption isotherms of carbon dioxide in PBLG. 共䊏兲 PBLG cast from benzene at 318 K, 共䊐兲 same film heat treated, 共䊉兲 PBLG cast from benzene at 333 K, 共䊊兲 same film heat treated, 共⫹兲 cast from ethylene dichloride at 298 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in the ␣ and forms of PBLA. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊐兲 303 K, 共䊉兲 308 K, 共䊊兲 313 K. Continuous line: ␣ form; Broken line: form.. . . . . . . . . . . . Sorption isotherms of carbon dioxide in Kapton H at 333 K. Different symbols stand for different runs.. . . . . . . . . . . . . . . . . . . . . Sorption isotherms of methane in Kapton H at 333 K. Different symbols stand for different runs.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms in commercial Kapton H 共䊊兲 and synthesized samples of polyimide 共䊉兲 obtained by reaction of pyromellitic dianhydride and oxydianiline PMDA–ODA.. . . . Sorption isotherms of sulfur dioxide in polyimide Kapton H.. . . . . . . . . . . . . . . . . . . . . . . Temperature dependence of apparent solubility coefficient S/共cm3共STP兲 cm⫺3 atm⫺1兲.. . . . . . . . . Temperature dependence of the affinity parameter b/共atm⫺1兲.. . . . . . . . . . . . . . . . . . . . . . . Temperature dependence of Henry’s law solubility coefficient k D /共cm3共STP兲 cm⫺3 atm⫺1兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in polyimide Upilex R.. . . . . . . . . . . . . . . . . . . . . . . Sorption isotherms of nitrogen and oxygen in CVC–VA at 298 K for different times of annealing at 433 K: 共a兲 as cast; 共b兲 5 h annealing: 共c兲 15 h annealing.. . . . . . . . . . . . . . . . Sorption isotherms of carbon dioxide in CVC– VA at 298 K for different times of annealing at 433 K: 共a兲 as cast; 共b兲 1 h; 共c兲 5 h; 共d兲 10 h; 共e兲 15 h.. . . . . . . . . . . . . . . . . . . . . . . . . . . . Sorption 共open symbols兲 and desorption 共closed symbols兲 isotherms of sulfur dioxide in block-copolymers with mass % siloxane content of 13% 共circles兲 and 42% 共squares兲.. . . . 1259 89. 1395 1395 1396 1397 1400 1401 1402 1405 1406 1406 1406 1408 1414 1415 1418 Sorption isotherms of sulfur dioxide in silane-siloxane copolymers with mass % siloxane content of: 0% 共1兲, 4% 共2兲, 13% 共3兲, 22% 共4兲, 34% 共5兲, 38% 共6兲, 42% 共7兲, 62% 共8兲, 100% 共9兲.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90. Sorption of carbon dioxide was studied in homogeneous and phase separated blends PMMA/CPSAN 共50/50 by mass兲. The composition of CPSAN is 28 mass % of acrylonitrile. The parameters of dual mode sorption isotherm for carbon dioxide in the blends at 308 K are: k D ⫽0.89 cm3共STP兲/ ⬘ ⫽16.6 cm3共STP兲/cm3; cm3 atm; C H b⫽0.183 atm⫺1. Sorption isotherm of carbon dioxide in homogeneous 共䊉兲 and phase-separated 共䊊兲 PMMA/CPSAN blends.. . . 91. Sorption isotherm of carbon dioxide in an amorphous blend containing 65% PMMA and 35% PVF2 at 308 K.. . . . . . . . . . . . . . . . . 92. Sorption isotherms of carbon dioxide in PMMA/PVF2 blends at 308 K 共mass % PVF2兲... 93. Sorption isotherms of carbon dioxide in PMMA/PVF2 blends at 308 K for 35 and 50 mass % of PVF2.. . . . . . . . . . . . . . . . . . . . . . . 94. Sorption isotherms of Ar, CH4 and N2 in PVF2 at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95. Sorption isotherms of Ar, CH4, and N2 in PMMA at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . 96. Sorption isotherms of argon in PMMA/PVF2 blends at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . 97. Sorption isotherms of carbon dioxide in conditioned blends and homopolymers at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98. Sorption isotherms of methane in unconditioned blends and homopolymers at 308 K.. . . . . . . . . . 99. Sorption isotherms of carbon dioxide in TMPC/ PS blends at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . 100. Sorption isotherms of methane in TMPC/PS blends at 308 K.. . . . . . . . . . . . . . . . . . . . . . . . . . 1418 1420 1420 1421 1421 1422 1422 1423 1423 1424 1428 1429 1. Preface The solubility of gases in polymers is an important property of polymeric materials relevant to many practical applications. In addition, information on the solubility of gases, its dependence on temperature, pressure, and pretreatment of polymer are indicative of polymer structure and mechanism of gas sorption and diffusion in polymers. The shape of solubility isotherms can indicate behavior at the molecular level. Sorption of small molecules in polymers is a fundamental concern in such areas as packaging and polymer processing. Dissolution of gases in polymers, especially at high pressure, takes place in many industrial processes and data on the solubility of gases are required in diverse and important applications. Examples include the dissolution of ethene and J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1260 PATERSON, YAMPOL’SKII, AND FOGG other gases in the process of high pressure polymerization of ethene, gas dissolution in injection molding processes, and postreactor polymer processing. However, the main interest in the solubility of gases in polymers is due to the development of novel advanced materials for gas separation membranes. The driving force in gas transport through such nonporous polymeric membranes is the gradient of concentration of diffusing molecules across the membrane. Therefore, the solubility, the form of sorption, isotherms, and the values of their parameters are of utmost importance for understanding sorption and transport of gases and development of better gas separation processes. An interesting manifestation of this tendency is that 90% of the data available today on gas solubility in polymers and sorption thermodynamics were obtained during the last 10–15 yr, and these years were marked by important advances in the development of membrane gas separation processes. This volume in the Solubility Data Series contains tabulated collections and critical evaluations of original data for the solubility of gases in glassy polymers. A later volume will contain compiled and evaluated data for the solubility of gases in rubbery and semicrystalline polymers as well as updated data for crystalline polymers. In some cases, the published data include the solubility at temperatures higher than the glass transition temperature of a polymer that is glassy under ambient conditions, for example polystyrene at 373–473 K. In such cases the editors preferred not to split the solubility data between two volumes and included corresponding compilation sheets in this volume. The chemical structure of the repeat units of polymers was accepted as the basis for organizing the material within this volume. First, carbon-chain polymers are considered followed by heterochain polymers. Each polymer studied in a particular published work has been given a separate compilation sheet. Data from the same published work for the dissolution of different gases in the same polymer have been entered in the same compilation sheet. Gases are considered in sequences of increased complexity from monatomic to diatomic and so on. If several compilation sheets are available for the same polymer–gas system, the material is arranged in chronological order. Enthalpies of solution are also reported where available. Abundant data that are available in the literature on gas solubility in polymers can be divided into two groups: the data based on direct measurements using volumetric, gravimetric, chromatographic or other methods; and the data acquired via an indirect way using the equation S⫽ P/D, where S is the solubility coefficient, and P and D are the gas permeability and diffusion coefficients, respectively. Although in many cases the values obtained using both approaches are in reasonable agreement, the authors of the present volume have not compiled solubility data obtained by an indirect method because these data are less reliable. Critical evaluations were prepared only in those cases where: J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 共1兲 two or more papers were available for the given gas– polymer system; 共2兲 the data corresponded to overlapping ranges of variation of pressure and/or temperature. In only a few cases, however, has there been a sufficient number of detailed studies to enable the evaluator to recommend a set of solubility values. The data were gathered from a search of the chemical literature from the first years of this century to the first part of 1991. The editors would like to acknowledge the help and advice from several fellow members of the IUPAC Commission on Solubility Data and in particular Professor Larry Clever 共Emory University, USA兲 and Dr. Peter Fogg 共U.K.兲. Enormous help of S. McFadzean and Marielle Lorusso in the final part of the preparation of the manuscript is also acknowledged and much appreciated. Professor D. R. Paul and Professor W. J. Koros, from The University of Texas at Austin, kindly provided us with the reprints and preprints of their numerous papers. This greatly facilitated our work on compilation and critical evaluation of data. Russell Paterson University of Glasgow, Glasgow, Scotland Yuri Yampolskii Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia. 2. Introduction to the Solubility Data Series. The Solubility of Gases in Polymers The Solubility Data Project aims to make a comprehensive search of the literature for data on the solubility of gases, liquids, and solids in liquids. Polymers can be regarded as a special case of media intermediate by their properties between liquids and solids. The data for each system are evaluated, and where data of sufficient accuracy and reliability are available, values are recommended and in some cases a smoothing equation is suggested to represent the variation of solubility with gas pressure and/or temperature. In the case of polymers, the correlations of the solubility with some parameters of gases can also be given. A text presenting an evaluation and recommended values and the compiled data sheets are published on consecutive pages. Definition of Gas Solubility The distinction between solubilities of gases in liquids 共polymers兲 and vapor–liquid equilibrium is arbitrary. It is generally accepted that the equilibrium set up between a polymer and a typical gas as argon at 298 K, i.e., above its critical temperature, is gas–liquid solubility, where as the equilibrium set up at the same temperature between the same polymer and n-butane is an example of vapor–liquid equi- IUPAC-NIST SOLUBILITY DATA SERIES librium. In this volume, we have taken a fairly liberal view that is in line with the general policy of all the volumes of the Solubility Data Series. We defined gases as the compounds having vapor pressure more than 1 atm at the temperature 298 K, or having the normal boiling point of 298 K or above. So, e.g., the equilibrium solubility of 2,2-dimethylpropane 共neo-pentane兲 was included whereas the solubility of n-pentane was not. The solubility of the vapor of the compounds that are liquid at 298 K will be considered in a subsequent volume of Solubility Data Series. It is much more difficult to define adequately polymers as solvents. A transition from low molecular mass compounds to high polymers proceeds continuously, and establishing a boundary between these two kinds of chemical objects is always arbitrary. However, help in this essentially tentative choice can come if we bear in mind the fact that studies of solubility in polymers stemmed from many practical applications of high polymers found as construction, barrier, or packaging materials, membranes, etc. In all these cases polymers having molecular mass higher than 20,000–30,000 are used. Another important feature of polymers as solvents is that high molecular mass compounds in a vast majority of cases exist as mixtures of different sorts of molecules having different number of repeat units 共polymer homologues兲, concentration of branchings, cross-links, etc. Additionally, in many cases polymer samples contain some residual solvents, traces of catalysts, curing agents, plasticizers and other additives or impurities. So in contrast to the contents of other volumes, dealing with solubility of gases in liquids, here the data reported characterize solubility in complex, sometimes poorly defined, and by no means pure chemicals. Another problem is related to the fact that glassy polymers are quasiequilibrium objects, since the relaxation processes are too slow at the temperatures below the glass transition temperature T g . Hence, all the information obtained for solubility of gases in glassy polymers is, strictly speaking, nonequilibrium. Well known manifestations of this phenomenon are prehistory effect on solubility and the parameters of sorption isotherms, the effects of annealing, importance of the protocol of measuring the solubilities of different gases at high pressure, and so on. All this causes the difficulties in comparison of the results of independent studies and hampers the selection of the recommended values in Critical Evaluations. Units and Quantities The solubility of gases in polymers is of interest to different fields of polymer science and technology, as well as to other disciplines. The data have been acquired during the last 70 yr in various laboratories by means of diverse instruments. Therefore a variety of ways for reporting gas solubility has been used in the primary literature, and inevitably sometimes, because of insufficient available information, it has been necessary to use several quantities in the compiled tables and plots. Where possible, the gas solubility has been quoted as a quantity of dissolved gas reduced to standard 1261 conditions 共pressure 1 atm, temperature 273.2 K兲 or cm3共STP兲 per 1 cm3 of polymer. Other quantities of the solubility of gases in polymers, which are in use, will be considered below. The units of pressure used are Pascals, atmospheres, bars, and millimeters or centimeters of mercury. Temperature are reported in Kelvin. Enthalpies of solution data are given in kJ mol⫺1. Evaluation and Compilation The solubility of relatively few systems is known with sufficient accuracy to enable recommended values to be advanced. This is especially true for the solubility in polymers, as polymer samples studied by different authors rarely coincide 共different manufacturers of the specimens, variation in molecular mass or molecular mass distribution, etc.兲. Although a considerable number of systems have been studied by at least two researchers, the range of pressure and/or temperature is often different, thus preventing a meaningful comparison of the data. Occasionally, one has only to guess why several groups of workers sometimes obtain very different results under the same conditions, although all the data reported seem to be flawless or, at least, plausible and internally consistent. In such cases, sometimes an incorrect assessment has been given. Bearing in mind the mentioned peculiarities of gas– polymer systems, and especially those concerning glassy polymers, Critical Evaluations were prepared mainly for the systems where three or more sources reported solubility data. In contrast to the policy accepted by the evaluators of other volumes of Solubility Data Series, the present authors, in some cases, included the correlations of the solubility coefficients or the parameters of sorption isotherms with different characteristics of gases that allow to estimate the properties for other gas–polymer systems. Sources and Purity of Materials The purity of the gases has been quoted in the compiled sheets where given in the original publications. Contrary to what is usually accepted for solubility of gases in liquids, even small impurities of heavier gas components can be a source of error in reported gas solubility values. However, since a purity of gases is adequately reported in most cases, appropriate corrections can be introduced if necessary. It is much more difficult to assess 共or define兲 the purity of polymers. In many cases, the only information available in the papers were the name of producing company and a trademark of the polymer material. The properties more often quoted in the publications are a density and a glass transition temperature. The procedure of the preparation and/or pretreatment of the films is of utmost importance, and, where possible, are also quoted in data sheets. J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1262 PATERSON, YAMPOL’SKII, AND FOGG Apparatus and Procedures Sorption Isotherms In the compiled data sheets, some key points are made of the instruments for solubility measurement and procedure used. There are several books or papers where the experimental methods of the determination of gas solubility in polymers are considered in more length. They are given in Refs. 1–9. Contrary to gas solubilities in common liquids, the solubility of gases in polymers is a nonlinear function of pressure if the latter is changed in sufficiently wide range. So a standard way of presenting solubility at a certain temperature is giving, in numerical or, more often, graphical form the dependence of solubility of pressure, or sorption isotherms. It is traditional to distinguish sorption and desorption isotherms. The former are obtained in a regime of growing pressure, the latter when a part of sorbed gas is allowed to desorb from the sample. When sorption is studied under conditions of full equilibrium, i.e., above the glass transition temperature, the sorption and desorption isotherms coincide. If the system is departed from the equilibrium, sorption hysteresis is observed at higher pressures or for highly sorbed gases. Desorption isotherms in glassy polymers lie always above sorption isotherms owing to the conditioning effect caused by high pressure gas. Usually, the model parameters are reported for sorption isotherms. At sufficiently low pressure the isotherms of all the systems can be reduced to directly proportional dependence Methods of Expressing Gas Solubilities Because gas solubilities have been determined by means of different methods, they have been expressed in a variety of ways. Sometimes solubility is reported as C mw 共mol/g兲 or in number of moles of a gas dissolved in a unit of mass of polymer. When determined using a gravimetric method, solubility is given as C ww 共g/g兲 as a quantity of gas in grams per 1 g of polymer. Volumetric methods of the determination of solubility allow to measure it as C v w 共cm3共STP兲/g兲 or as a volume of gas reduced to the standard conditions dissolved in 1 g of polymer. However, the most frequently used unit for the solubility is C vv or the volume of gas reduced to the standard conditions dissolved in 1 cm3 of the polymer. When a polymer sample is exposed to high pressure gas, its volume is decreased n a fraction determined by its PVT behavior. However, these effects are important only at very high pressure, and in solubility measurements have been introduced very seldom, if ever. Much more relevant are the effects of swelling or dilation of polymer samples in contact with high or even medium pressure gas. Indeed, the dilation isotherms have been reported together with sorption isotherms in many papers. Therefore, the corrections, taking into account the changes in the solubility C vv owing to dilation, can be introduced. However, this was not done in most cases, mainly because a magnitude of such corrections is minor, as a rule, in comparison with the accuracy of the determination of gas solubility. Hence, in majority of the cases the C vv values characterize the solubility of gas in cm3共STP兲 per cm3 of a pure polymer. In some very rare cases solubility is expressed as the standard volume of gas per repeat unit of the polymer 共expressed in g moles兲. All these quantities are interrelated. C ww ⫽M C mw , where M is the molecular mass of the gas C v w ⫽22 146C mw ⫽22 416M /C ww . If we neglect the swelling of polymer in the process of sorption: C vv ⫽C v w , where is the density of the polymer at the temperature of measurement. J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 C⫽S p, where C is the solubility expressed in either way discussed above, p is pressure, and S is the solubility coefficient. S is the reciprocal value of Henry’s coefficient H defined by the equation of Henry’s law p⫽HC. If S is expressed in cm3共STP兲 per cm3 of polymer per atm, it coincides with the Bunsen coefficient defined as the volume of gas reduced to 273.2 K and 1 atm pressure which is dissolved in a unit volume of solvent 共at the temperature of measurement兲. In gas chromatographic determination of solubility, one obtains experimentally the mass fraction Henry’s coefficient H 1 ⫽ p 1 / 共 m 1 /m 2 兲 , where p 1 is the partial pressure of gas, m 1 is the mass of gas, and m 2 is the mass of polymer, which are in equilibrium. When passing on to the volume of gas and assuming ideal behavior of the gas one obtains S⫽1/H 1 ⫽22 416 2 /M 1 , where 2 is the density of polymer and M 1 is the molecular mass of the gas. When p and the concentration of dissolved gas are increased, deviations from Henry’s law isotherms are observed. Positive deviations, or sorption isotherms convex to the pressure axis, are characteristic for polymers at temperatures above their glass transition temperature. Under such conditions, a satisfactory description of the main part of the systems gas–high molecular weight solvent can be achieved by using Flory–Huggins equation to describe sorption isotherms10 ln a 1 ⫽ln f 1 ⫹ f 2 ⫹c 12 f 22 , IUPAC-NIST SOLUBILITY DATA SERIES where a 1 is the activity of gas phase, f is the volume fraction, indices 1 and 2 refer to the dissolved gas and polymer, and c 12 is the Flory–Huggins parameter characterizing the noncombinatoric contribution into the free energy of the gas– polymer system. For vapors a good approximation of the activity is the ratio p/p 0 , where p is the pressure of the gas and po is its saturated vapor pressure at the temperature of measurement. In the Flory–Huggins equation the f 1 values serve as the measure of gas solubility. The volume fractions f 1 and f 2 are interrelated as f 1 ⫹ f 2 ⫽1. An inconvenient feature of this transcendental equation is that it cannot be solved in a straightforward manner to express the solubility f 1 as a function of activity or pressure. Negative deviations from Henry’s law or the isotherms concave to the pressure axis are characteristic for sorption of gases in glassy polymers, and in the vast majority of the cases are described by the dual mode sorption 共or Henry⫹Langmuir兲 model11,12 ⬘ bp/ 共 1⫹bp 兲 , C⫽C D ⫹C H ⫽k D p⫹C H where k D 共cm3共STP兲/cm3 atm兲 is Henry’s law solubility co⬘ 共cm3共STP兲/cm3兲 is Langmuir’s sorption capacefficient, C H ity parameter, and b 共atm⫺1兲 is the affinity parameter. The initial slope of an isotherm is characterized by the equation ⬘ b 兲 p. C⫽ 共 k D ⫹C H ⬘ b is often considered as an apparent so the value k D ⫹C H solubility coefficient in glassy polymers. At higher pressure pⰇ1/b the isotherm approaches the asymptote described by the linear equation ⬘ ⫹k D p. C⫽C H A transition from low pressure to high pressure range occurs at p⫽1/b, where two asymptotes intersect. However, the b value for a certain gas–polymer system is unknown in advance, whereas the experimental range of pressure is often limited. Therefore, graphical determination of three parameters of the dual mode sorption model is quite unreliable. Usually, nonlinear least squares procedures are employed in the simultaneous search for three model parameters or, otherwise, one can be obtained from an independent source, while two others are found by linear least squares method. The dual mode sorption model is not a single way to describe the isotherms concave to the pressure axis. Several other models and equations have been proposed to fit satisfactorily the experimental data. We shall consider here some of them, which contain preferably a minimum number of parameters and do not require for their use knowledge of different properties of pure polymer and the gas–polymer system. A discussion of more sophisticated models and their physical basis can be found in Ref. 13. Freundlich isotherm might offer an equally acceptable way of analyzing the experimental data. The isotherm can be used in either this C⫽k pn, or this form 1263 C⫽a p⫹kpn, where n⬍1. Other types of two terms 共multiparameter兲 models have been discussed in the literature, among them the Langmuir1⫹Langmuir2 type15 ⬘ p/ 共 1⫹b 1 p 兲 ⫹b 2 C H2 ⬘ p/ 共 1⫹b 2 p 兲 . C⫽b 1 C H1 Another model that was proposed to fit this type of sorption isotherms is the so called matrix model16 C⫽S 0 exp共 ⫺aC 兲 p. The extension of the gas pressure range studied resulted in finding at higher pressures a new form of the isotherm: at a certain pressure (p g ) and solute’s concentration (C g ) the isotherm suffers an inflection; above pg it becomes linear or convex to the pressure axis. This was explained by plasticization induced by sorbed gas and a corresponding decrease in the glass transition temperature T g from the T g0 value characteristic for pure polymer to the experimental temperature T. Several models were proposed to explain this behavior and describe this more complex form of the curve. Mauze–Stern isotherm:17 ⬘ b p/ 共 1⫹b p 兲 . C⫽ 关 k D exp共 sC 兲兴 p⫹C H Paul’s et al. isotherm:18 ⬘ 关共 T g ⫺T 兲 / 共 T g0 ⫺T 兲兴 b p/ 共 1⫹bp 兲 . C⫽k D p⫹C H0 Here and in subsequent equations, T g as a function of C can be estimated from the relation of Chow.19 Kamiya’s et al. isotherm:20 ⬘ b p/ 共 1⫹b p 兲 其 共 1⫺C * /C g 兲 , C⫽C D ⫹C H ⫽k D p⫹ 兵 C H0 where C * ⫽C D ⫹ f C H with 0⬍ f ⬍1. All these models are based on the dual mode sorption model and differ from it by the introduction of various corrections in order to take into account plasticization and a more complex form of an isotherm. However, the same shape of the curve can be described by an entirely different form of equation. Some of the examples will be given below. Stern’s et al. equation:21 2 C⫽S 0 p exp关 AT g 共 T g ⫺T g0 兲共 T g0 ⫺T 兲 /T g0 兴, and Laatikainen–Lindstrom’s equation:22 C⫽Aa p/ 兵 共 1⫺b p 兲关 1⫹ 共 a⫹b 兲 p 兴 其 . Several alternative macroscopic and microscopic models having more sound physical basis have been proposed 共see e.g., Refs. 23–26兲. However, much information 共usually unavailable兲 about the polymer, sorbed gas, and gas–polymer interaction is required to use them in fitting or predicting the gas solubility in polymers. In cases where nonideal behavior of gas phase is significant, all these equations can be expressed in terms of solute fagucity f rather than pressure. However, the model parameters obtained when using the f and p values do not differ dramatically 共see, for example, Ref. 27兲. J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1264 PATERSON, YAMPOL’SKII, AND FOGG References R. M. Barrer, Diffusion in and Through Solids 共Cambridge University Press, Cambridge, 1941兲. 2 A. I. Sarakhov, Balance in Physiochemical Studies 共Nauka, Moscow, 1968兲. 3 R. M. Felder and G. S. Huvard, Methods of Experimental Physics, edited by R. A. Fava 共Academic NY, 1980兲, Vol. 16C, pp. 315–377. 4 J. L. Lundberg, M. B. Wilk, and M. J. Huyett, J. Polym. Sci. 57, 165, 275. 5 J. L. Lundberg, M. B. Wilk, and M. J. Huyett, Ind. Eng. Chem., Fundam 2, 37 共1963兲. 6 W. R. Vieth, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22, 360 共1966兲. 7 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 8 E. S. Sanders, W. J. Koros, H. B. Hopfenberg and V. T. Stannett, J. Membr. Sci. 13 共1983兲. 9 J. M. Braun and J. E. Guillet, Adv. Polym. Sci. 21, 107 共1976兲. 10 P. Flory, Principle Polymer Chemistry 共Cornell University Press, Ithaca, NY, 1953兲. 11 R. M. Barrer, J. A. Barrie, and J. Slater, J. Polym. Sci. 27, 177 共1958兲. 1 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 D. R. Paul, Ber. Bunsenges. Phys. Chem. 83, 294 共1979兲. J. H. Petropoulos, Polymeric Gas Separation Membranes, edited by D. R. Paul and Yu. P. Yampo’skii 共CRC, Boca Raton, 1994兲 p. 17. 14 Z. Grzywna and J. Podkowka, J. Membr. Sci. 8, 23 共1981兲. 15 S. A. Stern and S. S. Kulkarni, J. Membr. Sci. 10, 235 共1982兲. 16 D. Raucher and M. Sefcik, ACS Symp. Ser. 223, 111 共1983兲. 17 G. R. Mause and S. A. Stern, J. Membr. Sci. 12, 51 共1982兲. 18 J. S. Chiou and D. R. Paul, J. Appl. Polym. Sci. 32, 2897 共1986兲. 19 T. S. Chow, Macromolecules 13, 362 共1980兲. 20 Y. Kamiya, T. Hirose, K. Mizoguchi, and Y. Naito, J. Polym. Sci., Polym. Phys. Ed. 24, 1525 共1986兲. 21 Y. Mi, S. Zhou, and S. A. Stern, Macromolecules 24, 2361 共1991兲. 22 M. Laatikainen and M. Lindstrom, Acta Polytech. Scand., Chem. Techn. Metal. Ser. 178, 105 共1987兲. 23 M. A. Krykin, Vysokomol. Soedin., Ser A 31, 1036 共1989兲. 24 J. G. A. Bitter, Transport Mechanism in Membrane Processes 共Plenum, NY, 1990兲. 25 J. S. Vrentas and C. M. Vrentas, Macromolecules 24, 2404 共1991兲. 26 G. G. Lipscomb, A. I. Ch. E. J. 36, 1505 共1990兲. 27 G. K. Fleming and W. J. Koros, Macromolecules 23, 1356 共1990兲. 12 13 3. Critical Evaluations and Compilations of Selected Systems 3.1. Poly„4-Methylpentene-1…—Carbon Dioxide; Methane, other gases Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共4-methylpentene-1兲 共PMP兲; 关25068-26-2兴 共I兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis. Russian Academy of Sciences, April, 1994 Critical Evaluation: One two, although detailed, works have been performed on gas solubility in this semicrystalline polyolefin. Tigina 1 studied the solubility of several gases at different temperatures 共280–350 K兲 and up to high pressure, but only for a single sample with a crystallinity of 90%. On the other hand, Puleo et al.2 investigated the solubility at the narrower pressure range 共0–2.0 MPa兲, but for several samples with crystallinity varying from 21.6% to 66.4%. This enabled the calculation of the contributions to the solubility coefficients characteristic of amorphous and crystalline phases of PMP. The solubility coefficients S/cm3共STP兲 cm⫺3 atm⫺1 of PMP with 90% content of crystalline phase at 310 K are compared below. Ref. 2* Components: 共1兲 Helium; He; 关7440-59-7兴 Hydrogen; H2 ; 关1333-74-0兴 Nitrogen; N2 ; 关7727-37-9兴 Carbon dioxide; CO2 ; 关124-38-9兴 Methane; CH4 ; 关74-82-8兴 共2兲 Poly共4-methylpentene-1兲 共PMP兲 关25068-26-2兴 共I兲 Original Measurements: O. N. Tigina, dissertation, GIAP, Moscow, USSR, 1983. Variables: T/K⫽280– 350 p/MPa⫽0.1– 15 Prepared By: S. M. Shishatskii Experimental Data Henry’s law solubility coefficients S/mol/m3 Pa T/K Pressure range, MPa S104 N2 300 310 320 350 0.1–14 0.1–14 0.1–14 0.1–15 0.395 0.383 0.365 0.325 Gas Ref. 1 A B CO2 CH4 0.51 0.346 0.28 0.078 0.12 0.091 CO2 300 310 320 0.1–6 0.1–6 0.1–6 2.9 2.3 1.8 Bearing in mind an approximate character of the calculations of S by an additive scheme,2 the agreement can be considered as reasonable. More experimental studies are required at different temperatures and pressures for the samples with varying crystallinity before the properties of this polymer can be properly evaluated and recommended values can be advanced. CH4 290 300 320 330 0.1–7 0.1–10 0.1–12 0.1–14 0.43 0.38 0.32 0.29 *A: crystallinity found by DSC method. B: crystallinity found by X-ray diffraction. References: 1 O. N. Tigina, Dissertation, GIAP, State Institute of Nitrogen Industry, USSR, Moscow, USSR 1983. 2 A. C. Puleo, D. R. Paul, and R. K. Wong, Polymer 30, 1357 共1989兲. 1265 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Gas Gas T/K p/MPa C105 He 293 2 4 6 8 10 2 6 1 2 6 10 1.8 4.4 8.8 15.2 24.3 1.0 4.0 8.8 0.6 2.4 5.3 2 4 6 8 2 4 6 8 2 4 6 8 2 3 4 5 4.0 9.0 14.6 21.9 3.7 8.1 13.4 20.3 2.9 6.2 10.2 15.2 2.2 121 176 230 313 333 Components: 共1兲 Carbon dioxide; CO2 ; 关124-38-9兴 Methane; CH4 ; 关74-82-8兴 共2兲 Poly共4-methylpentene-1兲 共PMP兲; 关25068-26-2兴 共I兲 Original Measurements: A. C. Puleo, D. R. Paul, and P. K. Wong, Polymer 30, 1357 共1989兲. Variables: T/K⫽308 p/MPa⫽0 – 2.2 (0 – 22 atm) Prepared By: Yu. P. Yampol’skii 1266 Experimental Data Sorption isotherms followed Henry’s law, i.e., were linear. TABLE 1. Solubility coefficients S/cm3共STP兲/cm3 atm* H2 280 290 300 350 CH4 290 300 320 N2 CO2 8 9 10 12 14 11 13 14 13 14 4 6 8 35 40 45 56 70 42 53 60 43 47 4.4 6.9 9.7 2 4 5 6 7 8 2 8.3 16.6 21.0 25.5 30.5 36.0 74 290 290 Auxiliary Information MethodÕApparatusÕProcedure The solubility was measured by means of an apparatus of hydrostatic weighing the principle of which had been described in Ref. 1. Source and Purity of Materials: PMP of the grade DX-810 had a density of 0.82–0.83 g/cc and crystallinity 90%. All the gases were ‘‘chemically pure’’ according to the Soviet Standard. Estimated Error: ␦ C/C⫽1.5%. References: 1 I. F. Golubey and O. A. Dobrovol’skii, Gaz. Prom. 5, 43 共1964兲. Sample CH4 CO2 Q S A H 1.0X 2.5X 10X 2.5R 0.22 0.20 0.19 0.18 0.24 0.26 0.32 0.20 0.59 0.52 0.49 0.52 0.63 0.69 0.83 0.54 *Description of samples seen at continuation sheet. Within the validity of two-phase model and independence of phase properties of the composition the following local solubility coefficients where found. Auxiliary Information MethodÕApparatusÕProcedure The apparatus and procedure for sorption measuring were similar to those described in Ref. 1. Source and Purity of Materials: PMP samples from Polyscience Co with different thermal history as well as the copolymers of PMP and 4-共3-butenyl兲 benzocyclobutane 共BBC兲 were studied. Their properties are given in Table 3. Nothing on gas purity was indicated. Estimated Error: No information given. References: W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. 1 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Solubility of gases in PMP: C/共mol/cm3兲 outside the range of Henry’s law 3.2. Poly„Vinyl Chloride…—Nitrogen, Carbon Dioxide, Methane Components: 共1兲 Poly共4-methylpentene-1兲 共PMP兲; 关25068-26-2兴 共I兲 共2兲 Carbon dioxide; CO2 ; 关124-38-9兴 Methane; CH4 ; 关74-82-8兴 Original Measurements: A. C. Puleo, D. R. Paul, and P. K. Wong, Polymer 30, 1357 共1989兲. Experimental Data TABLE 2. Solubility coefficients k D /cm3共STP兲/cm3 atm in amorphous and crystalline phases of PMP Amorphous phase Crystalline phase Method of cryst. determination CH4 CO2 CH4 CO2 DSC X-ray 0.351 0.378 0.93 0.99 0.095⫾0.013 0.060⫾0.010 0.28⫾0.03 0.20⫾0.02 TABLE 3. Description and characterization of the materials studied Description X-ray cryst. 共%兲 T g 共K兲 Q S A H 1.0X Commercial, quenched Commercial, slow cooled Commercial, annealed Homopolymer Cross-linked copolymer with 1% BBC Same with 2.5% BBC Same with 10% BBC Control: copolymer with 2.5% 4-phenyl-1-butene unable to be cross-linked 53.6 61.2 66.4 62.7 49.7 303 300 295 310 310 2.5X 10X 2.5R 41.8 21.6 55.8 313 326 307 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis. Russian Academy of Sciences, April, 1994 Critical Evaluation: In spite of the importance of PVC as an industrial polymeric material, only three investigations are available for the solubility of gases 共nitrogen 关7727-37-9兴, carbon dioxide 关124-38-9兴, and methane 关74-82-8兴兲 in this polymer.1–3 In neither case a molecular mass of the polymer studied has been indicated. The solubility has been measured in PVC containing different amount of stabilizers.2,3 Various methods of preparation of PVC have been employed.1 So the agreement exhibited in the apparent solubility coefficients presented below seems to be quite reasonable. Larger discrepancy is observed between the dual-mode sorption parameters reported by El-Hibri and Paul,2 Fried et al.,3 and those which can be calculated from the sorption isotherms obtained by Berens.1 At least partly this can be a result of different pressure ranges used in these studies. Gas T/K kD CO2 298 308 298 298 0.184 0.587 — — 298 298 — — 308 302 308 298 308 0.643 — 0.0169 0.105 0.0513 N2 CH4 ⬘ CH b 40.3 0.0496 8.9 0.2094 — — — — Effect of heat treatment — — — — 4.85 — 0.4505 2.17 2.305 0.361 — 0.0448 0.0491 0.0622 ⬘b S⫽k D ⫹C H Ref. 2.18 2.45 2.7* 2.5** 3 2 1 1 1.5* 1.7** 1 2.38 0.058 0.037 0.21 0.19 1 2 1 2 3 2 *The sample obtained by emulsion polymerization. **The sample obtained by suspension polymerization. ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1. Units: k D /cm3共STP兲 cm⫺3 atm⫺1; C H Further experimental studies are required before this system can be properly evaluated and the parameters of sorption isotherms can be advanced. 1267 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 References: 1 A. R. Berens, Polym. Eng. Sci. 20, 95 共1980兲. 2 M. J. El-Hibri and D. R. Paul, J. Appl. Polym. Sci. 30, 3649 共1985兲. 3 J. R. Fried, E. Parker, and R. L. Ballard, Japan-US Polymer Symposium, 1985, p. 247. IUPAC-NIST SOLUBILITY DATA SERIES Sample Components: 共1兲 Nitrogen; N2 ; 关7727-37-9兴 Carbon dioxide; CO2 ; 关124-38-9兴 Methane; CH4 ; 关74-82-8兴 共2兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲 Original Measurements: A. R. Berens, Polym. Eng. Sci 20, 95 共1980兲. Variables: T/K⫽298– 303 p/kPa⫽0 – 100 Prepared By: Yu. P. Yampol’skii TABLE 3. Concentration isotherms of n-butane in emulsion PVC at 303 K; gravimetric data, sorption times ⬎18 h 共the original data were represented graphically兲 Never-heated Experimental Data TABLE 1. Concentration isotherms of CO2 in emulsion PVC at 298 K 共gravimetric data兲. 共The original data were represented graphically兲 Never-heated Heat-treated Concentration 共mg1*/g2*兲 Pressure/kPa Concentration 共mg1*/g2*兲 7.57 13.98 28.37 41.41 55.25 68.51 81.78 94.66 0.36 0.67 1.29 1.76 2.22 2.61 2.98 3.30 7.41 15.03 28.11 41.59 54.68 68.56 82.26 94.77 0.21 0.38 0.73 1.04 1.32 1.58 1.82 2.03 Never-heated Never-heated Concentration 共mg1*/g2*兲 Relative Pressure Concentration 共mg1*/g2*兲 0.01 0.02 0.04 0.10 0.91 1.49 2.47 5.96 0.01 0.04 0.10 — 0.36 1.08 2.27 — Auxiliary Information MethodÕApparatusÕProcedure Gravimetric sorption experiments were carried out using a Cahn microbalance and, for highly sorbing gases like butane, a vacuum system described in Ref. 1. For nitrogen and partly for carbon dioxide a volumetric gas sorption method was used by means of Digisorb 2500 automatic surface area analyzer 共Micromeritics Instruments Corp.兲. Source and Purity of Materials: Gases: research grade purity. PVC: obtained by suspension and emulsion techniques 共in the form of powder兲, density 1.404⫾0.014 g/cm3. ‘‘Never-heated’’ samples: recovered and dried at temperature not exceeding 273 K. ‘‘Heat-treated’’ samples: heated 1 h at 373 K. References: 1 A. R. Berens, Angew Makromol. Chem. 47, 97 共1975兲. N2 (T⫽298 K) Heat-treated Relative Pressure Estimated Error: No information given. TABLE 2. Sorption isotherms of CO2 in suspension PVC 共Digisorb data兲. 共The original data were represented graphically兲 CO2 (T⫽298 K) Heat-treated Heat-treated Pressure /kPa Concentration 共mg* 1 /g* 2兲 Pressure /kPa Concentration 共mg* 1 /g* 2兲 Pressure /kPa Concentration 共mg* 1 /g* 2兲 Pressure /kPa Concentration 共mg* 1 /g* 2兲 10.79 15.70 22.57 40.64 49.28 59.29 66.76 73.82 79.32 84.24 88.17 90.33 92.88 95.04 96.81 98.39 100.75 — — 0.48 0.69 0.98 1.63 1.91 2.25 2.49 2.82 2.95 3.07 3.16 3.21 3.29 3.35 3.36 3.37 3.38 — — 10.61 15.32 22.39 40.08 48.72 58.94 66.60 73.48 79.57 83.70 88.22 90.18 92.15 94.11 96.67 98.44 100.40 — — 0.33 0.46 0.67 1.14 1.36 1.59 1.80 1.96 2.08 2.19 2.31 2.37 2.42 2.46 5.51 2.54 2.57 — — 11.32 15.02 22.02 40.14 47.96 58.26 66.08 72.88 78.44 82.76 86.88 89.35 91.63 94.72 96.57 98.84 93.47 97.81 99.66 0.01 0.02 0.02 0.04 0.04 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 11.13 15.04 21.63 40.17 48.00 58.31 65.74 72.95 78.73 83.05 86.97 88.82 91.51 93.77 96.66 97.90 98.72 99.96 — 0.01 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 — PATERSON, YAMPOL’SKII, AND FOGG Pressure/kPa 1268 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Nitrogen; N2 ; 关7727-37-9兴 Carbon dioxide; CO2 ; 关124-38-9兴 n-Butane; C5H10; 关106-97-8兴 共2兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲 Auxiliary Information Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲 Original Measurements: M. J. El-Hibri and D. R. Paul, J. Appl. Polym. Sci. 31, 2533 共1986兲. Variables: Prepared By: T/K⫽308 p/MPa⫽0–2.5 共0–25 atm兲 Yu. P. Yampol’skii References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.0377 0.0169 0.5870 1.1320 0.4505 8.9390 0.0410 0.0448 0.2094 0.6340 0.5800 0.0513 4.8500 5.1600 2.3050 0.3610 0.2430 0.0622 CO2** CH4 *No drawing, annealing at 358 K. **Stretching to draw ratio 3 at 358 K. FIG. 1. Sorption isotherms of Ar, N2, CH4 共a兲 and CO2 共b兲 in PVC at 308 K. 1269 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES k D /cm3共STP兲 cm⫺3 atm⫺1 Ar N2 Co2 CO2* Source and Purity of Materials: CH4: purity 99%. Other gases: purity 99.7%. PVC: B.F. Goodrich Co. 共CS 5760兲; density 1.389 g/cm3, glass transition temperature 344 K. It contained 2% of tin stabilizer. Estimated Error: No information given. Experimental Data Dual mode sorption parameters for various gases in PVC at 308 K Gas MethodÕApparatusÕProcedure The sorption measurement was carried out using the pressure decay method, Ref. 1. Original Measurements: J. R. Field, B. E. Parker, and R. L. Ballard, Japan-US Polymer Symposium 1985, pp. 247–248. Variables: T/K⫽298 p/MPa⫽0.16–1.27 Prepared By: Yu. P. Yampol’skii Components: 共1兲 Neon; Ne; 关7440-01-9兴 Hydrogen; H2; 关1330-74-0兴 共2兲 Tricresyl phosphate: C19H21O4P; 关1330-78-5兴 共3兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲 Variables: Prepared By: T/K⫽283–339 Yu. P. Yampol’skii Experimental Data TABLE 1. Dual mode sorption parameters for methane and carbon dioxide in PVC at 298 K Experimental Data Smoothed solubility coefficients S 104 /cm3共STP兲/cm3 cm Hg* Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 Sample CH4 CO2 0.105 0.184 2.17 40.3 0.0491 0.0496 Unplasticized PVC CO2 Pressure/Mpa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption 共V 1* (STP)/V 2* ) 0.17 0.34 0.47 0.55 0.67 0.78 0.88 0.98 1.06 1.16 0.38 0.53 0.85 1.11 1.13 1.42 1.61 1.67 1.83 1.95 0.16 0.27 0.41 0.54 0.64 0.77 0.88 1.00 1.14 1.27 3.48 5.28 7.74 9.71 10.98 12.72 13.99 15.27 16.94 18.01 Auxiliary Information MethodÕApparatusÕProcedure Sorption isotherms were obtained by the pressure decay method. Ref. 1. Conditioning at 23 atm for 60 h and degassing preceded the measurements. Source and Purity of Materials: PVC: Samples were compression modeled at 450 K from a mixture of low molecular mass PVC resin and 3% of a stablizer 共Cincinnati Milacorn 共TM-692兲兲. Estimated Error: No information given. References: W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 1 Temperature/K 399 309 4.6 4.4 2.2 2.1 283 291 2.8 3.0 1.2 1.4 Plasticized PVC 319 Hydrogen 4.0 Neon 2.0 329 339 3.8 3.7 1.9 1.8 297 Hydrogen 3.2 Neon 1.5 307 313 3.4 3.5 1.8 1.9 *Pressure was not indicated: presumably, p⬍atm. Auxiliary Information MethodÕApparatusÕProcedure Volumetric method by Meares1 was used. The sample was allowed to equilibrate with a gas, then nonsorbed gas was swipped away with mercury. The volume of gas subsequently desorbed from the sample was measured by means of McLeod gauge. Source and Purity of Materials: PVC from ICI 共99% ‘‘pure’’兲 in a form of powder was studied. The plasticized sample contained 0.325 mol fraction of tricresylphosphate. Films were prepared by calendering after adding 2 parts of cadmium stearate and 0.2 parts of stearic acid per 100 parts of the polymer. Estimated Error: No information given. References: P. Meares, Trans. Faraday Soc. 54, 40 共1958兲. 1 PATERSON, YAMPOL’SKII, AND FOGG TABLE 2. Sorption isotherms of methane and carbon dioxide in PVC at 298 K 共The original data were represented graphically兲 CH4 Original Measurements: R. M. Barrer, R. Mallinder, P.S.-L. Wong, Polymer 8, 321 共1967兲. 1270 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane: CH4; 关74-82-8兴 共2兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲 3.3. Poly„Vinyl Acetate…—Various Gases Components: 共1兲 Chlorine; Cl2; 关7782-50-5兴 共2兲 Poly共vinyl chloride兲 共PVC兲; 关9002-86-2兴 共II兲 Original Measurements: S. Wachi, H. Morikawa, and H. Inoue, AIChE J. 34, 1683 共1988兲. Variables: T/K⫽293–345 关 Cl2兴 ⫽0 – 35 mol/m3 Prepared By: Yu. P. Yampol’skii Experimental Data In the subatmospheric range of pressure the concentration of dissolved chlorine C共mol/m3兲 obeyed the following equation: Components: 共1兲 Helium; He; 关7440-59-7兴 Neon; Ne; 关7440-01-9兴 Hydrogen; H2; 关1333-74-0兴 共2兲 Poly共vinyl acetate兲 共PVA兲; 关9003-20-7兴 共III兲 Original Measurements: P. Meares, Trans. Faraday Soc. 54, 40 共1958兲. Variables: T/K⫽281–313 p/kPa⫽0.6–27 Prepared By: Yu. P. Yampol’skii Experimental Data C⫽Sy, where y is the concentration of Cl2 in gas phase 共mol/m3兲. Temperature dependence of the solubility coefficient S is given below: 293 313 323 343 S 20 14 14 11 The following equation was obtained for the temperature dependence of S: S⫽0.280 exp共 ⌬H S /RT 兲 , where ⌬H s is the heat of sorption, is 10 480 kJ/mol. Auxiliary Information MethodÕApparatusÕProcedure Physical sorption of chlorine in PVC was determined using the constant volume cell method. The pressure changes were measured by means of a sensor 共Toyoda-kouki PMS-5,5H兲. Source and Purity of Materials: PVC 共SC-16, DP-600兲 supplied by Kaneguchi Chemical Industries Co was prepared by suspension polymerization. No information on the purity of chlorine is given. Estimated Error: No information given. Auxiliary Information MethodÕApparatusÕProcedure After establishing equilibrium between the sample and the gas, the gas was swept away using mercury. The sorbed gas was then allowed to desorb into a known volume. Source and Purity of Materials: PVA: Gelva V145, M w ⫽450 000 共determined from viscosity兲, M n ⫽10 000, glass transition temperature 298.6 K. Estimated Error: No information given. 1271 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 FIG. 2. Solubility coefficients S/(cm3共STP兲 cm⫺3 atm⫺1) for gases in PVA. Curves 1: Helium; curves 2: Neon; curves 3: Hydrogen. Continuous curves taken from equilibrium experiments, broken curves from diffusion experiment. IUPAC-NIST SOLUBILITY DATA SERIES T/K Original Measurements: S. Zhou and S. A. Stern, J. Membr. Sci. 50, 19 共1990兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共vinyl acetate兲, 共PVA兲; 关9003-20-7兴 共III兲 Original Measurements: S. Takishima, K. Nakamura, M. Sasaki, and H. Masuoka, Sekiyu Gakkaishi 33, 332 共1990兲. Variables: T/K⫽268 and 278 p/MPa⫽0.2–2.0 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽313.2 and 323.2 p/MPa⫽0.898– 8.755 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for hydrogen in PVA 共Compiler兲. 共the value of b seems to be grossly overestimated兲 Experimental Data Solubility of carbon dioxide in PVA expressed as mass fractions w T/K k D /cm3共STP兲 cm⫺3 atm⫺1 C h⬘ /cm3共STP兲 cm⫺3 b/atm⫺1 268 278 0.0146 0.0173 0.096 0.027 1.88 1.84 p/Mpa w p/Mpa 313.2 K 0.0416 0.0532 0.0936 0.1264 0.1429 0.1723 0.2123 0.2786 0.3909 0.898 1.819 1.906 3.309 4.698 5.655 6.519 7.861 0.0254 0.0485 0.0533 0.0978 0.1397 0.1696 0.2073 0.2668 Auxiliary Information Source and Purity of Materials: PVA 共Aldrich Chemical Co兲 had ‘‘viscosity’’ average molecular weight 158 000 and glass transition temperature 303 K. The purity of carbon dioxide 共Chugoku Teisan兲 was 99.9%. Estimated Error: No information given. References: 1 W. J. Koros, Ph.D. dissertation, The University of Texas at Austin, 1977. FIG. 3. Sorption isotherms for hydrogen in PVA at 268 K and 278 K. Auxiliary Information Source and Purity of Materials: H2 : purity ⬎99.99%. PVA: Aldrich Chemical Co.; density 1.191 g/cm3, glass transition temperature 296 K 共via DSC兲. Estimated Error: Relative precision: solubility ⬍16%, p⬍0.05%; precision in T:⬍0.05 K. PATERSON, YAMPOL’SKII, AND FOGG 1.258 1.449 2.650 3.467 3.846 4.583 5.659 6.885 8.755 w 323.2 K MethodÕApparatusÕProcedure Measurements of the solubility were made using a pressure decay method. The apparatus was similar to one designed by Koros.1 Pressure was measured by a semiconductor sensor PX-1A 共Tsukasu Sokken兲. The correction for compressibility of gas phase was introduced. MethodÕApparatusÕProcedure The solubility was measured by a gravimetric method. The apparatus included a Cahn microbalance, Model C 1100. Pressure was measured by a gauge 共Model 901 B, Dresser Industries Inc.兲. 1272 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Hydrogen; H2; 关1333-74-0兴 共2兲 Poly共vinyl acetate兲 共PVA兲; 关9003-20-7兴 共III兲 3.4. Poly„Acrylonitrile…—Carbon Dioxide Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Sulfur dioxide; SO2; 关7446-09-5兴 Ethylene; C2H4; 关74-85-1兴 Chloromethane; C2H6; 关74-84-0兴 Methyl chloride; CH3Cl; 关74-87-3兴 共2兲 Poly共vinyl acetate兲 共PVA兲; 关9003-20-7兴 共III兲 Original Measurements: D. D. Liu and J. M. Prausnitz, J. Polym. Sci., Polym. Phys. Ed., 15, 145 共1977兲. Variables: T/K⫽398– 473 Prepared By: Yu. P. Yampol’skii Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共acrylonitrile兲 共PAN兲; 关25014-41-9兴 共IV兲 Variables: T/K: 298–338 K P/MPa: 0–3.0 Temperature/K 398 423 448 473 Carbon dioxide Sulfur dioxide Ethylene Ethane Methyl chloride 990 55 2300 2700 160 1200 87 2900 3000 220 1500 135 3300 3400 300 1700 187 3400 3700 410 Auxiliary Information Source and Purity of Materials: PVA 共Cellomer Associates兲 had a molecular mass 83 400. All gases 共from Matheson Gas Products兲 had a purity better than 99%. T/K k D /共cm3共STP兲/cm3 atm兲 ⬘ /共cm3共STP兲/cm3兲 CH b/共atm⫺1兲 298 328 338 0.206 0.160 0.134 3.615 3.496 2.852 0.187 0.139 0.126 Auxiliary Information MethodÕApparatusÕProcedure The sorption apparatus and procedures used in the sorption experiments are the same as described in Ref. 1. Source and Purity of Materials: PAN from Standard Oil was used. CO2 共Raleing Co.兲 had purity 99.9%. Estimated Error: No information given. References: 1 W. R. Vieth and J. A. Eilenberg, J. Appl. Polym. Sci. 16, 945 共1972兲. 1273 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Solute Estimated Error: No information given. Prepared By: A. K. Bokarev Experimental Data Dual mode sorption parameters of CO2 sorption in PAN Experimental Data Mass fraction Henry’s law constants/atm MethodÕApparatusÕProcedure Inverse gas chromatographic method was used. Two columns were employed: hydrocarbons were studied in Chromosorb-supported column, Fluoropac-80 packed column was used for other solutes. Helium served as a carrier gas. Correction for pressure drop in the column was introduced. Original Measurements: G. S. Huvard, V. T. Stannett, W. J. Koros, and H. B. Hopfenberg, J. Membr. Sci. 16, 945 共1972兲. 1274 References Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 Original Measurements: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: The system PMMA–carbon dioxide has been studied in a large number of papers 共Refs. 1–11兲. However, different temperature and pressure ranges studied and different units of the data reported prevent the comparison of all the results. Figure 4共a兲 shows the temperature dependence of the solubility coefficient S/共g g⫺1 atm⫺1兲. The values obtained by pressure decay method and expressed in the standard units 共cm3共STP兲/cm3 atm兲 were recalculated by evaluator using the density 1.19 g/cm3 of PMMA. p/atm 4 5,6 7,8 11 5 10 20 13.5 21.6 34.9 11.4 18.0 28.7 14.0 22.4 35.5 13.2 21.9 36.1 References: 1 P. L. Durrill and R. G. Griskey, A. I. Ch. E. J. 12, 1147 共1965兲. 2 G. B. Okonishnikov and V. P. Skripov, Vysokomol. Soedin., Ser. B 25, 890 共1973兲. 3 J. M. H. Fechter, H. B. Hopfenberg, and W. Koros, J. Polym. Eng. Sci. 21, 925 共1981兲. 4 W. J. Koros, G. N. Smith, and V. Stannett, J. Appl. Polym. Sci. 26, 159 共1981兲. 5 E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. Stannett, J. Membr. Sci. 13, 161 共1983兲. E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. Stannett, J. Membr. Sci. 18, 53 共1984兲. W. J. Koros and E. S. Sanders, J. Polym. Sci., Polym. Symp. 72, 142 共1985兲. 8 E. S. Sanders and W. J. Koros, J. Polym. Sci., Polym. Phys. Ed. 24, 175 共1986兲. 9 I. S. Liau and M. A. McHugh, Supercritical Fluid Technology, edited by J. M. L. Penninger et al. 共Elsevier, New York, 1985兲, p. 415. 10 R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B: Polym. Phys. 25, 2497 共1987兲. 11 P. C. Raymond and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 28, 2103 共1990兲. 6 7 FIG. 4. 共a兲 共䊉兲 Ref. 共1兲, 共4兲, 共5,6兲, 共7,8兲; 共䊊兲 Ref. 共2兲; 共䊏兲 Ref. 共3兲; 共⽧兲 Ref. 共9兲; 共䊐兲 Ref. 共10兲. Reasonable agreement can be seen between the temperature dependences reported by different authors 共Refs. 2, 9, and 10兲. However, a significant and apparently systematic discrepancy 共by a factor of 2兲 is observed between the values obtained at 308 K by pressure decay method 共Refs. 3 and 5–8兲 and gravimetric method 共Refs. 2 and 10兲. Further studies are necessary to explain this result. TABLE 1. Dual mode sorption parameters for the system PMMA–carbon dioxide at 308 K. kD/cm3共STP兲 cm⫺3 atm⫺1 1.140 0.916 1.068 1.200 ⬘ /cm3共STP兲 cm⫺3 CH 14.90 12.59 18.00 15.60 b/atm ⫺1 0.218 0.236 0.186 0.172 Critical Evaluation: They are in reasonable agreement. The predictions of sorption isotherms using them are presented in Table 2. Ref. 4 5,6 7,8 11 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 2. Concentrations C/(cm3共STP兲 cm⫺3) of CO2 dissolved in PMMA at 308 K 3.5. Poly„Methyl Methacrylate…—Carbon Dioxide, Other Gases Components: 共1兲 Helium; He; 关7440-59-7兴 Neon; Ne; 关7440-01-9兴 Argon; Ar; 关7440-37-1兴 Krypton; Kr; 关7439-90-9兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 Original Measurements: P. L. Durill, Ph.D. dissertation. Virginia Polytech. Inst., 1965. P. L. Duriff, R. G. Griskey, AIChE J. 12, 1147 共1965兲. Variables: T/K: 461 p/MPa: 0.26– 1.9 共2.6–19 atm兲 Prepared By: A. K. Bokarev Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 Original Measurements: G. B. Okonishnikov and V. P. Skripov, Vysokomol. Soedin., Ser. B. 25, 890 共1973兲. Variables: T/K⫽291– 353 p/MPa⫽0.4– 6.0 Prepared By: S. M. Shishatskii Experimental Data: Linear sorption isotherms were found in the pressure range shown. Experimental Data Henry’s law solubility constants S for gases in PMMA Solubility coefficients, S, for carbon dioxide in PMMA Pressure/atm S/(cm3共STP兲/g atm) He Ne Ar Kr N2 CO2 3.8–7.2 2.7 3.2–7.4 2.6–4.6 5.7–15.0 4.0–19.0 0.066 0.126 0.105⫾0.063 0.122 0.045⫾0.028 0.260⫾0.024 Auxiliary Information MethodÕApparatusÕProcedure The equipment and a manometrical procedure for solubility measurements were similar to those of Lundberg et al.1 Source and Purity of Materials: PMMA 共Lucite兲 used is a product of du Pont de Nemours Co.: ⫽1.20 g/cm3. Gases from Air Reduction Co., had a minimum purity: CO2-99.5%; N2-99.90%; Ar-99.997%. He-99.99%. Gases 共Matheson Co兲, included as impurities: Ne-14 ppm He, Kr-12 ppm N2 and 23 ppm Xe. Estimated Error: ␦ C/C⭐8%. References: J. L. Lundberg, M. B. Wilk, and M. J. Huyett, Appl. Phys. 31, 1131 共1960兲. T/K 291 295.7 313 333 353 10 S/(g/g atm) 4.4 3.9 2.4 1.5 1.05 3 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were made using a McBain spring balance described in Ref. 1. A correction for buoyancy and for sample’s swelling were introduced. Source and Purity of Materials: ST-1-110 grade PMMA studied did not contain any plasticizers. No data are given on the purity of CO2 taken from a cylinder. Estimated Error: No information given. References: A. I. Sakharov, Balance in Physicochemical Studies 共in Russian兲, 共Nauka, Moscow, 1968兲. 1275 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Gas Original Measurements: J. M. H. Fechter, H. B. Hopfenberg, and W. J. Koros, Polym. Eng. Sci. 21, 925 共1981兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 Original Measurements: W. J. Koros, G. N. Smith, and V. Stannett, J. Appl. Polym. Sci. 26, 159 共1981兲. Variables: T/K⫽293– 313 p/kPa⫽13– 93 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽308– 353 p/MPa⫽0 – 2.2 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for carbon dioxide in PMMA at various temperatures Experimental Data: Sorption isotherms of carbon dioxide in: 共I兲 ‘‘as received’’ PMMA microspheres with 14530 Å diameter at 303, 308, and 313 K, 共II兲 preswollen PMMA microspheres with 5436 Å diameter at 303 K. 共The original data were represented graphically兲 T⫽303 K T⫽308 K T/K k D /cm3共STP兲cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 308 328 353 1.14 0.74 0.505 14.9 12.0 7.13 0.218 0.116 0.0683 T⫽313 K Sorption enthalpies: 13.02 26.23 39.81 52.85 66.07 79.65 92.88 0.15 0.27 0.36 0.45 0.54 0.62 0.71 13.17 26.17 39.71 53.09 66.46 79.83 93.02 0.17 0.29 0.41 0.51 0.60 0.70 0.80 Pressure/kPa Pressure/kPa Sorption (g 1* /(100 g * ) 2 ) Pressure/kPa Sorption (g 1* /(100 g * ) 2 ) 13.03 26.78 39.83 53.05 66.28 79.51 92.73 0.12 0.22 0.31 0.39 0.47 0.54 0.62 13.22 26.80 39.67 52.90 66.31 79.72 93.13 0.09 0.19 0.26 0.33 0.39 0.46 0.52 ⌬H D ⫽⫺3.9 kcal mol⫺1; ⫺16.3 kJ mol⫺1 ⌬H b ⫽⫺5.6 kcal mol⫺1; ⫺23.4 kJ mol⫺1 PATERSON, YAMPOL’SKII, AND FOGG Sorption (g 1* /(100 g * ) 2 ) 共I兲 共II兲 Auxiliary Information MethodÕApparatusÕProcedure Measurements were made on a Cahn RG Electrobalance. Samples of the polymer had been preswollen by exposure of methanol vapours (p/p s ⫽0.98). After quick removal of methanol gas sorption isotherms of carbon dioxide were obtained. 1276 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 Source and Purity of Materials: CO2 : purity 99.99%. PMMA: microspheres of diameters 1453 Å 共I兲 and 5436 Å 共II兲. M n 共I兲⫽206 000, M n 共II兲⫽137 000, glass transition temperature 共II兲 393 K. FIG. 4. 共b兲 Sorption isotherms of carbon dioxide in PMMA. Auxiliary Information Estimated Error: No information given. MethodÕApparatusÕProcedure The sorption equipment described in Refs. 1 and 2 was used. The procedure involved ‘‘interval’’ sorption measurement and standard pretreatment: equilibration with carbon dioxide at 20 atm for 6 h before measurement. Source and Purity of Materials: CO2 : Air Products, purity ⬎99.9%. PMMA: Aldrich Chemical Co., M w ⫽599 000. Estimated Error: No information given. References: 1 W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. 2 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Ethylene; C2H4; 关74-85-1兴 共3兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 Original Measurements: E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. Stannett, J. Membr. Sci. 13, 161 共1983兲 Variables: Prepared By: T/K⫽308 p/MPa⫽0 – 0.8 A. K. Bokarev Experimental Data TABLE 1. Sorption isotherms of pure C2H4 and pure CO2 in PMMA at 308 K. 共The original data were represented graphically兲 C2H4 CO2 CO2 Sorption (V 1* (STP)/V * 3) Pressure/MPa Sorption (V * 1 (STP)/V * 3) Pressure/MPa Sorption (V * 1 (STP)/V * 3) 0.09 0.16 0.19 0.22 0.27 0.32 0.34 0.39 0.43 0.47 0.53 0.56 0.64 0.73 0.75 0.80 2.03 2.92 3.36 3.81 4.29 4.90 5.13 5.62 5.99 6.46 6.92 7.04 7.83 8.29 8.85 9.06 0.06 0.11 0.12 0.15 0.20 0.21 0.24 0.27 0.30 0.34 0.39 0.42 0.45 0.45 0.48 0.50 2.37 3.58 4.03 4.64 5.85 5.97 6.79 7.39 8.05 8.80 9.66 9.92 10.45 10.64 10.92 11.34 0.53 0.55 0.56 0.59 0.63 0.65 0.67 0.70 0.70 — — — — — — — 11.90 12.13 12.30 12.46 13.25 13.56 13.72 14.05 14.19 — — — — — — — TABLE 2. Dual mode sorption parameters for pure component sorption of CO2 and C2H4 in PMMA at 308 K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 FIG. 5. Mixed gas sorption of CO2 /C2H4 in PMMA at 1.53⫾0.05 atm CO2. CO2 C2H4 0.916 0.531 12.59 7.09 0.236 0.259 Auxiliary Information The following figure concerns mixed gas sorption of CO2 and C2H4. Points are experimental data, solid lines are predictions of DMS equation and dashed lines are prediction of DMS equation for mixed penetrants: ⬘ b1p1 /共1⫹b1p1⫹b2p2兲 C1⫽kD1p1⫹⫹CH1 ⬘ b2p2 /共1⫹b1p1⫹b2p2兲. C2⫽kD2p2⫹CH2 All the parameters for gases 共1兲 and 共2兲 are pure components sorption parameters from Table 2. MethodÕApparatusÕProcedure A novel apparatus to measure precisely both pure and mixed gas sorption in glassy polymers is described. A method for accurate calibration and operation of the equipment is discussed, based upon complete closure of the material balance of all gaseous components in all phases. The overall scheme of the sorption apparatus is illustrated and the details of the sorption cell are presented. Source and Purity of Materials: CO2 : Air Products, purity 99.99% 共Coleman grade兲. C2H4 : Airco Research Triangle Park, purity 99.5% 共2.5 grade兲. PMMA: Aldrich Chemical Co., M w ⫽600 000. Estimated Error: No information given. 1277 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Gas IUPAC-NIST SOLUBILITY DATA SERIES Pressure/MPa Original Measurements: E. S. Sanders and W. J. Koros, J. Membr. Sci. 18, 53 共1984兲. Variables: T/K⫽308 p/MPa⫽0 – 0.81 Prepared By: Yu. P. Yampol’skii 1278 Experimental Data TABLE 1. Sorption isotherms of pure carbon dioxide and ethylene in PMMA at 308 K 共The original data were represented graphically兲 Sorption (V * 1 (STP)/V * 3) Pressure/MPa Sorption (V 1* (STP)/V * 3) Pressure/MPa Sorption (V * 1 (STP)/V * 3) 0.07 0.13 0.20 0.22 0.27 0.31 0.35 2.40 4.09 5.92 6.25 7.28 8.08 8.87 0.43 0.46 0.46 0.49 0.51 0.56 0.57 9.86 10.51 10.70 10.84 11.31 12.16 12.44 0.64 0.66 0.68 0.70 0.71 — — 13.09 13.61 13.80 14.22 14.36 — — 0.10 0.16 0.20 0.23 0.27 0.33 2.16 3.00 3.47 3.80 4.31 4.97 0.35 0.39 0.44 0.47 0.54 0.56 5.20 5.67 6.00 6.47 6.93 7.00 0.65 0.73 0.80 0.81 — — 7.82 8.29 9.08 9.13 — — Pressure/MPa CO2 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Ethylene; C2H4; 关74-85-1兴 共3兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 C2H4 TABLE 2. Dual mode sorption parameters for pure carbon dioxide and ethylene in PMMA at 308 K Gas Pressure based parameters CO2 C2H4 Fugacity based parameters CO2 C2H4 k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.916 0.531 12.59 7.09 0.236 0.259 1.015 0.490 11.86 8.32 0.243 0.217 The two following figures 共Fig. 6 and 7兲 deal with mixed gas sorption of CO2 and C2H4. Points are experimental data, solid lines are predictions of DMS equation and dashed lines are prediction of equation: C1⫽KD1p1⫹C1⬘b1p1 /共1⫹b1p1⫹b2p2兲, ⬘ b2p2 /共1⫹b1p1⫹b2p2兲. C2⫽kD2p2⫹CH2 All the parameters for gases 共1兲 and 共2兲 are pure components sorption parameters from Table 2. FIG. 6. Mixed gas sorption of CO2 and C2H4 at 1.53 atm CO2 共a兲 and 3.64 atm CO2 共b兲. Auxiliary Information MethodÕApparatusÕProcedure Apparatus specifically designed to measure mixed gas sorption was described in Ref. 1. It consisted of four chambers: one chamber contained the polymer, three others were used to meter gases accurately 共individual or mixtures兲 into the first one or for sampling gases directly into a gas chromatograph. All chambers were provided with pressure transducers 共Gould Model PA 822兲. The method is based on the concept of maintaining material balance. For both pure gases and mixtures. PVT behavior was taken into account. Source and Purity of Materials: CO2 : Air Products, purity 99.99%. C2H4 : Airco, purity 99.5%. PMMA: Aldrich Chemical Co., M v ⫽600 000, glass transition temperature 393 K. Estimated Error: Relative precision of pressures: ⫾0.3%. Precision in T: ⫾0.01 K. References: 1 E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. T. Stannett, J. Membr. Sci. 13, 161 共1983兲. IUPAC-NIST SOLUBILITY DATA SERIES 1279 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 FIG. 7. Mixed gas sorption of CO2 and C2H4 at 3.93 atm C2H4 共a兲 and 2.06 atm C2H4 共b兲. Original Measurements: W. J. Koros and E. S. Sanders, J. Polym. Sci. Polym. Symp. 72, 142 共1985兲. E. S. Sanders and W. J. Koros, J. Polym. Sci., Polym. Phys. Ed. 24, 175 共1986兲. Variables: T/K⫽308 p/MPa⫽0–2.0 Prepared By: A. K. Bokarev 1280 Experimental Data Dual mode sorption parameters for pure component sorption of CO2, C2H2, and N2O in PMMA Gas k D /cm3共STP兲 cm⫺3 atm⫺1 * /cm3共STP兲 cm⫺3 CH b/atm⫺1 CO2 C 2H4 N 2O 0.944 0.461 1.068 19.68 12.40 18.00 0.158 0.189 0.186 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Ethylene; C2H4; 关74-85-1兴 Nitrous oxide; N2O; 关10024-97-2兴 共3兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 FIG. 8. Sorption isotherms for pure gases in PMMA at 308 K. The following figures 共Figs. 9–11兲 refer to mixed gas sorption of CO2 /C2H4 and CO2 /N2O. Points are experimental data, solid lines are predictions of DMS equation and dashed lines are prediction of equation: ⬘ b1p1 /共1⫹b1p1⫹b2p2兲, C1⫽kD1p1⫹CH1 ⬘ b2p2 /共1⫹b1p1⫹b2p2兲. C2⫽kD2p2⫹CH2 All the parameters for gases 共1兲 and 共2兲 are pure components sorption parameters from Table 1. FIG. 9. High-pressure mixed-gas sorption of CO2 /NO2 at 5.00 atm N2O. IUPAC-NIST SOLUBILITY DATA SERIES FIG. 11. High-pressure mixed-gas sorption of CO2 /C2H4 at 4.87 atm C2H4. 1281 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 FIG. 10. High-pressure mixed-gas sorption of CO2 /C2H4 at 5.05 atm CO2. MethodÕApparatusÕProcedure An apparatus for precise measurement of both pure and mixed gas sorption in glassy polymers was used. Details in Ref. 1. Source and Purity of Materials: CO2: Air Products; purity 99.99% 共Coleman grade兲. C2H4: Airco Research Triangle Park; purity 99.5% 共2.5 grade兲. N2O: Airco Research Triangle Park; purity 99.5% 共4.5 grade兲. PMMA: Aldrich Chemical Co.; M w ⫽600 000. Estimated Error: No information given. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 Original Measurements: I. S. Liau and M. A. McHugh, Supercritical Fluid Technology. edited by J. M. L. Penninger, M. Radosz, M. A. McHugh, and V. J. Krukonis 共Elsevier, Amsterdam, 1985兲, pp. 415–434. Variables: T/K⫽315– 341.2 p/MPa⫽0 – 26.2 Prepared By: A. K. Bokarev 1282 Experimental Data Sorption isotherms of carbon dioxide in poly共methyl methacrylate兲. References: 1 E. S. Sanders, W. J. Koros, B. Hopfenberg, and V. Stannett, J. Membr. Sci. 13, 161 共1983兲. 2 W. J. Koros, J. Polym. Sci., Polym. Phys. Ed. 18, 981 共1980兲. T⫽315 K T⫽331.2 K T⫽341.2 K Weight fraction Pressure/MPa Weight fraction Pressure/MPa Weight fraction Pressure/MPa 2.78 4.52 5.52 7.71 9.16 10.21 14.74 17.57 17.73 19.13 23.77 25.03 25.94 26.89 27.45 27.94 28.40 28.77 0.67 1.23 1.66 2.38 3.10 4.71 5.78 6.89 7.30 8.87 11.63 13.41 14.86 15.91 17.97 21.74 23.48 25.95 2.94 8.67 12.51 12.67 18.29 18.81 22.01 23.98 24.30 25.41 26.78 — — — — — — — 1.36 4.12 6.12 7.13 9.28 11.59 14.28 17.83 19.57 21.88 24.91 — — — — — — — 3.99 14.06 15.50 18.11 20.76 24.30 26.51 30.16 30.62 32.74 — — — — — — — — 1.96 7.40 8.12 11.23 12.79 15.36 17.86 20.67 22.37 26.16 — — — — — — — — Auxiliary Information MethodÕApparatusÕProcedure An apparatus similar to that described in Ref. 1 was used for pressure equilibrium sorption of supercritical fluid solvent into solid polymers up to 300 atm. Experimental apparatus included: gas/liquid compressor 共Superpressure Inc., Model 46-14025-1兲, pressure gauges 共Dresser Industries, Models Z15R, Z15T兲, holding tank 共316 stainless steel, volume of 123.33⫾0.28 cm3兲, and high pressure view cell. The temperature was measured using a platinum resistance element 共Degussa, Inc.兲. Source and Purity of Materials: CO2: Linde Co. PMMA: M w ⫽60 600, M n ⫽33 200, glass transition temperature 378 K. Estimated Error: Relative precision of solubilities ⬍3%. Precision in T: ⫾0.2 K. References: 1 S. Ozava, S. Kusumi, and Y. Ogino, Proceeding of the Fourth Int. Conference on High Pressure, Kyoto, Japan, 1974. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information 3.6. Poly„Ethyl Methacrylate…—Carbon Dioxide, Other Gases Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 Original Measurements: R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B: Polym. Phys. 25, 2497 共1987兲. Variables: T/K⫽305.9– 332.0 p/MPa⫽0 – 10.4 Prepared By: Yu. P. Yampol’skii Experimental Data Sorption isotherms of carbon dioxide in PMMA at elevated pressures. Sorption⫽vol. of gas at STP/mass of unswollen polymer 3 ⫺1 共cm 共STP兲 g 兲. 共The original data were represented graphically兲 T⫽305.9 K T⫽315.2 K T⫽332.0 K Sorption 共V * 1 共STP兲/g * 2兲 Pressure/MPa Sorption 共V * 1 共STP兲/g * 2兲 Pressure/MPa Sorption 共V * 1 共STP兲/g * 2兲 0.60 1.30 2.10 2.92 3.76 4.61 5.49 6.47 7.41 8.35 9.39 10.40 — 11.13 21.51 33.43 46.65 58.32 70.00 83.73 103.41 119.47 119.56 119.67 121.57 — 0.64 1.34 2.16 2.92 3.74 4.50 5.38 6.23 7.25 8.12 8.89 9.66 10.38 7.79 18.42 28.55 36.86 47.25 54.53 65.70 77.37 93.18 107.44 113.18 120.21 135.99 1.30 2.12 3.00 3.83 4.69 5.57 6.28 7.31 8.08 8.88 9.67 10.37 — 13.78 22.88 29.40 37.99 44.25 50.78 58.06 70.27 83.22 94.89 105.79 113.33 — Evaluator: Yu. P. Y. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Three independent studies1–3 have been reported on sorption of carbon dioxide in PEMA. In all three cases, a high molecular weight 1 polymer was used. Koros et al. observed, in the pressure range 0–2 MPa, a dual mode sorption shapes of the isotherms concave to the pressure axis. However, at higher pressures, the isotherms change to linear or even nonlinear form convex to the pressure axis2,3 that was explained in terms of the effect of plastisization exerted by carbon dioxide. Figure 12 shows the temperature dependence of the pressure p g at which the glass transition in the polymer takes place, as well as the corresponding concentration C g of carbon dioxide. It is seen that the data of Refs. 2 and 3 are in a good agreement. The both curves reach the temperature axis as it can be anticipated, in the vicinity of the glass transition temperature for the pure PEMA. IUPAC-NIST SOLUBILITY DATA SERIES Pressure/MPa Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲 Auxiliary Information MethodÕApparatusÕProcedure A gravimetric method was used. The polymer samples were suspended from a quartz spring. Correction for buoyancy were introduced using CO2 densities up to higher pressures. Source and Purity of Materials: CO2: Linde Co., purity 99.99%. PMMA: Scientific Polymer Products, M w ⫽90 000, glass transition temp. 378 K. FIG. 12. Temperature dependence of 共a兲 p g /MPa and 共b兲 C g /(cm3共STP兲 cm⫺3). 1283 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Estimated Error: No information given. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲 Original Measurements: W. J. Koros, G. N. Smith, and V. Stannett, J. Appl. Polym. Sci. 26, 159 共1981兲. Variables: T/K⫽303– 328 p/MPa⫽0 – 2.1 Prepared By: Yu. P. Yampol’skii 1284 Experimental Data Dual mode sorption parameters for carbon dioxide in PEMA T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 303 313 328 1.28 1.14 0.932 8.14 3.78 0.996 0.193 0.204 0.246 Sorption enthalpies: ⌬H D ⫽⫺2.6 kcal mol⫺1; ⫺10.9 kJ mol⫺1 ; ⌬H b ⫽⫹2.0 kcal mol⫺1; ⫹8.4 kJ mol⫺1 FIG. 13. Temperature dependence of the solubility coefficients. The least squares treatment of the data gave the following equation: log共 S/cm3共STP兲 cm⫺3 atm⫺1兲 ⫽⫺4.353⫹1.433/共 T/K兲 . The corresponding enthalpy of sorption ⌬H s ⫽⫺27.5 kJ/mol. It can be recommended for the prediction of the initial slope of the isotherms. For the pressure of carbon dioxide up to 2 MPa the dual mode sorption parameters reported by Koros et al.1 can be used. For the higher pressure, the works of Chiou and Paul2 and Kamiya et al.3 give rather close values of solubility, but the sorption isotherm obtained in Ref. 3 should be, tentatively, recommended since they cover the wider range of pressure and temperature. References: 1 W. J. Koros, G. N. Smith, and V. Stannett, J. Appl. Polym. Sci. 26,159 共1981兲. J. S. Chiou and D. R. Paul, J. Membr. Sci. 45, 167 共1989兲. Y. Kamiya, K. Mizoguchi, T. Hirose, and Y. Naito, J. Polym. Sci., Part B: Polym. Phys. 27, 879 共1989兲. 2 3 FIG. 14. Sorption isotherms of carbon dioxide in PEMA. Auxiliary Information MethodÕApparatusÕProcedure The sorption equipment described in Refs. 1 and 2 was used. The procedure involved ‘‘interval’’ sorption measurement and standard pretreatment: equilibration with carbon dioxide at 20 atm for 6 h before measurement. Source and Purity of Materials: CO2 : Air Products; purity ⬎99.9%. PEMA: Aldrich Chemical Co., M w ⫽309 000. Estimated Error: No information given. References 1 W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. 2 W. J. Koros, and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Figure 13 shows Van’t Hoff plot for the solubility coefficients taken from the graphs2,3 or calculated by the dual mode sorption parameters. The values reported in all three works are in good agreement. TABLE 3. Sorption isotherms of various gases in PEMA at 308 K 共The original data were represented graphically兲 Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲 Original Measurements: J. S. Chiou and D. R. Paul, J. Membr. Sci. 45. 167 共1989兲. Variables: T/K⫽298– 318 p/MPa⫽0 – 3.8 Prepared By: Yu. P. Yampol’skii Pressure/MPa Sorption 共V 1* (STP兲/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.33 0.48 0.61 0.94 1.07 1.22 1.51 1.40 1.61 1.75 1.98 2.04 2.27 2.45 1.68 1.94 2.05 2.25 2.42 2.66 2.77 2.79 2.85 3.29 3.43 3.68 — — 3.21 3.21 3.69 3.82 4.08 — — 1.52 1.82 2.14 2.23 2.60 3.44 4.15 4.63 5.00 5.57 2.83 3.09 3.20 3.54 — 6.01 6.42 6.71 7.34 — 1.03 1.28 1.42 1.62 2.00 2.70 3.09 3.47 3.75 4.47 2.07 2.33 2.53 2.73 2.76 4.69 5.2 5.28 5.66 5.90 1.56 1.62 1.89 2.11 2.25 2.32 2.63 0.95 0.95 1.10 1.23 1.34 1.39 1.54 2.83 2.91 3.16 3.39 3.53 3.67 3.78 1.62 1.73 1.86 2.03 1.99 2.21 2.21 Ar 0.27 0.39 0.50 0.77 0.85 1.04 1.26 Experimental Data TABLE 1. Dual mode sorption parameters for methane and argon in PEMA T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 CH4 298 308 313 308 0.183 0.165 0.144 0.0902 2.87 2.24 1.87 1.20 0.0677 0.0536 0.0422 0.0405 Ar Solubility coefficient for N2 at 308 K: 0.058 cm3共STP兲 cm⫺3 atm⫺1 共calculated by compiler兲. TABLE 2. Sorption isotherms of methane in PEMA at 298 K 共a兲 and 318 K 共b兲 共The original data were represented graphically兲 共a兲 共b兲 Sorption 共V * 1 (STP兲/V * 2) Pressure/MPa Sorption (V * 1 (STP)/V * 2) Pressure/MPa Sorption (V * 1 (STP)/V * 2) 0.20 0.42 0.64 0.82 1.02 1.25 0.26 0.27 0.55 0.66 0.81 0.97 1.24 0.73 1.41 2.02 2.55 3.03 3.62 0.55 0.59 1.12 1.40 1.60 1.91 2.45 1.43 1.63 1.85 2.06 2.28 2.47 1.37 1.43 1.74 1.96 2.19 2.29 2.50 4.11 4.50 5.05 5.62 5.95 6.19 2.65 2.81 3.29 3.62 4.16 4.14 4.51 2.71 2.90 3.33 3.39 — — 2.67 2.76 3.00 3.29 3.30 3.37 3.67 6.85 7.18 8.10 8.27 — — 4.89 4.99 5.39 5.83 5.89 6.42 6.42 0.25 0.70 0.51 1.29 0.75 1.89 1.02 2.44 1.34 3.20 CH4 共films conditioned in 30 atm of CO2兲 0.33 0.90 0.52 1.38 0.61 1.62 0.77 2.02 0.92 2.30 N2 0.28 0.17 0.34 0.26 0.62 0.41 0.68 0.46 0.90 0.59 1.05 0.61 1.45 0.87 FIG. 15. Sorption isotherms of carbon dioxide in PEMA at 288, 298, 308, and 318 K. 1285 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Pressure/MPa CH4 IUPAC-NIST SOLUBILITY DATA SERIES Gas MethodÕApparatusÕProcedure Sorption isotherms were measured by the pressure decay method using a dual-volume sorption cell. Source and Purity of Materials: PEMA: DuPont Co. 共Elvacite 2042兲. M w ⫽438 000, glass transition temp. 342 K 共DSC method兲. Estimated Error: No information given. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲 Original Measurements: Y. Kamiya, K. Mizoguchi, T. Hirose, and Y. Naito, J. Polym. Sci., Part B: Polym. Phys. 27, 879 共1989兲. Variables: T/K⫽288 p/MPa⫽0 – 5.1 (50 atm) Prepared By: A. K. Bokarev 1286 Experimental Data The isotherms were treated by the equation: ⬘ b p 关共 1⫺C * /C g 兲 / 共 1⫹b p 兲兴 , C⫽C D ⫹C H ⫽ 关 k D exp共 sC * 兲兴 p⫹C H0 ⬘ , and b have the usual meaning; s is the parameter characterizing the concentration dependence of the where the parameters k D , C H0 ordinary dissolution, that is, s⫽0 and s⬎0 correspond to Henry’s law and Flory–Huggins dissolution, respectively. C g is the solute concentration corresponding to the glass transition and ⬘ b p/ 共 1⫹b p 兲兴 / 关 1⫹ f C H0 ⬘ b p/C g 共 1⫹b p 兲兴 , C * ⫽C D ⫹ f C H ⫽ 关 k D p⫹ f C H0 where f is the ratio of the plastisizing ability of a Langmuir species 共H兲 to that of an ordinary dissolved species 共D兲. TABLE 1. Parameters for ordinary dissolution 共Flory–Huggins’s兲 and for Langmuir isotherms T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 C H0 b/atm⫺1 103 S/cm3共STP兲 cm⫺3 C g /cm3共STP兲 cm⫺3 288 297 308 318 328 338(T g ) 348 358 2.11 1.90 1.42 1.15 0.97 0.84 0.76 0.67 28.9 22.5 15.8 9.5 3.5 0 0 0 0.097 0.065 0.055 0.045 0.022 0 0 0 3.0 2.3 2.6 2.8 3.1 2.4 1.9 3.1 ⫺0.17 ⫺0.34 ⫺0.28 ⫺0.27 ⫺0.22 ⫺0.40 ⫺0.51 ⫺0.19 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information TABLE 2. Sorption and desorption isotherms of carbon dioxide in PEMA at 共a兲 288 K, 共b兲 297 K, 共c兲 308 K, and 共d兲 318 K 共The original data were represented graphically兲 Pressure/MPa 共a兲 Sorption 0.11 0.21 0.61 1.10 Desorption 0.21 0.36 0.61 0.82 共c兲 Sorption 0.21 0.50 0.71 0.89 Desorption 0.31 0.43 0.71 1.06 Solubility (V 1* (STP)/V 2* ) Pressure/MPa Solubility (V 1* (STP)/V 2* ) 3.96 7.92 19.99 30.75 1.58 2.06 2.23 2.56 42.26 50.19 54.91 64.90 3.04 3.54 3.77 — 79.99 99.79 109.59 — 9.24 13.76 21.12 26.97 1.08 1.34 1.82 2.32 32.07 36.97 46.79 59.05 2.82 3.29 — — 71.88 90.17 — — Pressure/MPa 共a兲 Sorption 0.30 0.70 1.08 Desorption 0.14 0.51 0.90 共b兲 Sorption 1.23 2.23 Desorption 0.31 0.70 Solubility 共V 1* (STP)/V 2* ) Pressure/MPa Solubility (V 1* (STP)/V 2* ) Pressure/MPa Solubility (V 1* (STP)/V 2* ) 3.59 7.00 10.97 1.49 2.26 3.01 14.38 23.27 31.59 4.03 4.98 — 43.88 55.79 — 2.08 5.30 8.89 1.28 2.05 3.21 12.49 21.19 34.24 4.40 — — 48.42 — — 10.04 19.50 3.43 5.01 30.29 46.56 — — — — 2.65 5.68 1.75 2.84 15.34 25.37 4.26 — 38.99 — 6.04 16.79 31.33 2.23 4.21 4.90 46.62 99.07 129.61 5.02 — — 122.46 — — 3.40 9.24 13.58 20.76 1.10 1.29 1.71 2.03 26.23 27.37 35.67 44.73 2.60 3.46 3.98 — 54.55 77.19 88.89 — 共c兲 Sorption 0.37 1.09 1.58 1.83 2.65 8.34 11.37 13.64 2.08 2.57 3.06 3.53 16.10 19.70 23.68 28.22 4.02 4.16 5.01 — 32.20 33.34 41.29 — 4.34 9.06 10.58 14.54 1.29 1.68 1.88 2.64 20.21 25.69 28.52 40.80 3.21 3.67 4.92 4.97 50.24 59.68 87.61 88.56 共d兲 Sorption 0.15 0.60 0.62 1.10 1.51 3.61 4.55 7.02 1.58 2.08 2.56 3.04 10.43 14.22 17.63 21.23 3.27 3.77 4.26 5.02 22.94 26.54 30.14 36.20 6.23 7.18 12.65 17.56 1.47 2.05 2.36 2.93 22.86 31.36 35.89 45.52 3.38 4.03 4.38 — 55.34 66.85 75.34 — 5.10 10.21 1.58 2.56 18.91 31.76 3.55 5.02 45.74 69.54 8.31 13.42 2.07 3.06 25.33 38.56 4.27 — 57.26 — Auxiliary Information MethodÕApparatusÕProcedure Sorption and desorption isotherms were measured with an electronic microbalance 共Cahn model 2000兲 placed in a high-pressure chamber in Ref. 1 Source and Purity of Materials: CO2: purity 99.99%. PEMA: prepared by radical polymerization; density 1.120 g/cm3 at 298 K 共flotation method兲, glass transition temperature of penetrant-free PEMA 334 K. Estimated Error No information given. References: 1 Y. Kamiya, K. Mizoguchi, T. Hirose, and Y. Naito. J. Polym. Sci., Polym. Phys. Ed. 24, 535 共1986兲. 1287 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 共d兲 Sorption 0.36 0.86 Desorption 0.61 1.09 Pressure/MPa IUPAC-NIST SOLUBILITY DATA SERIES 共b兲 Sorption 0.21 0.69 1.47 Desorption 0.11 0.29 0.49 0.91 Solubility 共V 1* (STP)/V 2* ) TABLE 3. Sorption and desorption isotherms of carbon dioxide in PEMA at 共a兲 328 K, 共b兲 338 K, 共c兲 348 K, and 共d兲 358 K 共The original data were represented graphically兲 Original Measurements: U. B. Goradia and H. G. Spencer, J. Appl. Polym. Sci. 33, 1525 共1987兲. Variables: T/K: 288–353 p/kPa: 0–79.74 Prepared By: A. K. Bokarev Components: 共1兲 Argon: Ar; 关7440-37-1兴 共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲 Original Measurements: Y. Kamiya, K. Mizoguchi, Y. Naito, and D. Bourbon, Int. Congress on Membranes 共ICOM-90兲, Chicago, 1990, pp. 1382– 1384. Variables: T/K⫽278.2– 358.2 p/MPa⫽0 – 5.0 (0 – 50 atm) Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Apparent Henry’s law solubility coefficient Experimental Data TABLE 1. Dual mode sorption parameters for argon in PEMA k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1 333 333* 342 348 353 2.10(⫹3%) 2.06(⫹3%) 2.44(⫹6%) 2.27(⫹7%) 1.96(⫹9%) *Sorption experiment with annealed samples. TABLE 2. Dual mode sorption model parameters T/K k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b 102 /cm Hg⫺1 288 303 318 3.02(⫾7%) 2.73(⫾10%) 2.24(⫾9%) 4.83(⫾10%) 3.10(⫾14%) 1.77(⫾15%) 2.10(⫾11%) 1.20(⫾17%) 1.05(⫾19%) Auxiliary Information Source and Purity of Materials: Atactic PEMA obtained from Polyscience, Inc., as a primary standard, had an M w of 350 000 with M w /M n ⫽2.2; T g ⫽338 K. Estimated Error: References: 1 J. A. Yavorsky and H. G. Spencer, J. Appl. Polym. Sci. 31, 501 共1986兲. T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 278.4 283.2 288.2 298.2 308.2 318.2 328.2 338.2 343.2 348.2 353.2 — — — — — — 0.104 0.094 0.091 0.088 0.089 5.23 4.21 3.55 2.75 2.23 2.36 3.49 1.40 0.21 — — 0.024 0.023 0.023 0.020 0.019 0.014 0.006 0.006 0.020 — — PATERSON, YAMPOL’SKII, AND FOGG T/K MethodÕApparatusÕProcedure A low pressure, finite volume, sorption apparatus previously described1 was used at pressures up to 60 cm Hg. 1288 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Poly共ethyl methacrylate兲 共PEMA兲; 关9003-42-3兴 共VII兲 TABLE 2. Sorption isotherms of argon in PEMA 共The original data were represented graphically兲 T⫽278.4 K T⫽298.2 K T⫽328.2 K T⫽358.2 K Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.51 0.54 0.56 0.99 1.02 1.04 1.51 2.01 2.01 2.01 2.51 3.01 3.02 3.98 3.98 3.98 4.90 4.90 — — — — — — — — — — 1.01 0.99 1.05 1.86 1.81 1.85 2.61 3.47 3.39 3.37 4.16 4.78 4.70 6.01 5.94 5.89 7.13 7.10 — — — — — — — — — — 0.34 0.39 0.85 1.10 1.10 2.08 2.08 3.07 3.07 3.32 4.05 4.11 5.04 5.03 — — — — — — — — — — — — — — 0.28 0.33 0.76 0.92 0.99 1.81 1.85 2.67 2.71 2.91 3.49 3.56 4.33 4.39 — — — — — — — — — — — — — — 0.51 0.52 0.10 1.01 1.50 1.49 1.99 2.00 2.96 2.96 3.95 3.97 4.95 4.95 — — — — — — — — — — — — — — 0.54 0.49 1.07 1.05 1.58 1.54 2.10 2.06 3.12 3.05 4.06 4.02 5.07 5.02 — — — — — — — — — — — — — — 0.51 0.52 1.00 1.01 0.99 1.50 1.50 1.99 2.00 1.98 1.99 2.48 2.48 2.99 3.02 2.98 2.99 2.97 3.47 3.49 3.95 3.96 3.97 4.37 4.49 4.90 4.96 4.95 0.74 0.67 1.43 1.35 1.29 2.08 1.92 2.75 2.69 2.60 2.52 3.23 3.08 3.85 3.85 3.74 3.67 3.61 4.33 4.17 4.90 4.81 4.69 5.28 5.22 5.84 5.87 5.72 Auxiliary Information Source and Purity of Materials: Ar: purity 99.999%. PEMA: glass transition temperature 334 K. Variables: T/K: 259.4–315.4 p/kPa: 0–67 Prepared By: A. K. Bokarev Experimental Data Sorption isotherms of ethane are linear in the range 259–315 K. Solubility coefficients can be described by van’t Hoff equation S⫽5.25⫻10⫺5 ⫺exp共 ⫺⌬H s /RT 兲 cm3共STP兲/cm3 cm Hg, where ⌬H s ⫽⫺14.9 kJ/mol. Sorption isotherms of butane are linear in the range 283–313 K: at lower temperatures they are convex to the pressure axis. The isotherms were represented by exponential relation C⫽S 共 0 兲 p⫺exp共 •c 兲 , where S(0) is the Henry’s law solubility coefficient and is a constant which depends on temperature. The parameters of this equation are given below: T/K S(0)/cm3共STP兲 cm⫺3 共cm Hg兲⫺1 /cm⫺3 cm⫺3共STP兲 273 283 293 303 313 0.432 0.336 0.252 0.176 0.179 0.0128 0.0051 0 0 0 S共0兲 can be described by the van’t Hoff equation S 共 0 兲 ⫽5.24⫻10⫺4 exp共 ⫺⌬H g /RT 兲 cm⫺3共STP兲 cm⫺3 共cm Hg兲⫺1, where ⌬H s ⫽⫺20.6 kJ/mol. Auxiliary Information MethodÕApparatusÕProcedure The solubility was measured by a gravimetric method. The apparatus included a Cahn microbalance, Model 2000 RG. Source and Purity of Materials: PBMA 共Scientific Polymer Products of Ontario, NY兲 had a density of 1.06 g/cm3 at 299 K and glass transition temperature 共DSC兲 in the temperature range from 295 to 308 K. The minimum purity of ethane and n-butane 共Linde Division of Union Carbide Corp.兲 were 99.0%. Estimated Error: No information given. Estimated Error: No information given. 1289 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure Sorption isotherms were determined gravimetrically with an electronic microbalance Cahn 2000. Original Measurements: S. A. Stern, U. M. Vakil, and G. R. Mauze, J. Polym. Sci., Part B: Polym. Phys. 27, 405 共1989兲. IUPAC-NIST SOLUBILITY DATA SERIES Pressure/MPa Components: 共1兲 Ethane; C2H6; 关74-84-0兴 n-butane; C4H10; 关106-97-8兴 共2兲 Poly共n-butyl methacrylate兲 共PBMA兲; 关9003-63-8兴 共VIII兲 Components: 共1兲 Argon; Ar; 关7440-37-1兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Only three papers1–3 have been published for the system PS–argon. The work of Schulz and Gerrens1 is inconsistent and should be 3 excluded from further consideration. Vieth et al. reported sorption isotherms and dual mode sorption parameters for the solubility in oriented and unoriented PS at the ambient temperature, whereas Durrill2 studied the solubility in PS above its glass transition temperature. Pressure dependence of solubility is given below based on the parameters of sorption isotherms obtained by Vieth et al.3 p/MPa C/cm3共STP兲 cm⫺3 0.5 1.0 1.5 2.0 1.2 2.2 3.2 4.0 Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Critical Evaluation: Four investigations1–4 have been reported for the solubility of nitrogen in PS. The work by Scultz and Gerrens2 seems to be unreliable: the pressure of the measurement is not indicated, besides there is some inconsistency among the solubility coefficients for various gases (N2 ,He, H2). The only paper reported the solubility for the ambient temperature is the paper of Vieth et al.,4 and its results can be, tentatively, recommended for this most important range of temperature. Two papers1,3 deal with solubility at higher temperature above T g of PS and at higher pressure. The results of them are in disagreement. Tentatively, one can give the preference to the results of Durrill.3 Further careful work is needed before really reliable values can be advanced as recommended for this system. The values of solubility at different pressures and 298 K given below are based on dual mode sorption parameters reported in Ref. 4. C/cm3共STP兲 cm⫺3 0.5 1.0 1.5 2.0 0.6 1.2 1.7 2.3 1 References: 11 D. M. Newitt and K. E. Weale, J. Chem. Soc. 1541 共1948兲. V. Schulz and H. Gerrens, Z. Phys. Chem. 7, 182 共1956兲. P. L. Durrill, dissertation, Virginia Polytechnic Institute, 1965. 4 W. R. Vieth, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22, 360 共1966兲. 2 3 PATERSON, YAMPOL’SKII, AND FOGG p/MPa Combined consideration of the results from Refs. 2 and 3 results in the enthalpy of sorption of argon in PS equal to ⫺7.1 kJ/mol. References: G. V. Schulz and H. Gerrens, Z. Phys. Chem. 7, 182 共1956兲. 2 P. L. Durrill, dissertation, Virginia Polytechnic Institute, 1965. 3 W. R. Vieth, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22, 360 共1996兲. Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 1290 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.7. Polystyrene—Various Gases Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994. Critical Evaluation: Nine experimental studies are available for the solubility of carbon dioxide in PS. In several papers this system was studied in the range of glassy state of this polymer and at pressures as high as 7.0 MPa.3,4,6–9 Newitt et al.1 and Durrill2 have studied the solubility at higher temperatures and pressures. Chiou, Maeda, and Paul5 have investigated sorption in plasticized PS. Different samples of PS having molecular mass in the range 36 000–850 000 were studied in the range of temperature 293–393 K. Up to 333 K sorption isotherms are concave to the pressure axis, i.e., agree with the dual mode sorption model, above this temperature they are linear possibly due to the plasticization effect exerted by carbon dioxide on PS. A summary of the dual mode sorption parameters as well as the apparent solubility coefficients S are given in Table 1. TABLE 1. The dual mode sorption parameters at different temperatures kD ⬘ CH b ⬘b S⫽k D ⫹C H Ref. 293 303 308 308 313 313 323 333 0.801 0.713 0.535 0.50 0.586 0.80 0.70 0.66 13.0 11.0 8.6 9.2 8.8 8.3 6.0 5.0 0.184 0.134 0.194 0.16 0.092 0.14 0.15 0.11 3.19 2.19 2.20 1.97 1.40 1.96 1.60 1.21 7 7 9 4 7 6 6 6 ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1. Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H The parameters k D and b decrease with temperature but do not form an overall smooth dependence. Accordingly, it is not included into this critical evaluation and, for the temperatures 293–313 K, the results of Sada et al.7 and, for the range 313–333 K, the results of Carfagna et al.6 should be recommended. ⬘ and S found by different authors4,6,7,9 are in good agreement and form, within experimental scatter, a smooth The values of C H temperature dependence 共Figs. 16 and 17兲. The results of Vieth et al.3 reveal a deflection from these and were excluded from the group of recommended values. FIG. 17. Temperature dependence of apparent solubility coefficient S/共cm3共STP兲 cm⫺3 atm⫺1兲. ⬘ intersects the horizontal axis at about 360 K, i.e., somewhat lower than accepted glass transition Temperature dependence of C H temperature of PS 共about 373 K兲. Temperature dependence of the apparent solubility coefficient can be given by the equation log共 S/cm3共STP兲 cm⫺3 atm⫺1兲 ⫽⫺2.840⫹970.0/共 T/K兲 . Enthalpy of sorption is equal to ⫺18.6 kJ/mol. The interval of higher pressures has been investigated by Wissinger and Paulaitis.8 They found nearly linear sorption isotherms, probably, owing to the plasticization effects. The solubilities found in Ref. 6 and 8 for 3.0 MPa, where the pressure ranges of two works overlap, are in good agreement. So for higher pressure the results of Ref. 8 may be recommended. All the results considered above concern high molecular mass PS 共M M about 105兲. Toi and Paul4 studied the effects of the molecular mass of PS on the solubility and the parameters of the dual mode sorption isotherms. The increase in molecular mass from 3 600 to ⬘ , while two other parameters remain 850 000 results in the increase in the solubility at any given pressure as well as in the values of C H intact. 3 The solubility in PS stretched or biaxially oriented was studied by Vieth et al. and Carfagna et al.6 It was shown that the deformation tends to decrease the solubility. Meanwhile, no quantitative recommendation can be made basing on the results of these papers. The range of rubbery state of PS was investigated much less thoroughly.1,2 The results of Newitt and Weale1 and of Durrill2 do not agree with each other. The results of Ref. 2 may be preferred at least tentatively. Further studies are needed to resolve this range of conditions. K. Toi and D. R. Paul, Macromolecules 15, 1104 共1982兲. J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 30, 4019 共1985兲. 6 C. Carfagna, L. Nicodemo, L. Nicolais, and G. Campanile, J. Polym. Sci., Part B: Polym. Phys. 24, 1805 共1986兲. 7 E. Sada, H. Kumazawa, H. Yakushji, Y. Bamba, K. Sakata, and S-T. Wang, Ind. Eng. Chem., Res. 26, 433 共1987兲. 8 R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B: Polym. Phys. 25, 2497 共1987兲. 9 P. C. Raymond and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 28, 2079 共1990兲. 4 5 ⬘ /共cm3共STP兲 cm⫺3兲. FIG. 16. Temperature dependence of Langmuir adsorption parameter C H 1291 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 References: 1 D. M. Newitt and K. E. Weale, J. Chem. Soc. 1541 共1948兲. 2 P. L. Durrill, dissertation, Virginia Polytechnic Institute, 1965. 3 W. R. Veith, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22, 360 共1966兲. IUPAC-NIST SOLUBILITY DATA SERIES T/K 1292 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 C/cm3共STP兲 g⫺1 p/atm 100 200 8.3 16 100 200 300 400 500 600 20 24 26 28 100 200 300 p/atm T⫽398.6 K Critical Evaluation: A number of studies have been published for the system PS–methane. Sorption isotherms in the range of pressure 0–3 MPa at the temperatures 293–323 K, i.e., in the glassy state have been reported by several authors.3,4,6–8 Lundberg et al.1,2,5 have studied this system at much higher pressures and at temperatures above the glass transition of this polymer. These two sets of data should be considered separately. A summary of the parameters of the dual mode sorption model for this system are presented in Table 1 at different temperatures. The ⬘ and S values decrease with temperature monotonously while apparent solubility coefficients S are shown as well. It is seen that the C H ⬘ temperature dependence for two other parameters k D and b is not evident. The linear extrapolation of the temperature dependence of C H indicates that Langmuir capacity parameter vanishes at the temperature somewhat lower than the glass transition temperature of PS. 1–8 TABLE 1. Dual mode sorption parameters at different temperatures T/K kD ⬘ CH b ⬘b S⫽k D ⫹C H Ref. 293 298 298 303 303 308 308 313 318 323 0.305 0.193 0.16 0.277 — 0.175 0.135 0.244 0.165 — 5.00 3.25 7.4 4.93 — 2.53 3.28 3.63 1.98 — 0.0811 0.164 0.108 0.0623 — 0.146 0.061 0.0439 0.112 — 0.7105 0.726 0.9592 0.584 0.5244 0.5444 0.335 0.4034 0.3868 0.3344 7 4 3 7 6 4 8 7 4 6 ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1. Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H Smoothed concentration of methane dissolved at different temperatures and pressures are shown in Table 2. The solubility coefficients obtained in high pressure 共0–3.0 MPa兲4,7,8 and low pressure 共up to 7 kPa兲6 ranges are in reasonable agreement. TABLE 2. Smoothed data for solubility C/共cm3共STP兲cm⫺3兲 of methane in PS Pressure/MPa T/K 1.0 2.0 3.0 Ref. 293 298 308 318 5.3 3.9 3.0 2.7 9.2 6.3 5.0 4.7 12.7 8.5 6.8 6.5 7 4 4, 8 4 ⬘ , b兲 go The results of Vieth et al.3 show that biaxial orientation leads to the decrease in solubility. All three model parameters 共k D , C H down as well. 1,2 5 For the range of higher pressures and temperatures the earlier results have been proved later to be somewhat erroneous. Recalculated data are presented in Ref. 5 and can be recommended. Smoothed values of solubility are presented below for different pressures and temperatures. C/cm3共STP兲 g⫺1 T⫽428.6 K T⫽461.6 K References: 1 J. L. Lundberg, B. M. Wilk, M. J. Huyett, J. Polym. Sci. 57, 165, 275 共1962兲. 2 J. L. Lundberg, B. M. Wilk, and M. J. Huyett, Ind. Eng. Chem., Fundam. 2, 37 共1963兲. 3 W. R. Vieth, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22, 360 共1966兲. 4 W. R. Vieth, C. S. Frangoulis, and J. A. Rionda, J. Colloid Interface Sci. 22, 454 共1966兲. 5 J. L. Lundberg, E. J. Mooney, and C. E. Rogers, J. Polym. Sci.: Part A 7, 947 共1969兲. J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci. 20, 21 共1980兲. E. Sada, H. Kumazawa, H. Yakushiji, Y. Bamba, K. Sakata, and S-T. Wang, Ind. Eng. Chem., Res. 26, 433 共1987兲. 8 P. C. Raymond and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 28, 2079 共1990兲. 6 7 12 21 30 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 3. Solubility of methane in PS at high pressure and temperature Components: 共1兲 Methane; CH4; 关74-82-8兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 T/K 408 423 448 473 498 S102 1.56 1.33 1.06 0.88 0.76 References: 1 L. I. Stiel and D. F. Harnish, AIChE J. 22, 117 共1976兲. 2 J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci. 20, 21 共1980兲. 3 M. Ohzono, Y. Iwai, and Y. Arai, Kagaku Kogaku Ronbunshu 10, 536 共1984兲. 4 J. A. Yavorsky, dissertation, Clemson University, 1984. 5 Y. Iwai, M. Ohzono, and Y. Arai, Chem. Eng. Commun. 34, 225 共1985兲. M. E. Stewart, H. B. Hopfenberg, W. J. Koros, and N. R. McCoy, J. Appl. Polym. Sci. 34, 721 共1987兲. 6 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Three experimental studies1–3 are available for the solubility of 2-methylpropane in PS. The results have been obtained by means of inverse gas chromatography. Solubility coefficients S/共cm3共STP兲 g⫺1 atm⫺1兲 from these papers are compared below: T/K Ref. 423 448 473 498 1 2, 3 1.20 0.77 0.86 0.66 0.65 0.58 0.52 0.50 It is evident that there is a reasonable agreement between the data at higher temperatures, but at the lower temperature the discrepancy becomes significant. Further research is desirable to resolve this system. References: 1 L. I. Suel and D. F. Harnish, AIChE. J. 22, 117 共1976兲. 2 M. Ohzono, Y. Iwai, and Y. Arai, Kagaku Kogaku Ronbunshu 10, 536 共1984兲. 3 Y. Iwai, M. Ohzono, and Y. Arai, Chem. Eng. Commun. 34, 225 共1985兲. 1293 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Critical Evaluation: The papers where solubility data have been reported for the system PS–propane can be partitioned into two groups. Barrie et al.,2 4 6 Yavorsky, and Stewart et al. have studied sorption isotherms by gravimetric or volumetric methods at the temperatures 293–353 K and in the pressure range 0–5 kPa. Inverse gas chromatography was employed in measurement solubility at higher temperatures.4–6 So these two groups of works cover the different intervals of conditions and should be considered separately. In the lower temperature range, the dual mode sorption parameters for the sorption in glass PS have been reported only in Refs. 2 and ⬘ values than those reported by Yavorsky.4 There are some regular 4 Barrie et al. found much higher values of b and the smaller C H ⬘ b. On the other hand, the data of Barrie et al.2 agree reasonably with the discrepancies in the apparent solubility coefficients S⫽k D ⫹C H sorption isotherms reported in Ref. 6. Bearing in mind this, and the greater scatter of the points in the sorption isotherms obtained by Yavorsky4 the results of Barrie et al. should be tentatively recommended for the temperature range 293–333 K. ⬘ reported in Ref. 2 go down with temperature and vanish at about 360 K, i.e., below the The values of Langmuir capacity constant C H glass transition temperature of PS. In the high temperature range, the data of Iwai et al.3,5 and Stiel and Harnish1 agree quite reasonably. Average solubility coefficients S/共g Mpa⫺1 g⫺1兲 based on these results are given below: Components: 共1兲 2-Methylpropane; C4H10; 关75-28-5兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: The solubility coefficients measured at higher temperatures2 were recalculated to convert them into the same units as in Ref. 3, i.e., 3 共cm 共STP兲/cm atm兲. Volumetric thermal expansion coefficients4 2⫻10⫺4 K⫺1 at T⬍T g 共䊉兲 and 6⫻10⫺4 K⫺1 at T⬎T g 共䊊兲 were used in the calculation. It is seen that the slopes of the linear dependences and, hence, the enthalpies of sorption change when passing from glassy to rubbery state of PS. The point reported by Durrill and Griskey was not included, tentatively, into the calculation. The enthalpies of sorption corresponding the glassy and rubbery states are equal to ⫺34.2 and ⫺15.4 kJ/mol, respectively. 3 Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Ethyne; C2H2; 关74-86-2兴 Hydrogen; H2; 关1333-74-0兴 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polystyrene; 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: D. M. Newitt and K. E. Weale, J. Chem. Soc. 1541 共1948兲. Variables: T/K: 347–464 p/MPa: 8.0–30.0 Prepared By: A. K. Bokarev Experimental Data TABLE 1. Solubility C/cm3共STP兲/cm3 of gases in PS at 443 K p/atm C Gas p/atm C H2 80 142 224.5 233 243 306.5 2.89 5.35 8.48 9.42 9.66 11.95 N2 118 182 187 232 282.5 287 2.95 5.02 5.57 6.15 7.93 7.77 CO2 50 51 3.04 2.82 C2H2 49 77.55 92.5 5.27 8.05 9.75 References: 1 P. L. Durrill and R. G. Griskey, AIChE J. 12, 1147 共1966兲. 2 L. I. Stiel and D. F. Harnish, AIChE J. 22, 117 共1976兲. 3 J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci. 20, 21 共1980兲. 4 Polymer Encyclopaedia 共in Russian兲 共Sov. Encycl. Publishers, Moscow, 1977兲, Vol. 3, p. 534. Gas T/K S Gas T/K S N2 347 409 422 443 464 0.035 0.033 0.031 0.0275 0.026 H2 290 322 345 399 415 443 459.5 0.065 0.061 0.060 0.047 0.042 0.037 0.034 The data fitted the following van’t Hoff equations: log共 S/cm3共STP兲/cm3 atm兲⫽⫺2.4⫹1900/4.58 共 T/K兲 for H2: log共 S/cm 共STP兲/cm atm兲⫽⫺2.4⫹1700/4.58 共 T/K兲 for N2. 3 3 Auxiliary Information MethodÕApparatusÕProcedure Manometric method of measurement of solubility was used. Source and Purity of Materials: PS from B. X. Plastics Ltd. was studied. No characteristics of the polymer given. Estimated Error: Nothing specified. PATERSON, YAMPOL’SKII, AND FOGG Gas TABLE 2. Temperature dependence of solubility coefficient S/cm3共STP兲/cm3 atm FIG. 18. The solubility of chlorodifluoromethane 共Freone 22兲 in PS was measured only in three papers.1–3 Barrie et al.3 studied this system using a gravimetric technique in the temperature range 293–333 K. At much higher temperatures, this system was investigated by means of inverse gas chromatography.2 The figure shows the temperature dependence T/K of the solubility coefficient S/共cm3共STP兲 g⫺1 atm⫺1兲. 1294 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Chlorodifluoromethane; CHClF2; 关75-45-6兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Components: 共1兲 Helium; He; 关7440-59-7兴 Nitrogen; N2; 关7727-37-9兴 Argon; Ar; 关7440-37-1兴 Carbon dioxide; CO2; 关124-38-9兴 Chlorodifluoromethane 共R22兲; CHFCl2; 关75-45-6兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: P. L. Durill, Ph.D. dissertation, Virginia Polytech. Inst., 1965. P. L. Durill and R. G. Griskey, AIChE J. 12, 1147 共1965兲. Variables: T/K: 461 p/MPa: 0.3–1.9 共3–19 atm兲 Prepared By: A. K. Bokarev Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Variables: Prepared By: T/K⫽298 p/MPa⫽0–2.1 共0–20 atm兲 A. K. Bokarev Experimental Data TABLE 1. Dual mode sorption parameters for various gases in polystyrene at 298 K Experimental Data Henry’s law solubility coefficients S of gases in PS Pressure/atm S/共cm3共STP兲/g atm兲 He N2 Ar CO2 CHFCl2 2–13.6 3.1–7.0 3.3–7.4 7.4–19.1 5.8–8.1 0.029⫾0.020 0.0488 0.093⫾0.004 0.223⫾0.015 0.388 Auxiliary Information Source and Purity of Materials: PS used is a product of Monsanto Co. M w ⫽450 000; T g ⫽354 K; ⫽1.05 g/cm3. Gases from Air Reduction Co., had a minimum purity: CO2-99.5%; N2-99.90%; Ar-99.997%; He-99.99%; R22 共Allied Chemical Co.兲-99.9%. Estimated Error: ␦ C/C⭐8%. References: 1 J. L. Lundberg, M. B. Wilk, and M. J. Huyett, Appl. Phys. 31, 1131 共1960兲. k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 Gas Oriented Unoriented Oriented Unoriented Oriented Unoriented N2 Ar CH4 CO2 0.02 0.06 0.13 0.57 0.025 0.065 0.160 0.650 6.65 7.55 5.58 6.05 8.3 9.1 7.4 7.7 0.015 0.021 0.080 0.400 0.013 0.021 0.108 0.370 1295 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Gas MethodÕApparatusÕProcedure The equipment and a manometrical procedure for solubility measurements were similar to those of Lundberg et al.1 Original Measurements: W. R. Vieth, P. M. Tam, and A. S. Michaels, J. Colloid Interface Sci. 22, 360 共1966兲. First runs Second runs Oriented Unoriented Oriented 0.98 1.68 2.17 2.75 3.25 3.32 0.54 0.99 1.50 1.84 2.06 — 0.14 0.27 0.41 0.55 0.69 0.86 1.02 1.17 1.37 1.55 1.73 3.07 4.63 6.19 7.54 8.77 9.84 10.86 11.97 13.12 14.39 15.33 0.34 0.51 0.78 1.05 1.34 1.63 1.90 0.47 0.99 1.53 1.99 Variables: T/K: 298–348 p/kPa: 0–26 Prepared By: A. K. Bokarev Unoriented Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 1.23 1.97 2.71 3.20 3.48 — 0.56 1.05 1.42 1.77 2.10 — 1.60 2.42 3.20 3.73 4.30 — 0.43 1.01 1.70 2.09 — — 1.23 2.34 3.57 4.10 — — 0.17 0.34 0.51 0.68 0.88 1.08 1.32 1.54 1.77 — — 3.36 5.57 7.42 8.89 10.29 11.56 12.91 14.47 15.53 — — 0.35 0.69 1.04 1.35 1.75 1.98 — — — — — 6.35 9.88 13.12 15.04 18.40 19.88 — — — — — 0.29 0.83 1.39 1.89 — — — — — — — 5.82 11.39 15.70 18.89 — — — — — — — 1.80 2.54 3.36 4.14 4.88 5.49 6.19 0.43 0.85 1.26 1.77 2.02 — — 2.38 3.57 4.67 5.78 6.27 — — 0.48 0.93 1.36 1.79 2.06 — — 3.40 5.16 6.60 7.87 8.44 — — 0.48 0.97 1.59 2.03 — — — 3.40 5.25 7.21 8.24 — — — 0.66 1.07 1.56 1.93 0.60 1.08 1.57 2.06 0.82 1.15 1.64 1.97 0.58 1.09 1.55 2.09 0.98 1.48 1.89 2.42 0.49 0.86 1.33 1.85 0.78 1.19 1.64 2.21 0.42 0.79 1.12 1.43 1.78 2.04 Pressure/MPa Original Measurements: H. Odani, K. Taira, N. Nemoto, and M. Kurata, Bull. Inst. Chem. Res., Kyoto Univ. 57, 4, 226 共1979兲. Ar CO2 CH4 N2 Auxiliary Information MethodÕApparatusÕProcedure A direct measurement of the solubility was made with a volumetric apparatus. With the film sample placed in the sorption bomb, the sorption system is evacuated and flushed with gas several times. The system is then evacuated to 0.02 mm Hg. Gas is then introduced rapidly, and the initial pressure recorded. Sorption takes place instantaneously and proceeds until the equilibrium pressure is established. Source and Purity of Materials: Gases: minimum purity 99.99%. Biaxially oriented PS film: Dow Chemical Co., density 1.0490 g/cm3. Cast annealed PS film: prepared from a solution of about 20% by weight of oriented PS in methylene dichloride, density 1.0474 g/cm3. Estimated Error: Relative precision of solubilities: CO2 8.1%; CH4 6.3%; Ar 10.5%; N2 15%. Experimental Data Equilibrium solubility coefficient at 298 K and heats of solution of gases in polystyrene Gas S 103 /cm3共STP兲 cm⫺3 cm Hg⫺1 ⌬H s /kJ mol⫺1 0.17 5.03 17.8 89.0 2.29 — ⫺13.6 ⫺17.5 ⫺23.2 ⫺13.8 Helium; He; 关7440-59-7兴 Argon; Ar; 关7440-37-1兴 Krypton; Kr; 关7439-90-9兴 Xenon; Xe; 关7440-63-3兴 Nitrogen; N2; 关7727-37-9兴 Auxiliary Information MethodÕApparatusÕProcedure The solubility has been measured by a volumetric method. Measurements were performed using an apparatus similar to that employed by Meares.1 Source and Purity of Materials: Anionically polymerized PS sample having M w ⫽106 000 was used. He, Ar, Kr, Xe and N2 were obtained from Takachiho Kagaku Kogyo, Co. Ltd., and the purity of each gas exceeded 99.995% by volume. Estimated Error: No information. References: 1 P. Meares, Trans. Faraday Soc. 54, 40 共1958兲. PATERSON, YAMPOL’SKII, AND FOGG Pressure/MPa Sorption (V 1* (STP)/V 2* ) Sorption (V 1* (STP)/V 2* ) Components: 共1兲 Various gases 共He, Ar, Kr, Xe, N2兲 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 1296 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 2. Solubility isotherms of various gases in polystyrene at 298 K 共The original data were represented graphically兲 Components: 共1兲 Methane; CH4; 关74-82-8兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: J. L. Lundberg, B. M. Wilk, and M. J. Huyett, Ind. Eng. Chem., Fundam. 2, 37 共1963兲. J. L. Lundberg, E. J. Mooney, and C. E. Rogers, J. Polym. Sci. Part A-2 7, 947 共1969兲. Variables: T/K⫽373–461 p/MPa⫽4.9–67 Prepared By: Yu. P. Yampol’skii Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: K. Toi and D. R. Paul, Macromolecules 15, 1104 共1982兲. Variables: T/K⫽308– 328 p/MPa⫽0 – 2.3 (0 – 22 atm) M v ⫽3600– 850 000 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Molecular masses and polydispersity of PS studied Experimental Data Solubility of methane in PS p/atm C/cm3共STP兲 cm⫺3 373.35 320 22.5 398.55 50 217 300 333 347 433 467 537 590 667 4.5 16.5 22 21 24 24 25 27 28 29 428.57 50 163 243 5 14 23 461.55 67 120 200 250 313 8 14 21 25 30 MM M w /M n PS-I PS-I PS-I PS-I PS-II M v ⫽3600 M v ⫽9100 M v ⫽17 400 M v ⫽850 000 M n ⫽90 000 ⬍1.06 ⬍1.06 ⬍1.06 ⬍1.06 2.8 TABLE 2. Dual mode sorption parameters for carbon dioxide at 308 K 共Read off the plots by the compiler兲 MM 3600 9100 17 400 850 000 90 000 T g /K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 345 359 371 374 374 0.38 0.46 0.45 0.50 0.51 5.0 7.5 8.0 9.2 9.5 0.17 0.20 0.17 0.16 0.17 Auxiliary Information MethodÕApparatusÕProcedure The method of ‘‘interval’’ sorption was used. Pressure decrease due to sorption in a closed system of known volume was measured with a pressure transducer. Polymer samples were put between two disks of sintered glass. No correction for the swelling of the sample was introduced. Source and Purity of Materials: PS had M w ⫽500 000. Purity of methane was ⬎99.0%. Estimated Error: ␦ T⫽⫾0.02 K ␦ p⫽⫾0.5 atm ␦ C/C⬍5% 1297 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Digitized by the compiler from the original figure. Type IUPAC-NIST SOLUBILITY DATA SERIES T/K T⫽308 K T⫽318 K T⫽328 K Sorption 共V 1* (STP)/V 2* 兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 0.08 0.13 0.17 0.22 0.28 0.36 0.40 0.52 0.60 0.72 0.80 0.89 0.99 1.18 1.36 0.92 1.42 1.72 2.18 2.76 3.18 3.56 4.27 4.73 5.45 5.78 6.70 7.17 7.92 8.89 0.08 0.13 0.18 0.20 0.33 0.37 0.41 0.46 0.53 0.63 0.73 0.81 0.91 1.01 1.22 0.63 0.92 1.17 1.38 2.14 2.27 2.48 2.94 3.31 3.65 3.90 4.37 4.91 5.54 6.26 0.10 0.14 0.24 0.31 0.38 0.43 0.52 0.63 0.74 0.82 1.01 1.21 1.40 1.60 1.75 0.42 0.71 1.13 1.43 1.60 1.85 2.40 2.73 3.16 3.45 4.25 5.01 5.64 6.44 7.07 1.55 1.76 1.91 2.01 2.09 2.17 2.29 — 9.56 10.74 11.41 11.75 12.21 12.51 13.01 — 1.41 1.56 1.76 1.96 2.03 2.13 2.20 2.29 7.06 7.73 8.53 9.25 9.79 10.09 10.34 10.93 1.93 2.02 2.11 2.18 — — — — 7.75 8.21 8.67 8.80 — — — — FIG. 19. Sorption isotherms of carbon dioxide in various monodisperse polystyrenes at 308 K. MethodÕApparatusÕProcedure The method of sorptions measurement was the same as described in Refs. 1 and 2. Prior to determination of the sorption isotherms the films cast from trichloroethylene solution and free from the solvent were conditioned for 1 d at 24 atm of CO2. Source and Purity of Materials: Monodispersed PS-I: Pressure Chemical Co., Polydispersed PS-II: Cosden Oil and Chemical Co. Their viscosity molecular masses, M w /M n ratios and T g values are given above. Estimated Error: No information given. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. 2 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. PATERSON, YAMPOL’SKII, AND FOGG Pressure/MPa Auxiliary Information 1298 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 3. Effect of temperature on sorption of CO2 in monodisperse polystyrenes with M v ⫽3600 共The original data were represented graphically兲 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 共3兲 Mineral oil Phosphoric acid, tri共methyl phenyl兲 ester 共tricresyl phosphate, TCP兲; 共CH3C6H4兲3PO; 关1330-78-5兴 Original Measurements: J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 30, 4019 共1985兲. Variables: T/K⫽298– 338 p/MPa⫽0 – 3.0 Prepared By: Yu. P. Yampol’skii Experimental Data Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B: Polym. Phys. 25, 2497 共1987兲. Variables: T/K⫽308.2– 338.2 p/MPa⫽0 – 7.3 (0 – 70 atm) Prepared By: Yu. P. Yampol’skii Experimental Data Sorption isotherms of carbon dioxide in polystyrene at different temperatures. 共The original data were represented graphically兲 T⫽308.2 K T⫽323.2 K T⫽338.2 K Sorption 共V 1* (STP)/V 2* 兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 0.51 1.02 1.57 2.06 2.92 3.78 4.55 5.52 6.38 7.29 — 6.04 9.38 13.31 15.98 23.44 31.73 36.32 42.67 48.36 57.32 — 0.52 1.05 1.57 2.17 2.68 3.19 3.68 4.22 4.71 5.17 5.57 4.86 6.94 10.03 14.88 17.46 20.89 23.64 25.64 29.23 31.31 35.67 0.42 0.80 1.24 1.65 2.04 2.47 2.87 3.33 3.69 4.01 4.32 4.19 5.94 7.60 10.61 11.35 14.53 16.44 18.01 19.51 21.68 24.11 Auxiliary Information MethodÕApparatusÕProcedure A gravimetric method was used. The polymer samples were suspended from a quartz spring. A correction for buoyancy was introduced using the densities of carbon dioxide up to high pressures. FIG. 20. Effect of temperature on sorption isotherms of carbon dioxide in PS containing 3% by mass of mineral oil 共a兲 and 10% by mass of TCP 共b兲. MethodÕApparatusÕProcedure Sorption isotherms were obtained using dual-volume dual-transducer cell design based on the pressure decay principle. Estimated Error: No information given. Source and Purity of Materials: PS: M n ⫽90 000, M w /M n ⫽2.8. PS containing 3% of mineral oil: T g ⫽360 K. PS containing 10% of TCP: T g ⫽343 K. The samples were conditioned at the highest CO2 pressure before measurement. Estimated Error: No information given. 1299 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information Source and Purity of Materials: CO2: Linde, purity 99.99%. Polystyrene: Scientific Polymer Products, M w ⫽250 000, glass transition temp. 373 K. IUPAC-NIST SOLUBILITY DATA SERIES Pressure/MPa Original Measurements: C. Carfagna, L. Nicodemo, L. Nicolais, and G. Campanile, J. Polym. Sci., Part B: Polym. Phys. 24, 1805 共1986兲. TABLE 2. Sorption isotherms of carbon dioxide in oriented PS films at various temperatures 共The original data were represented graphically兲 Pressure/MPa Variables: T/K⫽300– 393 p/MPa⫽0 – 3.0 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Dual mode sorption parameters for CO2 in polystrene at various temperatures T/K ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.698 0.463 0.296 0.307 0.453 0.425 8.132 6.839 5.273 2.956 — — 0.388 0.298 0.227 0.157 — — 0.744 0.712 0.659 0.577 0.477 0.417 8.341 5.990 5.004 — — — 0.131 0.151 0.112 — — — Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 1.44 6.10 7.84 8.70 0.96 1.02 1.20 1.37 13.63 13.85 15.62 16.59 1.43 1.84 1.93 2.16 16.08 19.72 20.56 21.61 2.28 2.37 2.92 — 22.04 23.60 26.67 — 2.06 2.87 4.29 4.78 5.18 0.43 0.49 0.61 0.82 0.93 5.54 6.38 7.31 9.04 9.83 1.15 1.23 1.61 1.80 2.06 10.88 11.27 13.29 13.71 15.29 2.15 2.34 2.89 — — 15.59 16.51 18.49 — — 1.29 2.62 3.06 4.29 5.48 1.01 1.22 1.37 1.51 1.74 7.01 7.16 8.17 8.64 8.79 1.82 1.92 2.03 2.14 2.22 9.54 9.43 10.23 9.84 10.65 2.33 2.55 2.64 2.89 — 10.90 11.22 11.79 12.61 — 0.57 0.79 1.19 1.62 2.24 2.63 0.58 0.67 0.80 0.95 1.04 1.10 2.97 3.50 3.57 4.54 4.79 4.65 1.15 1.23 1.35 1.43 1.53 1.72 4.50 5.44 6.05 6.13 6.38 6.93 2.02 2.34 2.53 2.93 — — 7.78 8.68 9.23 10.25 — — 0.34 1.31 2.34 3.25 1.15 1.41 1.62 1.56 4.68 5.54 6.09 6.69 1.80 1.88 2.01 2.31 6.78 8.08 8.19 9.32 2.74 — — — 11.59 — — — 0.99 1.29 0.72 0.79 2.54 3.16 0.88 1.70 3.19 6.57 2.43 — 9.39 — PATERSON, YAMPOL’SKII, AND FOGG Oriented film 300.8 313 323 333 352 373 Unoriented film 313 323 333 353 373 393 k D /cm3共STP兲 cm⫺3 atm⫺1 T⫽300.8 K 0.04 0.31 0.46 0.45 T⫽313 K 0.13 0.17 0.30 0.33 0.39 T⫽323 K 0.11 0.28 0.33 0.55 0.71 T⫽333 K 0.10 0.16 0.21 0.31 0.40 0.48 T⫽353 K 0.13 0.27 0.59 0.82 T⫽373 K 0.30 0.41 Sorption 共V 1* (STP)/V 2* 兲 1300 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 TABLE 3. Sorption isotherms of carbon dioxide in unoriented PS films at various temperatures 共The original data were represented graphically兲 Pressure/MPa Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 2.78 4.02 8.10 9.34 1.00 1.27 1.52 1.78 12.46 14.49 16.06 19.46 1.96 2.19 2.30 2.89 19.72 22.44 22.14 26.59 3.01 — — — 26.35 — — — 3.40 5.10 6.73 0.893 1.204 1.386 10.13 11.92 13.50 1.52 1.78 2.40 14.46 16.66 20.19 2.63 2.87 — 22.73 23.56 — 1.81 2.15 2.94 4.24 0.47 0.71 0.70 0.89 4.86 6.72 7.35 8.01 1.10 1.36 1.48 1.78 10.05 12.48 13.15 14.77 2.16 2.51 3.03 — 17.41 20.23 23.26 — 1.18 3.70 5.56 1.17 1.48 1.82 7.07 9.09 10.88 2.24 2.30 2.65 13.41 13.11 15.19 2.85 — — 16.54 — — 0.78 1.17 2.79 3.74 0.90 0.99 1.08 1.10 4.36 4.35 5.19 5.02 1.44 1.56 1.85 2.15 7.15 7.48 8.19 9.76 2.24 2.47 2.92 3.07 10.49 11.15 13.39 14.05 Original Measurements: E. Sada, H. Kumazawa, H. Yakushiji, Y. Bamba, K. Sakata, and S.-T. Wang, Ind. Eng. Chem., Res. 26, 433 共1987兲. Variables: T/K⫽293–313 p/MPa⫽0.2–3.0 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters Gas T/K k D /cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm3 CH b/atm⫺1 CO2 293 303 313 293 303 313 0.801 0.713 0.586 0.305 0.277 0.244 13.0 11.0 8.81 5.00 4.93 3.63 0.184 0.134 0.0918 0.0811 0.0623 0.0439 CH4 Auxiliary Information MethodÕApparatusÕProcedure Equilibrium sorption was measured by the pressure decay method in the cell similar to that described in Ref. 1. The pressure in the cell was continuously measured by a pressure transducer. Source and Purity of Materials: PS films provided by Mitzubishi–Monsanto Chemical Co were studied. Estimated Error: No information given. References: W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed., 14, 687 共1976兲. 1 0.60 0.83 0.94 0.46 0.60 0.91 1.49 2.28 3.78 1.50 1.91 2.17 6.23 7.39 9.07 2.38 2.93 3.05 9.45 11.73 12.40 Auxiliary Information Source and Purity of Materials: PS atactic: Montedison Co., M w ⫽290 000, glass transition temperature 371 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 1301 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure The sorption apparatus used was similar to that described in Ref. 1. Experiments were performed on uniaxially drawn samples. Unoriented samples were obtained by annealing the extruded film at 453 K for 20 min. IUPAC-NIST SOLUBILITY DATA SERIES T⫽313 K 0.15 0.30 0.60 0.76 T⫽323 K 0.29 0.40 0.61 T⫽333 K 0.17 0.23 0.31 0.44 T⫽353 K 0.18 0.61 0.89 T⫽373 K 0.17 0.29 0.60 0.83 T⫽393 K 0.22 0.27 0.30 Sorption 共V 1* (STP)/V 2* ) Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: P. C. Raymond and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 28, 2079 共1990兲. Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: H. G. Spencer and J. A. Yavorsky, J. Appl. Polym. Sci. 28, 2937 共1983兲. Variables: T/K⫽308 p/MPa⫽0–2.5 共0–25 atm兲 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽345–370 p/kPa⫽0–40 Prepared By: A. K. Bokarev Experimental Data TABLE 1. Sorption C/cm3共STP兲/cm3 of methane and carbon dioxide in PS* Experimental Data Temperature dependence for the solubility coefficient S of propane in polystyrene is given by the equation: S⫽S 0 exp(⫺⌬H/RT). CH4 CO2 5 10 15 20 25 1.5 2.6 3.6 4.4 5.3 6.7 11.1 14.6 17.6 20.0 At 353 K, the parameters are: ⌬H/kJ mol⫺1 ⫺8 TABLE 2. Dual mode sorption parameters Gas k D /cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm3 CH b/atm⫺1 CH4 CO2 0.135 3.28 0.061 0.535 8.63 0.194 Auxiliary Information Source and Purity of Materials: PS 共Cosden Oil 550兲 had a density 1.052 g/cc and the glass transition temperature 373 K. No information on gas purity given. References: Y. Maeda and D. R. Paul, Polymer 26, 2055 共1985兲. 1 ln(S/cm3共STP兲/共cm3 cm Hg)) ⫺7.15 ⫺4.49 Temperature dependence for solubility coefficient S of propane in polystyrene. *Smoothed data taken from the plot by the compiler. Estimated Error: No information given. ln(S0 /(cm3共STP兲/cm3 cm Hg)) T/K ln(S/cm3共STP兲/共cm3 cm Hg)) 343.6 348.4 357.1 370.3 ⫺4.44 ⫺4.52 ⫺4.48 ⫺4.59 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were carried out in a low pressure, constant-volume cell previously described, Ref. 1. A correction for the buoyancy was introduced. Source and Purity of Materials: C3H8: Matheson, purity 99.99%. PS: Polysciences Inc., M w ⫽23 000, glass transition temperature 334 K, density 共303 K兲 1.06 g/cm3. Estimated Error: No information given. References: 1 J. A. Yavorsky and H. G. Spencer, J. Appl. Polym. Sci. 25, 2109 共1980兲. PATERSON, YAMPOL’SKII, AND FOGG p/atm MethodÕApparatusÕProcedure Gas sorption measurement was performed using the same equipment and procedure as in Ref. 1. Sorption isotherm for methane were obtained using polymer samples which had never been exposed to CO2. The CO2 isotherm was obtained using the sample that had been conditioned in CO2 at 25 atm for 24 h. 1302 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: J. A. Yavorsky, Ph.D. dissertation, Department of Chemistry and Geology, Clemson University, 1984. Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: M. E. Stewart, H. B. Hopfenberg, W. J. Koros, and N. R. McCoy, J. Appl. Polym. Sci. 34, 721 共1987兲. Variables: T/K⫽313–353 p/kPa⫽0–580 Prepared By: A. K. Bokarev Variables: T/K: 303 p/kPa: 6.1–93.1 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Dual mode sorption parameters for propane in polystyrene Experimental Data Solubility C 共g per 100 g polymer兲 of propane in PS* 102 k D /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH 102 b/cm Hg⫺1 Sample p/mm Hg C Sample p/mm Hg C 313 333 353 2.49 1.98 1.62 3.7 4.2 3.7 1.33 0.25 0.06 PS as received 46 149 357 558 700 0.20 0.38 0.56 0.79 1.05 PS preswollen in C3H8 共700 mm Hg, 30 min兲 46 144 448 0.30 0.56 0.85 TABLE 2. Sorption isotherms of propane in polystyrene 共The original data were represented graphically兲 *Taken from the graph by compiler. T⫽313 K T⫽333 K T⫽353 K Auxiliary Information Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) 32.64 41.20 51.07 238.32 — — — — — 1.32 1.74 2.03 7.02 — — — — — 36.97 36.44 131.88 141.62 144.81 248.83 313.34 493.11 550.73 0.40 0.69 2.73 2.78 3.51 6.02 6.08 11.34 10.27 23.76 71.27 111.78 153.75 280.14 309.51 542.21 577.30 — 0.33 0.99 1.52 2.18 3.79 4.24 7.50 8.25 — Auxiliary Information Source and Purity of Materials: C3H8: Matheson, minimum purity 99.98%. PS: Polyscience, Inc., M w ⫽190 000. Source and Purity of Materials: Emulsion polymerized PS 共B.F. Goodrich Co R/D center兲 had M n ⫽440 000 and glass transition temperature 381 K. Instrument grade propane was 99.99% pure. Estimated Error: No information given. References: 1 J. M. H. Fechter, H. B. Hopfenberger, and W. J. Koros, Polym. Eng. Sci. 21, 925 共1981兲. Estimated Error: ⬘ ⫾29%; Relative precision of DMS parameters: k D ⫾21%; C H b⫾55%. 1303 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure The equilibrium solubility of gases in the polymer was measured by a manometric technique. High pressure apparatus 共up to 930 kPa兲 with pressure transducers was employed. MethodÕApparatusÕProcedure Gas sorption measurements were performed using a Cahn RG microbalance. The sorption apparatus and procedure are discussed in Ref. 1 IUPAC-NIST SOLUBILITY DATA SERIES T/K Original Measurements: Y. Iwai, M. Ohzono, and Y. Arai, Chem. Eng. Commun. 34, 225 共1985兲. Components: 共1兲 Various organic gases 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: L. I. Stiel and D. F. Harnish, AIChE J. 22, 117 共1976兲. Variables: Prepared By: Variables: T/K⫽408– 503 Prepared By: Yu. P. Yampol’skii T/K⫽423–498 Yu. P. Yampol’skii 1304 Experimental Data Infinite dilution solubility coefficients S,/共cm3共STP兲/g atm兲 Experimental Data Values of weight fraction Henry’s constants/MPa for hydrocarbons in molten polystyrene. The experienced data follow the curves calculated by the UNIFAC-FV model. 共The original data were represented graphically兲 Temperature T/K n-Butane 2-Methylpropane Propane Gas 408 423 448 473 498 423.2 448.2 473.2 498.2 35.96 42.33 51.81 61.53 47.49 56.46 62.58 74.33 78.79 100.53 123.04 137.76 Trichlorofluoromethane; CCl3F 关75-69-4兴 Dichlorodifluoromethane; CCl2F2 关75-71-8兴 Chlorodifluoromethane; CHClF2 关75-45-6兴 Chlorofluoromethane; CH2ClF 关593-70-4兴 Chloromethane; CH3Cl 关74-87-3兴 Propane; C3H8 关74-98-6兴 2-Methylpropane; C4H10 关75-28-5兴 3.85 1.12 0.94 2.01 3.02 0.94 0.81 1.65 2.09 0.70 0.64 1.20 1.55 0.56 0.53 — 1.17 0.45 0.44 — — 0.90 — 1.70 0.78 1.20 1.30 0.62 0.86 — 0.51 0.65 — 0.43 0.52 Auxiliary Information MethodÕApparatusÕProcedure Source and Purity of Materials: A gas chromatographic method used for the determination of weight fraction Henry’s constants and was similar to those described in Refs. 1 and 2. PS was coated on Chromosorb W 共AW DMSC 60/80兲. Helium was used as a carrier gas. Estimated Error: No information given. References: D. D. Liu and J. M. Prausnitz, Ind. Eng. Chem. Fundam. 15, 330 共1976兲. 2 M. Ohzono, Y. Iwai, and Y. Arai, Kagaku Kogaku Ronbunshu 10, 536 共1984兲. 1 Auxiliary Information MethodÕApparatusÕProcedure Solubility in the limit of infinite dilution ( p→0) was determined by means of inverse gas chromatography PS was coated on Fluoropak-80 support. Polymer content was in the range 4.8%–13.1% in the columns having the length 24–71 m. The correction for pressure drop in a column was introduced. Source and Purity of Materials: Molecular mass, M n , of PS⫽110 000– 115 000. Estimated Error: ␦ T⫽1 K ␦ S/S⫽10% PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 n-Butane; C4H10; 关106-97-8兴 2-Methylpropane; C4H10; 关75-28-5兴 Propane; C3H8; 关74-98-6兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 TABLE 2. Sorption isotherms of chlorodifluoromethane in polystyrene powder Components: 共1兲 Methane; CH4; 关74-82-8兴 Propane; C3H8; 关74-98-6兴 Chlorodifluoromethane; CHClF2; 关75-45-6兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 Original Measurements: J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci. 20, 21 共1980兲. Variables: Prepared By: T/K⫽293– 333 p/kPa⫽0 – 65.6 Yu. P. Yampol’skii Experimental Data ⬘ b) TABLE 1. Dual mode sorption parameters and solubility coefficients (S⫽k D ⫹C H T/K CH4 303 323 303* 323* 293 303 313 323 333 293* 303* 313 323 333 C3H8 CHClF2 k D 102 / cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/cm Hg⫺1 S/cm3共STP兲 cm⫺3 cm Hg⫺1 — — — — — — 4.69 2.82 4.39共⫾5%兲 3.30共⫾11%兲 2.93共⫾6%兲 2.46共⫾6%兲 2.29共⫾14%兲 7.34共⫾8%兲 1.01 0.735 1.32共⫾9%兲 1.36共⫾17%兲 0.90共⫾12%兲 0.70共⫾16%兲 0.51共⫾45%兲 2.16共⫾15%兲 0.18 0.071 0.209共⫾18%兲 0.136共⫾28%兲 0.127共⫾20%兲 0.106共⫾23%兲 0.108共⫾62%兲 0.18共⫾28%兲 0.0069 0.0044 0.229 0.0804 0.32共⫾9%兲 0.218共⫾11%兲 0.143共⫾8%兲 0.0984共⫾7%兲 0.0776共⫾17%兲 0.471共⫾13%兲 5.42共⫾9%兲 4.49共⫾7%兲 3.81共⫾7%兲 3.18共⫾18%兲 1.95共⫾14%兲 1.50共⫾13%兲 1.20共⫾15%兲 0.80共⫾59%兲 0.15共⫾25%兲 0.11共⫾20%兲 0.089共⫾20%兲 0.071共⫾63%兲 0.347共⫾11%兲 0.210共⫾7%兲 0.145共⫾6%兲 0.089共⫾9%兲 Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) 0.61 1.13 1.30 1.65 12.93 16.80 20.66 25.01 2.03 2.49 2.70 3.08 28.67 32.64 36.89 39.76 3.30 3.65 3.82 4.07 46.78 54.80 — — 4.51 5.02 — — 0.41 0.75 1.02 1.23 12.61 16.77 20.73 25.87 1.63 1.90 2.20 2.47 29.43 33.88 37.24 40.90 2.75 2.89 3.15 3.28 49.50 56.81 — — 3.69 3.99 — — 0.28 0.60 0.77 0.91 13.28 17.13 21.19 25.04 1.22 1.41 1.66 1.83 29.10 33.64 36.91 40.76 2.07 2.26 2.43 2.56 49.55 55.97 — — 2.90 3.15 — — 0.23 0.36 0.64 0.73 12.87 18.80 21.37 25.72 0.92 1.21 1.29 1.53 29.66 33.02 37.17 41.91 1.63 1.78 1.92 2.11 48.83 56.24 — — 2.32 2.58 — — 0.15 0.28 0.37 0.48 12.75 17.10 21.74 25.49 0.65 0.80 0.94 1.09 28.85 32.90 37.04 41.59 1.19 1.34 1.40 1.55 49.98 58.18 — — 1.80 2.04 — — T⫽293 K 2.10 4.89 6.38 8.57 T⫽303 K 2.00 4.08 6.17 8.55 T⫽313 K 2.19 4.77 6.75 8.82 T⫽323 K 2.48 4.16 7.73 9.41 T⫽333 K 2.37 4.65 6.43 8.70 *PS films, other data refer to PS powder. TABLE 3. Sorption isotherms of methane and propane in polystyrene film 共For Tables 2, 3, and 4, the original data were represented graphically.兲 C3H8 CH4 T⫽303 K T⫽323 K T⫽303 K T⫽323 K Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) 5.53 7.87 9.89 10.52 11.92 15.43 18.00 24.31 28.05 33.97 38.80 46.66 0.03 0.04 0.05 0.06 0.06 0.08 0.10 0.13 0.15 0.18 0.20 0.24 3.50 8.72 11.53 13.47 21.10 28.81 30.45 45.17 — — — — 0.01 0.03 0.04 0.04 0.07 0.10 0.11 0.15 — — — — 2.43 3.37 5.72 7.43 15.63 23.20 28.34 44.80 — — — — 0.33 0.44 0.67 0.77 1.22 1.58 1.81 2.49 — — — — 2.65 3.75 7.26 10.22 14.12 19.89 26.74 38.04 48.25 — — — 0.15 0.20 0.36 0.44 0.62 0.84 1.01 1.32 1.57 — — — 1305 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Pressure/kPa IUPAC-NIST SOLUBILITY DATA SERIES Gas Pressure/kPa Pressure/kPa Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) 0.32 0.49 0.64 6.59 8.51 12.36 0.88 0.98 1.29 16.78 24.75 33.20 1.48 1.88 2.19 42.50 52.10 65.23 2.57 2.91 3.34 0.24 0.36 0.51 6.66 8.88 12.63 0.68 0.84 1.04 17.43 24.82 32.97 1.26 1.59 1.87 41.22 52.33 65.56 2.11 2.42 2.78 0.19 0.26 0.35 6.64 8.37 12.88 0.48 0.58 0.76 16.72 24.97 33.21 0.90 1.17 1.41 41.84 54.48 65.40 1.63 1.94 2.20 0.13 0.19 0.27 6.82 8.45 12.39 0.35 0.43 0.55 16.7 24.94 33.08 0.70 0.90 1.10 42.76 52.43 65.55 1.32 1.54 1.79 0.10 0.16 0.22 6.53 8.45 12.47 0.28 0.35 0.47 16.78 25.60 33.26 0.56 0.78 0.93 41.11 52.99 63.23 1.11 1.32 1.51 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共p-methoxystyrene兲; 关24936-44-5兴 共X兲 Original Measurements: A. C. Puleo, N. Muruganandam, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 27, 2385 共1989兲. Variables: T/K⫽308 p/MPa⫽0.2– 2.0 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Dual mode sorption parameters for carbon dioxide at 308 K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.873 0.536 3.03 14.08 0.502 0.123 1st cycle 2nd cycle TABLE 2. Sorption isotherms of carbon dioxide at 308 K 共The original data were represented graphically兲 Auxiliary Information MethodÕApparatusÕProcedure Sorption isotherms were measured using an electronic vacuum microbalance 共Sartorius, Model 4102兲 as described in Ref. 1. Source and Purity of Materials: CHClF2: purity ⬎99.5%. Hydrocarbon gases: purity ⬎99.9 mol %. Emulsion polymerized PS: B. F. Goodrich Research Center; dispersed form 共particles size 0.53 m兲 or film cast from methylene chloride. PS: glass transition temperature 374 K. 1st cycle 2nd cycle Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (ST P)/V 2* ) 0.27 0.54 0.87 1.28 1.63 1.96 4.09 7.04 9.95 13.61 16.63 19.41 0.21 0.66 1.06 1.44 1.79 1.96 3.96 9.55 13.53 16.56 19.02 20.54 Auxiliary Information MethodÕApparatusÕProcedure The apparatus and procedure in sorption measurements were the same as those described in Ref. 1. Source and Purity of Materials: Polymer: prepared according to Ref. 2; glass transition temperature 378 K, M w ⫽980 000, density 1.118 g/cm3. Estimated Error: Indicated in Table 1. Estimated Error: No information given. References: 1 J. A. Barrie and D. Machin, J. Macromol. Sci.-Phys. B. 3, 645 共1969兲. References: 1 W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. 2 H. K. Hall and M. A. Howey, Polym. Bull. 12, 427 共1984兲. PATERSON, YAMPOL’SKII, AND FOGG T⫽293 K 1.37 2.54 4.37 T⫽303 K 1.36 2.62 4.35 T⫽313 K 1.64 2.99 4.34 T⫽323 K 1.45 2.79 4.33 T⫽333 K 1.44 2.50 4.49 Pressure/kPa Sorption (V 1* (STP)/V 2* ) Sorption (V 1* (STP)/V 2* ) 1306 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 4. Sorption isotherms of propane in polystyrene powder 3.8. Poly„Vinyl Cyclohexane Carboxylate…—Carbon Dioxide Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共p-acetoxystyrene兲; 关24979-78-0兴 共XI兲 Original Measurements: A. C. Puleo, N. Muruganandam, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 27, 2385 共1989兲. Variables: T/K⫽308 p/MPa⫽0.2– 2.0 Prepared By: Yu. P. Yampol’skii Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共vinyl cyclohexane carboxylate兲 共PVCH兲; 关29316-32-3兴 共XII兲 Variables: T/K⫽278– 358 p/kPa⫽0 – 100 Experimental Data TABLE 1. Dual mode sorption parameters for carbon dioxide at 308 K k D /cm 共STP兲 cm 3 1st cycle 2nd cycle ⫺3 atm ⫺1 ⬘ /cm 共STP兲 cm CH 3 1.24 0.769 b/atm 5.65 16.82 0.431 0.221 1st cycle 2nd cycle Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 0.35 0.67 0.95 1.19 1.41 1.56 1.94 7.15 11.15 14.71 18.03 20.92 22.89 27.00 0.17 0.38 0.65 0.93 1.24 1.50 1.90 5.38 9.20 13.13 16.82 20.07 23.08 26.19 Auxiliary Information MethodÕApparatusÕProcedure The apparatus and procedure in sorption measurements were the same as those described in Ref. 1. Source and Purity of Materials: Polymer: Celanese Chemical Co., glass transition temperature 399 K, M w ⫽250 000, density 1.168 g/cm3. References: 1 W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 278 283 288 293 298 303 308 2.19 1.97 1.77 1.60 1.46 1.32 1.22 1.150 0.830 0.684 0.559 0.373 0.230 0.227 1.87 2.11 1.85 1.57 1.69 1.57 1.04 TABLE 2. Henry’s law parameters for carbon dioxide in rubbery PVCH T/K k D /cm3共STP兲 cm⫺3 atm⫺1 318 328 338 348 358 1.020 0.866 0.752 0.653 0.560 1307 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Estimated Error: No information given. T/K IUPAC-NIST SOLUBILITY DATA SERIES TABLE 2. Sorption isotherms of carbon dioxide at 308 K 共The original data were represented graphically兲 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Dual mode sorption parameters for carbon dioxide in PVCH ⫺1 ⫺3 Original Measurements: T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci. 34, 1657 共1987兲. Pressure/kPa 0.24 0.50 0.73 0.97 1.34 1.31 1.78 2.11 2.38 2.36 2.54 2.73 0.22 0.42 0.63 0.81 1.17 1.26 1.49 1.76 2.01 2.20 2.46 0.20 0.37 0.73 1.01 1.26 1.59 1.80 2.06 0.19 0.34 0.48 0.75 0.89 Pressure/kPa T⫽293 K 54.69 64.22 79.69 93.12 T⫽298 K 6.72 13.91 22.97 32.97 45.62 53.12 66.39 81.07 93.72 T⫽303 K 4.84 13.59 20.62 26.87 33.26 41.08 46.54 54.19 59.97 66.84 72.47 79.49 89.95 96.98 T⫽308 K 5.46 13.59 27.02 39.82 54.81 67.15 84.63 93.53 — Sorption (V * 1 (STP)/V * 2) 1.14 1.30 1.59 1.80 0.12 0.26 0.43 0.62 0.82 0.96 1.16 1.40 1.57 0.09 0.21 0.31 0.46 0.49 0.64 0.70 0.84 0.92 1.01 1.10 1.17 1.30 1.40 0.05 0.18 0.38 0.56 0.75 0.92 1.12 1.24 — Pressure/kPa T⫽318 K 13.44 26.88 40.81 54.23 66.12 79.24 92.68 T⫽328 K 14.20 27.32 41.56 54.49 67.32 79.48 92.44 T⫽338 K 26.52 40.75 53.84 67.89 79.74 93.48 T⫽348 K 14.07 27.28 40.72 53.97 66.61 79.52 93.11 T⫽358 K 20.18 34.07 40.86 53.96 67.96 79.96 93.04 — Sorption (V * 1 (STP)/V * 2) 0.13 0.27 0.42 0.53 0.68 0.81 0.95 0.10 0.21 0.37 0.44 0.60 0.69 0.82 0.20 0.32 0.40 0.51 0.61 0.72 0.06 0.15 0.28 0.36 0.46 0.50 0.62 0.10 0.19 0.25 0.33 0.36 0.46 0.50 — MethodÕApparatusÕProcedure Cahn RG electromicrobalance was used. The procedure is described in Refs. 1 and 2. Two types of experiments were performed: sorption in fully preevacuated sample and ‘‘interval’’ sorption experiments. No difference between the data obtained is observed. Source and Purity of Materials: CO2: purity 99.99%. PVCH: prepared from polyvinyl alcohol 共polymerization degree n⫽2000兲 and cyclohexane carboxylic acid chloride in anhydrous pyridine: Degree of esterification ⬎97%, M w ⫽270 000 共GPC兲, density 1.119 g/cm3, T g ⫽328 K. Estimated Error: No information given. References: 1 Y. Kamiya, K. Mizoguchi, Y. Naito, and J. Hirose, J. Polym. Sci., Part B: Polym. Phys. 24, 535 共1986兲. 2 Y. Kamiya, T. Hirose, K. Mizoguchi, and Y. Naito, J. Polym. Sci.: Part B: Polym. Phys. 24, 1525 共1986兲. PATERSON, YAMPOL’SKII, AND FOGG T⫽278 K 6.89 13.77 20.19 26.61 38.03 38.81 53.04 65.71 76.18 77.90 85.24 93.22 T⫽283 K 6.73 13.14 20.18 26.59 39.57 43.95 53.48 66.14 75.21 85.68 97.71 T⫽288 K 7.19 13.45 27.52 41.11 52.99 67.53 79.24 92.68 T⫽293 K 8.75 15.32 22.04 34.23 40.95 Sorption (V * 1 (STP)/V * 2) Auxiliary Information 1308 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 3. Sorption isotherms of carbon dioxide in PVCH in the range 278–358 K 共The original data were represented graphically兲 3.9. Poly„Vinyl Benzoate…—Various Gases TABLE 3. Dual mode sorption parameters of gases in PVB at various temperatures Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共vinyl benzoate兲 共PVB兲; 关24991-32-0兴 共XIII兲 Original Measurements: Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Pol. Sci., Polym. Phys. Ed. 24, 535 共1986兲. Variables: T/K⫽298– 343 p/MPa⫽0 – 5.0 Prepared By: A. K. Bokarev Experimental Data TABLE 1. Sorption and desorption isotherms of nitrogen in PVB 共The original data were represented graphically兲 T⫽308.2 K Pressure/MPa T⫽323.2 K T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 N2 308 323 338 0.0230 0.0217 0.0207 1.07 0.44 — 0.0222 0.0222 — Ar 298 308 318 328 338 343 0.0597 0.0563 0.0510 0.0458 0.0510 0.0444 2.30 1.80 1.30 0.91 — — 0.0398 0.0387 0.0382 0.0358 — — T⫽338.2 K Pressure/MPa Solubility (V 1* (STP)/V 2* ) Pressure/MPa Solubility (V 1* (STP)/V 2* ) 0.09 0.26 0.44 0.79 1.11 1.39 1.68 0.22 0.61 1.09 2.07 3.06 4.04 5.02 0.05 0.17 0.31 0.58 0.82 1.07 1.29 0.22 0.61 1.09 2.07 3.05 4.04 5.02 0.02 0.10 0.21 0.42 0.62 0.81 0.99 0.15 0.37 0.55 0.98 1.26 1.58 0.36 0.85 1.59 2.57 3.31 4.28 0.10 0.25 0.47 0.73 0.92 1.14 0.35 0.84 1.35 2.32 3.31 4.29 0.07 0.19 0.30 0.50 0.70 0.87 IUPAC-NIST SOLUBILITY DATA SERIES Solubility (V 1* (STP)/V 2* ) Sorption 0.20 0.61 1.10 2.08 3.05 4.03 5.01 Desorption 0.36 0.85 1.33 2.56 3.54 4.52 Gas TABLE 2. Sorption and desorotion isotherms of argon in PVB 共The original data were represented graphically兲 T⫽298.2 K Sorption 0.11 0.60 1.09 2.12 3.09 4.13 4.52 5.02 Desorption 0.35 0.85 1.58 2.55 3.78 — T⫽338.2 K T⫽343.2 K Solubility (V * 1 (STP)/V * 2) Pressure/MPa Solubility (V * 1 (STP)/V * 2) Pressure/MPa Solubility (V * 1 (STP)/V * 2) Pressure/MPa Solubility (V * 1 (STP)/V 2* ) 0.15 0.77 1.29 2.25 3.09 3.87 4.14 4.47 0.07 0.60 1.08 2.07 3.04 4.04 5.02 — 0.06 0.63 1.09 1.92 2.71 3.33 3.96 — 0.22 0.60 1.09 2.07 3.09 4.03 5.01 — 0.15 0.41 0.70 1.29 1.83 2.32 2.82 — 0.11 0.36 1.08 2.06 3.05 4.27 5.02 — 0.09 0.18 0.50 0.92 1.34 1.80 2.10 — 0.49 1.01 1.80 2.71 3.68 — 0.22 0.86 1.58 2.57 3.54 4.23 0.24 0.89 1.54 2.34 3.03 3.47 0.35 0.84 1.57 2.55 3.54 4.52 0.26 0.60 1.05 1.63 2.13 2.61 0.60 1.82 3.78 — — — 0.27 0.84 1.65 — — — FIG. 21. Sorption and desorption isotherms of carbon dioxide in PVB. Open and filled symbols represent sorption and desorption, respectively. Auxiliary Information MethodÕApparatusÕProcedure Sorption isotherms were measured gravimetrically with a Cahn model 2000 electrobalance. Source and Purity of Materials: Ar: purity 99.999%. N2: purity 99.999%. CO2: purity 99.99%. PVB: reaction of poly共vinyl alcohol兲 and benzoyl chloride 共see Ref. 1兲. Estimated Error: No information given. References: 1 T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci. 30, 401 共1985兲. 1309 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Pressure/MPa T⫽308.2 K Original Measurements: Y. Kamiya, T. Hirose, K. Mizoguchi, and K. Terada., J. Polym. Sci., Part B: Polym. Phys. 26, 1409 共1988兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共vinyl benzoate兲 共PVB兲; 关24991-32-0兴 共XIII兲 Original Measurements: T. Hirose, K. Mizoguchi, Y. Naito, and Y. Kamiya, J. Appl. Polym. Sci. 35, 1715 共1988兲. Variables: T/K⫽298 p/MPa⫽0 – 5.0 Prepared By: A. K. Bokarev Variables: T/K⫽278⫺358 p/kPa⫽0⫺100 Prepared By: A. K. Bokarev Experimental Data Experimental Data TABLE 3. Dual mode sorption parameters for carbon dioxide in PVB k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 278 288 298 308 318 328 338 343 348 353 358 1.78 1.45 1.18 1.00 0.851 0.730 0.641 0.577 0.545 0.511 0.472 4.69 3.59 3.52 3.05 1.78 0.666 — — — — — 1.60 1.35 0.821 0.623 0.547 0.760 — — — — — Auxiliary Information MethodÕApparatusÕProcedure Sorption isotherms were measured gravimetrically with a Cahn model 2000 electrobalance. A correction for the buoyancy was introduced. Source and Purity of Materials: CO2 : purity 99.99%. PVB: reaction of poly共vinyl alcohol兲 and benzoyl chloride 共see Ref. 1兲. Density (298 K兲⫽1.214 g/cm3. Estimated Error: No information given. References: 1 T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci. 30, 401 共1985兲. T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 288 298 308 318 1.45 1.55 1.00 0.851 1.71 1.73 0.890 0.477 1.338 0.739 0.828 0.760 PATERSON, YAMPOL’SKII, AND FOGG T/K TABLE 2. Dual mode sorption parameters for carbon dioxide in PVB after annealing at 358 K FIG. 22. Sorption and desorption isotherms of carbon dioxide in PVB at 298 K: 共䊐兲 first sorption run; 共䊊兲共䊉兲 subsequent sorption and desorption runs. The isotherm was treated by the Kamiya’s et al. equation. The following values of the parameterrs were found at 298 K: k D ⫽1.15 cm3共STP兲/cm3 atm b⫽0.167 atm⫺1 ⬘ ⫽22.0 cm⫺3共STP兲/cm3共sorption兲; C H0 ⬘ ⫽30.2 cm3共STP兲/cm3共desorption兲 C H0 C g ⫽38.5 cm3共STP兲/cm3 f ⫽0.8 共dimensionless兲 1310 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共vinyl benzoate兲 共PVB兲; 关24991-32-0兴 共XIII兲 TABLE 3. Sorption isotherms of carbon dioxide in PVB. Sorption isotherms are linear above 338 K 共The original data were represented graphically兲 TABLE 4. Sorption isotherms of carbon dioxide in PVB after annealing at 358 K 共The original data were represented graphically兲 Pressure/kPa Pressure/kPa Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption 共V * 1 (STP)/V * 2兲 Pressure/kPa Sorption 共V * 1 (STP)/V * 2兲 Pressure/kPa Sorption 共V 1* (STP)/V * 2兲 0.21 0.44 0.64 0.82 34.24 41.41 54.47 65.95 1.04 1.20 1.48 1.76 80.89 89.18 99.66 — 2.02 2.21 2.39 — 0.11 0.30 0.57 0.62 40.13 53.47 66.68 80.04 0.85 1.08 1.35 1.60 93.35 98.78 99.52 — 1.76 1.90 1.82 — 0.20 0.40 0.64 53.33 67.44 75.85 0.81 0.98 1.11 82.82 90.58 98.66 1.19 1.27 1.36 0.13 0.30 0.44 53.85 66.85 80.44 0.61 0.76 0.86 89.45 98.79 — 0.93 1.01 — Sorption (V 1* (STP)/V 2* ) 0.51 1.27 1.86 40.08 53.44 66.96 2.53 3.05 3.59 79.84 94.13 — 4.03 4.46 — 0.40 0.74 1.34 41.07 54.11 67.13 1.83 2.28 2.63 80.78 93.63 — 3.02 3.29 — 0.26 0.51 0.94 40.84 54.17 67.03 1.34 1.67 2.00 82.26 94.95 — 2.35 2.63 — 0.27 0.52 0.87 43.64 54.27 66.96 1.07 1.28 1.59 80.11 89.78 94.23 1.78 1.91 2.07 0.11 0.23 0.46 40.89 54.99 68.14 0.67 0.85 1.06 80.97 99.03 — 1.21 1.44 — 0.12 0.10 0.24 0.24 0.38 42.60 47.04 60.96 63.34 73.63 0.47 0.55 0.63 0.67 0.76 78.86 86.77 98.48 99.59 — 0.81 0.89 0.98 0.98 — 0.07 0.14 0.21 0.26 53.72 66.84 66.67 66.99 0.35 0.43 0.44 0.44 79.64 93.38 97.65 — 0.51 0.59 0.61 — 0.07 0.23 54.69 68.13 0.31 0.37 80.46 93.74 0.43 0.49 0.16 0.17 0.24 0.27 62.45 68.62 68.94 78.58 0.29 0.32 0.32 0.37 81.27 89.02 95.03 98.67 0.38 0.42 0.44 0.45 T⫽288 K 7.04 13.77 20.65 27.20 T⫽298 K 6.83 13.70 27.07 28.04 T⫽308 K 13.49 26.82 41.12 T⫽318 K 13.77 27.40 41.01 TABLE 5. Dual mode sorption parameters for CO2 in PVB at 298 K after exposure to 50 atm of CO2 k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 1.18 1.18 1.18 1.18 1.18 1.18 6.88 5.74 5.00 3.54 3.52 1.73 0.889 0.990 0.942 1.008 0.827 0.739 Just after exposure Next day 7 days later 11 months later After measurements at 298 K in Table 3 After annealing at 358 K Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were made using facilities and procedures described in Ref. 1. Source and Purity of Materials: CO2 : purity ⬎99.99%. PVB films: preparation and its properties reported in Ref. 2. The sample films were exposed to CO2 of 50 atm at 308 K before measurements. IUPAC-NIST SOLUBILITY DATA SERIES Estimated Error: No information given. References: 1 T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci. 34, 1657 共1987兲. 2 T. Hirose, K. Mizoguchi, and Y. Kamiya, ibid. 30, 401 共1985兲. 1311 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 T⫽278 K 6.72 16.17 26.85 T⫽288 K 6.70 13.55 27.09 T⫽298 K 6.84 13.36 26.23 T⫽308 K 10.48 19.53 33.97 T⫽318 K 6.66 13.47 26.63 T⫽328 K 10.93 12.66 20.59 24.70 32.78 T⫽338 K 14.39 26.40 34.13 40.76 T⫽348 K 20.09 41.57 T⫽358 K 33.68 38.42 53.13 54.23 Sorption (V 1* (STP)/V 2* ) Auxiliary Information Components: 共1兲 Carbon dioxide; CO2 ; 关124-38-9兴 共2兲 Poly共vinyl butyral兲 共PVBu兲 共XIV兲 Original Measurements: Y. Kamiya, T. Hirose, K. Mizoguchi, and K. Terada, J. Polym. Sci., Part B: Polym. Phys. 26, 1409 共1988兲. Variables: T/K⫽298 p/MPa⫽0 – 5.0 Prepared By: A. K. Bokarev MethodÕApparatusÕProcedure Sorption isotherms were measured gravimetrically with a Cahn model 2000 electrobalance. A correction for the buoyancy was introduced. 1312 Source and Purity of Materials: CO2 : purity 99.99%. PVBu Mitsubishi Monsanto Chemical Co., density at 308 K 1.087 g/cm3, M w between 34 000 and 38 000, butyral content 88%. Estimated Error: No information given. Experimental Data References: 1 T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci. 30, 401 共1985兲. FIG. 23. Sorption and desorption isotherms of carbon dioxide in PVBu at 298 K: 共䊐兲 first sorption run; 共䊊兲共䊉兲 subsequent sorption and desorption runs. The isotherm was treated by the equation: ⬘ bp 共 ⫺C * C g 兲 / 共 1⫹b p 兲 , C⫽C D ⫹C H ⫽ 关 k D exp共 sC * 兲兴 p⫹C H0 ⬘ , and b have the usual meaning, C g is the solute concentration corresponding to the glass transition and where the parameters k D , C H0 ⬘ bp/ 共 1⫹bp 兲兴 / 关 1⫹ f C H0 ⬘ b p/C g 共 1⫹b p 兲兴 , C * ⫽C D ⫹ f C H ⫽ 关 k D p⫹ f C H0 where f is an adjustable parameter, characterizing the plastisizing ability of a solute. Parameters for ordinary dissolution 共Flory–Huggins’s兲 and for Langmuir isotherms at 298 K. f 0.8 k D/ cm3共STP兲 cm⫺3 atm⫺1 ⬘ / C H0 cm3共STP兲 cm⫺3 b/ atm⫺1 103 S/ cm3共STP兲 cm⫺3 C g/ cm3共STP兲 cm⫺3 1.13 20.7 共sorption兲 28.6 共desorption兲 0.096 3.5 34.0 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.10. Poly„Vinyl Butyral…—Carbon Dioxide 3.12. Poly„Vinyltrimethyl Silane…—Various Gases 3.11. Poly„Vinylmethylether…—Propane Components: 共1兲 Propane; C3H8 ; 关74-82-8兴 共2兲 Poly共vinylmethyl ether兲 共PVME兲; 关9003-09-2兴 Original Measurements: H. G. Spencer and J. A. Yavorsky, J. Appl. Polym. Sci., 28, 2937 共1983兲. Variables: T/K: 317–357 p/kPa: 0–40 Components: 共1兲 Hydrocarbon gases C1 –C4 共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: The solubility of gaseous hydrocarbons in PVTMS has been measured using three different techniques: volumetric,1 gravimetric,2–4 5–8 and inverse gas chromatography. The data for the following gases are available: methane 关74-82-8兴,1 acetylene 关74-86-2兴,2–4,8,9 ethylene 关74-85-1兴,2–5,7–9 ethane 关74-84-0兴,2–5,7–9 propadiene 关463-49-0兴,2–4,8,9 propyne 关74-99-7兴,2–4,8,9 propene 关115-07-1兴,2–5,7–9 propane 关74-98-6兴,2,9 n-butane 关106-97-8兴.5,7 Except propane and butane for which the dual mode sorption isotherms have been obtained,4,6 the solubility of all other gases was measured in the range of pressure corresponding to the linear part of the sorption isotherm, i.e., the solubility coefficients have been reported. There is a general tendency for the solubility to increase with the critical temperature of gases, the variation of solubility with critical temperature is shown below. Values of critical temperature were taken from Ref. 10. Prepared By: A. K. Bokarev Experimental Data In the pressure range indicated above, solubility obeys Henry’s law. Temperature dependence for solubility coefficient, S, is given by equation: S⫽S0 exp共⫺⌬H/RT兲 Correlation of the solubility coefficients S with critical temperature T c /K of hydrocarbons Parameter Data ⫺10.0 ⫺7.57 ⫺4.05 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were carried out in a low pressure, constant-volume cell previously described.1 The correction for the buoyancy was introduced. Source and Purity of Materials: The polymer investigated was supplied by Polysciences, Inc. It had M w ⫽34 000;T g ⫽247 K. A density at 303 K was 1.04 g/cm3. Propane of 99.99% purity 共Matheson兲 was used. Estimated Error: No estimates. References: 1 J. A. Yavorsky and H. G. Spencer, J. Appl. Polym. Sci. 25, 2109 共1980兲. Hydrocarbons T c /K log(S/cm3共STP兲 cm⫺3 atm⫺1) Ref. CH4 C 2H2 190.5 309 309 282.6 282.6 282.6 305.4 305.4 305.4 393 393 401 401 364.9 364.9 364.9 379.9 379.9 379.9 427.1 ⫺1.86 ⫺1.48 ⫺1.6 ⫺1.33 ⫺1.44 ⫺1.44 ⫺1.15 ⫺1.14 ⫺1.14 ⫺0.5 ⫺0.5 ⫺0.5 ⫺0.5 ⫺0.5 ⫺0.6 ⫺0.6 ⫺0.6 ⫺0.4 ⫺0.4 ⫺0.05 1 2–4 7, 8 2–4 5, 6 7, 8 2–4 5, 6 7, 8 7, 8 2–4 7, 8 2–4 2–4 7, 8 5, 6 5, 6 7, 8 2–4 5, 6 C 2H4 C 2H6 CH2CCH2 CH3CCH C3H6 C 3H8 1313 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 n-C4H10 IUPAC-NIST SOLUBILITY DATA SERIES ⌬H/共kJ/mol兲 ln(S0 /(cm3共STP兲/cm3 cm Hg) lnS共353 K兲/共cm3共STP兲/cm3 cm Hg兲 References: 1 V. V. Volkov, S. G. Durgaryan, E. G. Novitskii, and N. S. Namctkin, Dokl. Akad. Nauk SSSR 232, 838 共1977兲. 2 V. V. Volkov, N. S. Nametkin, E. G. Novitskii, and S. G. Durgaryan, Vysokomol. Soedin. Ser A 21, 920 共1979兲. 3 V. V. Volkov, N. S. Nametkin, E. G. Novitskii, and S. G. Durgaryan, Vysokomol. Soedin. Ser. A 21, 927 共1979兲. 4 V. V. Volkov, dissertation, Moscow, TIPS, 1979. 5 N. E. Kaliuzhnyi, Yu. P. Yampol’skii, S. G. Durgaryan, and N. S. Nametkin, Dokl. Akad. Nauk SSSR 265, 1170 共1982兲. V. V. Volkov, A. K. Bokarev, S. G. Durgaryan, and N. S. Nametkin, Dokl. Akad. Nauk SSSR 282, 641 共1985兲. Yu. P. Yampol’skii, N. E. Kaliuzhnyi, and S. G. Durgaryan, Macromolecules 19, 846 共1986兲. 8 M. B. Davydova, Yu. P. Yampol’skii, N. K. Gladkova, and S. G. Durgaryan, Vysokomol. Soedin., Ser. A 30, 554 共1988兲. 9 M. B. Davydova, Yu. P. Yampol’skii, and S. G. Durgaryan, Vysokomol. Soedin., Ser. A 30, 1430 共1988兲. 10 D. R. Stull, E. F. Westrum, and G. C. Sinke, The Chemical Thermodynamics of Organic Compounds 共Wiley, New York, 1969兲. Components: 共1兲 Different gases 共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲 Original Measurements: V. V. Volkov, S. G. Durgaryan, E. G. Novitskii, and N. S. Nametkin, Dokl. Akad. Nauk SSSR 232, 838 共1977兲; Vysokomol. Soedin., Ser. A 21, 927 共1979兲. Variables: T/K⫽283– 323 p/kPa⫽0 – 93 Prepared By: Yu. P. Yampol’skii 1314 6 Experimental Data Solubility coefficients S/cm3共STP兲/cm3 atm at 298 K and enthalpies of sorption ⌬H kcal/mol 7 Gas Helium; He; 关7440-59-7兴 Argon; Ar; 关7440-37-1兴 Hydrogen; H2; 关1333-74-0兴 Nitrogen; N2 ; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Methane; CH4; 关74-82-8兴 Carbon dioxide; CO2; 关124-38-9兴 S102 ⫺⌬H 0.11 0.63 0.12 0.40 0.56 1.37 3.52 1.45 2.83 1.66 2.62 2.69 3.82 4.93 Auxiliary Information MethodÕApparatusÕProcedure A McBain quartz spring microbalance and a volumetric apparatus were used for sorption measurements. Source and Purity of Materials: PVTMS synthesized by BuLi initiated anionic polymerization had: M w ⫽608 000, M n ⫽416 000. All the gases were ‘‘chromatographically’’ pure. Estimated Error: ␦ S/S⫽10%. ␦ (⌬H)/⌬H⫽20%. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Critical Evaluation: The solubility coefficients obtained by means of a gravimetric method 共McBain balance兲 are, in majority of cases, higher than those measured using inverse gas chromatography method. However, the differences are well within the limits of scatter. Components: 共1兲 Xenon; Xe; 关7440-63-3兴 and hydrocarbons 共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲 Original Measurements: V. V. Volkov, N. S. Nametkin, E. G. Novitskii, and S. G. Durgaryan, Vysokomol. Soedin, Ser. A. 21, 920 共1979兲. Components: 共1兲 Various hydrocarbons C2 –C4 共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲 Original Measurements: N. E. Kaliuzhnyi, Yu. P. Yampol’skii, S. G. Durgaryan, and N. S. Nametkin, Dokl. Akad. Nauk SSSR 265, 1170 共1982兲. Variables: T/K⫽293– 313 p/kPa⫽0 – 93 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽298– 383 Prepared By: Yu. P. Yampol’skii Experimental Data Solubility coefficients S/cm3共STP兲/cm3 atm of hydrocarbons Experimental Data Solubility coefficients S/cm 共STP兲/cm3 atm at 298 K and enthalpies of sorption ⌬H/kcal/mol 3 S Gas ⫺⌬H 7.1 3.3 4.7 7.0 31.5 30.0 4.20 — 4.02 3.58 5.47 5.64 Gas Xenon Acetylene; C2H2; 关74-86-2兴 Ethylene; C2H4; 关74-85-1兴 Ethane; C2H6; 关74-84-0兴 Propadiene; C3H4; 关463-49-0兴 Propyne; C3H4; 关74-99-7兴 Propene; C3H6; 关115-07-1兴 Propane; C3H8; 关74-98-6兴 n-Butane; C4H10; 关106-97-8兴 31 40 272 5.96 6.20 — Auxiliary Information MethodÕApparatusÕProcedure A McBain balance with a quartz spring was used in sorption measurement. Source and Purity of Materials: PVTMS synthesized in the presence of BuLi had M w ⫽608 000 and M n ⫽416 000. All the gases were chromatographically pure. Estimated Error: ␦ S/S⫽10%. Ethylene; C2H4; 关74-85-1兴 Ethane; C2H6; 关74-84-0兴 Propene; C3H6; 关115-07-1兴 S 共at 298 K兲 Gas 298 K 333 K 373 K 3.6 7.2 23 Propane; C3H8; 关74-98-6兴 n-Butane; C4H10; 关106-97-8兴 27 90 8.05 22.2 — 5.62 Enthalpies of sorption ⌬H/kcal/mol Gas ⌬H C2H6 C3H8 C4H10 5.4 6.42⫾0.15 8.02⫾0.06 Auxiliary Information MethodÕApparatusÕProcedure Inverse gas chromatography was used for the determination of solubility coefficients. By the measurements correction for the pressure drop in a column was introduced. Source and Purity of Materials: PVTMS was prepared by anionic polymerization 共sec. BuLi as a catalyst兲 and had molecular mass about 500 000 and a density 0.898 g/cc. 1315 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES S102 Original Measurements: M. B. Davydova, Yu. P. Yampol’skii, N. K. Gladkova, and S. G. Durgarvan, Vysokomol. Soedin. Ser. A 30, 554 共1988兲; M. B. Davydova, Yu. P. Yampol’skii, and S. G. Durgaryan, Vysokomol. Soedin., Ser. A 30, 1430 共1988兲. Variables: Prepared By: T/K⫽295– 345 Yu. P. Yampol’skii Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲 Original Measurements: V. V. Volkov, A. K. Bokarev, and S. G. Durgaryan, Vysokomol. Soedin., Ser. A 26, 1294 共1984兲. Variables: T/K⫽298 p/MPa⫽0 – 0.4 Prepared By: S. M. Shishatskii Experimental Data TABLE 1. Sorption isotherm of sulfur dioxide in PVTMS at 298 K. Thickness of the film: 64 m 共The original data were represented graphically兲 Experimental Data Solubility coefficients S/共cm3共STP兲/cm3 atm兲 at 295 K S Gas S Relative pressure Sorption (V * 1 (STP)/V * 2) Ethyne; C2H2; 关74-86-2兴 Ethylene; C2H4; 关74-85-1兴 Ethane; C2H6; 关74-84-0兴 1,2-Propadiene; C3H4; 关463-49-0兴 2.5 3.6 7.2 Propyne; C3H4; 关74-99-7兴 Propene; C3H6; 关115-107-1兴 Propane; C3H8; 关74-98-6兴 29.5 24 38 0.24 0.34 0.40 0.47 0.54 0.70 0.80 12.14 15.00 17.03 19.89 22.00 27.81 31.27 31 Heats of sorption, ⌬H/kJ/mol,⫽⫺Rd(ln S)/d(1/T) ⫺⌬H/kJ/mol Gas ⫺⌬H/kJ/mol 24.0 30.6 34.8 Propyne Propene 30.6 31.8 Relative pressure (p/p s )⫽ratio of partial pressure and its saturted vapor pressure at the temperature of the experiment. Ethyne 1,2-Propadiene Propane Auxiliary Information MethodÕApparatusÕProcedure Inverse gas chromatographic method of measurement of solubility was described in Ref. 1. The determination was performed in the condition of infinite dilution and in the absence of diffusion limitation. Source and Purity of Materials: PVTMS studied had molecular mass 600 000. Estimated Error: ␦ (⌬H)/⌬H⬍5.3% References: 1 Yu. P. Yampol’skii, S. G. Durgaryan, and N. E. Kaliuzhnyi, J. Chrom. 286, 97 共1984兲. TABLE 2. Sorption and desorption isotherms of sulfur dioxide in PVTMS at 298 K. Thickness of the film: 160 m 共The original data were represented graphically兲 Relative pressure Sorption (V 1* (STP)/V 2* ) Relative pressure Desorption (V 1* (STP)/V 2* ) 0.18 0.24 0.27 0.33 0.38 0.40 0.51 0.60 0.72 0.83 0.96 0.98 1.00 10.04 13.16 14.25 15.34 17.96 17.96 21.49 23.94 28.40 32.45 40.63 43.16 46.62 0.14 0.18 0.20 0.25 0.33 0.40 0.46 0.55 0.68 0.75 0.85 0.90 0.94 8.94 10.88 12.65 14.25 18.22 22.35 25.55 29.09 32.71 34.57 38.02 40.04 42.32 Relative pressure (p/p s )⫽ratio of partial pressure and its saturated vapor pressure at the temperature of the experiment. Auxiliary Information MethodÕApparatusÕProcedure Sorption was measured gravimetrically using a McBain balance. Source and Purity of Materials: PVTMS: Kuskovo Chemical Plant. Estimated Error: No information given. PATERSON, YAMPOL’SKII, AND FOGG Gas Gas 1316 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Various hydrocarbons 共2兲 Poly共vinyltrimethyl silane兲; 共PVTMS兲; 关25036-32-2兴 共XV兲 Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲 Original Measurements: Yu. P. Yampol’skii, V. V. Volkov, N. E. Kaliuzhnyi, and S. G. Durgaryan, Vysokomol. Soedin., Ser. A 26, 1640 共1984兲. Variables: T/K⫽298 p/kPa⫽0 – 100 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for SO2 in PVTMS at 298 K k D /mol cm⫺3共STP兲 Pa⫺1 2.0109 ⬘ /mmol cm⫺3 CH b/共kPa兲⫺1 0.45 0.01 Sorption isotherm of sulfur dioxide in PVTMS at 298 K. 共The original data were represented graphically兲 Sorption 共mmol/cm3兲 8.68 13.28 19.41 26.39 44.28 57.40 58.25 67.79 72.90 81.25 91.31 0.06 0.09 0.12 0.16 0.24 0.28 0.29 0.33 0.35 0.38 0.42 Auxiliary Information MethodÕApparatusÕProcedure Sorption was studied using a McBain balance with quartz spring. The procedure has been described in Ref. 1. Estimated Error: No information given. Variables: T/K⫽298 p/MPa⫽0 – 0.7 Prepared By: S. M. Shishatskii Experimental Data Dual mode sorption parameters for PVTMS at 298 K Gas k D ⫻102 /(cm3共STP兲/cm3 cm Hg) ⬘ /(cm3共STP兲/cm3) CH b⫻102 /(cm Hg) ⫺1 Xe CO2 N2O C3H8 1.20 0.46 1.4 0.113 18.5 28.7 13.1 5.2 0.41 0.11 0.29 19.1 Auxiliary Information MethodÕApparatusÕProcedure Sorption was measured using a gravimetric technique described in Ref. 1. Source and Purity of Materials: No information given. Estimated Error: No information given. References: 1 V. V. Volkov, A. K. Bokarev, and S. G. Durgaryan, Vysokomol. Soedin., Ser A. 26, 1295 共1984兲. References: 1 V. V. Volkov, N. S. Nametkin, and S. G. Durgaryan, Vysokomol. Soedin., Ser. A 21, 920 共1979兲. 1317 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Source and Purity of Materials: SO2: traces of air were removed from the gas prior to use. PVTMS films: recast after dissolving gas separation PVTMS membrane 共NPO Plastmassy兲 in methylbenzene. Original Measurements: V. V. Volkov, A. K. Bokarev, S. G. Durgaryan, and N. S. Nametkin, Doklady Akad. Nauk., SSSR. 282, 641 共1985兲. N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol’skii J. Membr. Sci. 60, 13 共1991兲. IUPAC-NIST SOLUBILITY DATA SERIES Pressure/kPa Components: 共1兲 Xenon; Xe; 关7440-63-3兴 Carbon dioxide; CO2; 关124-38-9兴 Nitrous oxide; N2O; 关10024-97-2兴 Propane; C3H8; 关74-98-6兴 共2兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: PTMSP is known as the most permeable among polymers, both glassy and rubbery. So its sorption drew attention of several groups 1–5 The dual mode sorption parameters as well as the apparent solubility coefficients S obtained by different researchers of investigators. at temperatures 298–328 K are compared below. Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲 Original Measurements: Y. Ichiraku, S. A. Stern, and T. Nakagawa, J. Membr. Sci. 34, 5 共1987兲. Variables: Prepared By: T/K⫽308 and 328 p/MPa⫽0 – 2.7 共0–27 atm兲 Yu. P. Yampol’skii 1318 Experimental Data Dual mode sorption parameters for various gases in PTMSP at 308 K TABLE 1. Dual mode sorption parameters and apparent solubility coefficients T/K p/atm kD ⬘ CH b ⬘b S⫽k D ⫹C H Ref. 298 298 303 308 328 0–65 0–60 0–40 0–25 0–25 3.6 1.3 1.53 1.50 0.98 47.7 139 151 113 71.9 0.107 0.064 0.0403 0.058 0.059 8.7 10.2 6.6 8.0 5.2 2, 3 5 4 1 1 ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1. Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H A significant scatter of the values of the sorption model parameters is seen, which is related to the substantial time dependence of transport and thermodynamic properties of this polymer 共for more details see Ref. 6兲. The scatter of the S values is not very large, and better agreement is observed between the data from different papers. ⬘ , much higher than in other An essential feature of the sorption in PTMSP is the large values of Langmuir capacity parameter C H polymers. The minimal value reported in Refs. 2 and 3 is presumably underestimated owing to the narrow pressure range studied in these works. It is intriguing and as yet unexplained fact that Henry’s law solubility coefficients k D in PTMSP are significantly higher than in other polymers. This is true not only for carbon dioxide but for other gases as well.1–3 Referring to the data given in Table 1 one can tentatively recommend the sorption parameters measured in Refs. 5 and 1 since they form a plausible temperature dependence for all three parameters and for S. The enthalpy of sorption calculated from Van’t Hoff plot for S is equal to ⫺14.7⫾4.9 kJ/mol. The scatter in the temperature dependences of the k D and b values prevents the calculation of the corresponding enthalpies of Henry’s law dissolution and Langmuir adsorption. Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 CO2 1.497 0.978* 0.667 112.9 71.9* 87.8 0.058 0.059* 0.035 0.431 0.656 15.4 16.8 0.042 0.036 CH4 N2 O2 *At 328 K. References: Y. Ichiraku, S. A. Stern, and T. Nakagawa, J. Membr. Sci. 34, 5 共1987兲. A. K. Bokarev, V. V. Volkov, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, and Yu. P. Yampol’skii, Dokl. Akad. Nauk. SSSR 305, 117 共1989兲. 3 N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol’skii, J. Membr. Sci. 60, 13 共1991兲. 4 T. Nakagawa, M. Sekiguchi, K. Nagai, and A. Higuchi, Intern. Congress on Membranes 共ICOM-90兲, Chicago, 1990, p. 824. 5 V. I. Bondar, Yu. M. Kukharskii, and V. V. Volkov, Abstracts, 5th Intern. Symp. on Solubility Phenomena, Moscow, 1992, p. 227. 6 D. R. Paul and Yu. P. Yampol’skii, Eds., Polymeric Gas Separating Membranes 共CRC, Boca Raton, 1994兲, p. 192. 1 2 FIG. 24. Sorption isotherms of various gases in PTMSP at 308 K. Auxiliary Information MethodÕApparatusÕProcedure The solubility was measured by a volumetric method. The apparatus and the procedure are described in detail in Ref. 1. Source and Purity of Materials: Gases: purity ⬎99.5%. PTMSP: Sanyo Chemical Industries, density 0.938 g/cm3, M w ⫽700 000, no glass transition observed below 473 K. Estimated Error: Relative precision of solubilities: from ⫾6.6%共CO2兲 to ⫾54%共N2兲. References: 1 V. M. Shah, B. J. Hardy, and S. A. Stern, J. Polym. Sci., Part B: Polym. Phys. 24, 2033 共1986兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.13. Poly„Trimethylsilyl Propyne…—Various Gases Components: 共1兲 2-Methylpropane; C4H10; 关75-28-5兴 共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲 Original Measurements: H. Odani, H. Shimomura, K. Nakanishi, T. Masuda, and T. Higashimura, Japan—US Polymer Symposium 1985, pp. 251– 252. Components: 共1兲 Xenon; Xe; 关7440-63-3兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲 Variables: T/K⫽298 p/kPa⫽0 – 100 Prepared By: Yu. P. Yampol’skii Variables: Prepared By: T/K⫽307.8 p/kPa⫽0 – 93 V. I. Bondar Experimental Data Sorption isotherm of 2-methylpropane in PTMSP at 298 K. 共The original data were represented graphically兲 Sorption (V 1* 共STP兲/V 2* ) 4.22 9.03 12.78 24.40 27.09 41.94 67.73 93.33 14.74 20.59 23.79 30.22 30.65 35.56 43.01 50.19 Auxiliary Information MethodÕApparatusÕProcedure Sorption was studied by a gravimetric method. Source and Purity of Materials: PTMSP: synthesized according to Ref. 1 and stored in methanol until used. Estimated Error: No information given. References: 1 K. Takada, H. Matsuya, T. Masuda, and T. Higashimura, J. Appl. Polym. Sci. 30, 1605 共1985兲. Experimental Data Linear sorption isotherms were observed for all three gases. Solubility coefficients S Gas 102 S/cm3共STP兲/cm3 cm Hg Xe O2 CO2 19.71 2.4 8.83 Auxiliary Information MethodÕApparatusÕProcedure Source and Purity of Materials: A gravimetric method of the measurement was employed 共the McBain balance with a quartz spring兲. The correction allowing for buoyancy was made. PTMSP was prepared according to Ref. 1. It had M w ⫽2 500 000. Estimated Error: No information given. References: 1 T. Masuda, E. Isobe, T. Higashimura, and K. Takada, J. Am. Chem. Soc. 105, 74 共1983兲. 1319 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Pressure/kPa Original Measurements: S. Asakawa, Y. Saitoh, K. Waragai, and T. Nakagawa, Gas Separation Purification, 3, 117 共1989兲. Original Measurements: V. I. Bondar, Yu. M. Kukharskii, and V. V. Volkov, Abstracts, 5th Intern. Symposium on Solubility Phenomena, Moscow, 1992, p. 227. Variables: T/K⫽298 p/MPa⫽0 – 11 Prepared By: V. I. Bondar Experimental Data Dual mode sorption parameters for various gases in PTMSP at 298 K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 Ar N2 CO2 CH4 C2H6 0.096 0.062 1.300 0.200 2.830 90.9 60.0 139.0 88.3 75.1 0.015 0.017 0.064 0.041 0.473 Original Measurements: A. K. Bokarev, V. V. Volkov, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, and Yu. P. Yampol’skii, Dokl. Akad. Nauk SSSR 305, 117 共1989兲. N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova, V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol’skii, J. Membr. Sci. 60, 13 共1991兲. Variables: T/K⫽298 p/kPa⫽0 – 665 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for various gases in PTMSP at 298 K Gas 102 k D /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH 102 b/cm Hg⫺1 CO2 N2O Xe 4.70 47.70 0.141 6.15 4.84 42.88 61.73 0.329 0.399 FIG. 25. Sorption isotherms of various gases in PTMSP at 298 K. Auxiliary Information MethodÕApparatusÕProcedure Solubility was measured by means of gravimetric method using Sartorius 4436 microbalance. Source and Purity of Materials: PTMSP: prepared according the method of Masuda et al.1 Estimated Error: No information given. References: 1 T. Masuda, E. Isobe, and T. Higashimura, J. Am. Chem. Soc. 105, 7473 共1983兲. FIG. 26. Sorption isotherms of various gases in PTMSP at 298 K. PATERSON, YAMPOL’SKII, AND FOGG Gas Components: 共1兲 Argon; Ar; 关7440-37-1兴 Krypton; Kr; 关7439-90-9兴 Xenon; Xe; 关7440-63-3兴 Carbon dioxide; CO2; 关124-38-9兴 Nitrous oxide; N2O; 关10024-97-2兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲 1320 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 Ethane; C2H6; 关74-84-0兴 共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲; 关87842-32-8兴 共XVI兲 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were performed using McBain balance as is described in Ref. 1 Source and Purity of Materials: PTMSP: prepared by polymerization in the presence of TaCl5 as a catalyst: density 0.964 g/cm3 共measured in a gradient column兲. M w ⫽590 000, M n ⫽125 000, glass transition temperature 503 K. Estimated Error: No information given. References: 1 V. V. Volkov, A. K. Bokarev, and S. G. Durgaryan, Vysokomol. Soedin., Ser. A 26, 1294 共1984兲. Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Poly共trimethylsilyl propyne兲 共PMSP兲; 关87842-32-8兴 共XVI兲 Original Measurements: L. C. Withchey-Lakshmanan, H. B. Hopfenberg, and R. T. Chern, J. Membr. Sci. 48, 321 共1990兲. Variables: T/K⫽308 p/kPa⫽0 – 120 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for propane at 308 K* ⬘ CH kD ⫺4 ⫺3 3.6 10 mol/g atm 6.3 cm3共STP兲/cm3 atm 2.16⫻10 mol/g 37.7 cm3共STP兲/cm3 b 4.4 共atm兲⫺1 4.4 共atm兲⫺1 *The first line gives the values as reported by the authors, the second line recalculated by the compiler. MethodÕApparatusÕProcedure The sorption measurements were performed with a McBain quartz spring balance following a procedure described in Ref. 1 Source and Purity of Materials: PMSP had M w ⫽600 000, a density 0.78 g/cm3. Purity of propane 99.5%. Estimated Error: No information given. References: 1 R. M. Felder, C. J. Patton, and W. J. Koros, J. Polym. Sci., Polym. Prep. 19, 1895 共1981兲. 1321 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Auxiliary Information Variables: T/K⫽303 and 308 p/MPa⫽0 – 0.1 共for C3H8兲 and 0–4.0 共for CO2兲 Original Measurements: T. Nakagawa, M. Sekiguchi, K. Nagai, and A. Higuchi, Int. Congress on Membranes 共ICOM-90兲 Chicago, 1990, pp. 824– 26. T. Nakagawa, H. Nahano, and A. Higuchi, Membrane Symposium N1 ‘‘Control in Membrane Transport,’’ Kvoto, 1989, pp. 36–39. Original Measurements: T. Nakagawa, M. Sekiguchi, K. Nagai, and A. Higuchi, Int. Congress on Membranes 共ICOM-90兲, Chicago, 1990, pp. 824– 26. Variables: T/K⫽303 p/MPa⫽0 – 4.0 Prepared By: Yu. P. Yampol’skii Prepared By: Yu. P. Yampol’skii Experimental Data Dual-mode sorption parameters Experimental Data Dual-mode sorption parameters T/K k D ,/cm3共STP兲/cm3 atm ⬘ ,/cm3共STP兲/cm3 CH b, atm⫺1 CO2 303 308 303 0.534 1.497 6.93 151.2 112.9 50.14 0.0403 0.058 2.15 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were done by means of Cahn electrobalance, model 2000. Gas 关Br兴,% p/MPa k D ,/cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm3 CH b/atm⫺1 CO2 C 3H8 2.6 11.9 0–4.0 0–0.1 1.77 9.65 48.8 19.6 0.0701 5.96 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were made by means of Cahn electrobalance model 2000. Source and Purity of Materials: Poly共trimethylsilylpropyne was synthesized according to Ref. 1. Bromination was carried out by dipping samples into bromine water. The polymer revealed a glass transition at 323 K. Source and Purity of Materials: PTMSP was synthesized according to Masuda et al.1 It did not reveal any glass transition up to 620 K. Estimated Error: No information given. References: 1 K. Takada, H. Mitiuta, T. Masuda, and T. Higashimura, J. Appl. Polym. Sci. 30, 1605 共1983兲. References: K. Takada, H. Mitiuta, T. Masuda, and T. Higashimura, J. Appl. Polym. Sci. 30, 1605 共1983兲. 1 PATERSON, YAMPOL’SKII, AND FOGG Gas C3H8 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Propane; C3H8; 关74-98-6兴 共2兲 Brominated poly共1-trimethylsilyl-1-propyne兲 1322 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Propane; C3H8; 关74-98-6兴 共2兲 Poly共trimethylsilyl propyne兲 共PTMSP兲 关87842-32-8兴 共XVI兲 3.15. Poly„2,3 Dimethylphenylene Oxide…—Carbon Dioxide, Methane 3.14. Poly„Phenylene Oxides…—Various Gases Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共2,6-dimethylphenylene oxide兲 共PPO兲; 关24938-67-8兴 共XVIII兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Four investigations are available on solubility of carbon dioxide and methane in PPO.1–4 PPO is a semicrystalline polymer with high glass transition temperature of amorphous phase. However, no author reported the content of amorphous and crystalline phases of polymer studied and other important characteristics like molecular mass. All this should result in predicaments in comparison of the data obtained in different papers. Table 1 shows the dual mode sorption parameters and apparent solubility coefficients S calculated from them or from the initial slope of the experimental isotherms. TABLE 1. Dual mode sorption parameters and apparent solubility coefficients T/K kD ⬘ CH b CO2 308 308 308 293 308 308 0.788 0.849 — — — 0.267 32.6 25.9 — — — 19.1 0.216 0.239 — — — 0.1077 CH4 ⬘b S⫽k D ⫹C H 7.8 7.0 6* 4.7 2.2* 2.3 Ref. 1 3 2 4 2 3 Original Measurements: K. Toi, G. Morel, and D. R. Paul, J. Appl. Polym. Sci. 27, 2997 共1982兲. Variables: T/K⫽308 p/MPa⫽0 – 2.5 Prepared By: A. K. Bokarev Experimental Data Dual mode sorption parameters for various gases in PPO at 308 K Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 Ar CO2 CH4 0.21 0.95 9.4 27.5 0.058 0.250 0.33 0.12 18.1 7.1 0.110 0.040 N2 ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1. Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H *Calculated from the plots by evaluator. In spite of the difficulties mentioned above, the dual mode sorption parameters found by different authors agree reasonably, as well as the solubility coefficients at constant temperature. Enthalpy of sorption of methane in PPO found from the S values measured at two different temperatures is shown to be equal to ⫺35.6 kJ/mol. References: Y. Maeda and D. R. Paul, J. Polym. Sci.: Part B: Polym. Phys. 25, 981 共1987兲. 2 R. T. Chern, L. Jia, S. Shimoda, and H. B. Hopfenberg, J. Membr. Sci. 48, 333 共1990兲. 3 B. J. Story and W. J. Koros, J. Appl. Polym. Sci. 42, 2613 共1991兲. 1 O. M. Ilinitch, G. L. Semin, M. V. Chertova, and K. I. Zamaraev, J. Membr. Sci. 66, 1 共1992兲. 4 FIG. 27. Sorption isotherms of various gases in PPO at 298 K. Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were made using facilities and procedures described previously, Ref. 1 Source and Purity of Materials: PPO: General Electric Co., M w ⫽34 000. M n ⫽22 600. Estimated Error: No information given. References: 1 D. R. Paul, Ber. Bunsenges Phys. Chem. 83, 294 共1979兲. 1323 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Gas Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共2, 6-dimethylphenylene oxide兲 共PPO兲; 关24938-67-8兴 共XVIII兲 Original Measurements: B. J. Story and W. J. Koros, J. Appl. Polym. Sci. 42, 2613 共1991兲. Variables: T/K⫽308 p/MPa⫽0 – 2.0 (0 – 20 atm) Prepared By: Yu. P. Yampol’skii Components: 共1兲 Xenon; Xe, 关7440-63-3兴 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共phenylene oxide兲 共PPO兲 关24938-67-8兴 共XVIII兲 Original Measurements: S. Asakawa, Y. Saitoh, K. Waragai, and T. Nakagawa, Gas Separation Purification 3, 117 共1989兲. Variables: T/K⫽307.8 p/kPa⫽0 – 93 Prepared By: V. I. Bondar 1324 Experimental Data Solubility coefficients, S Experimental Data Dual mode sorption model parameters for pure gases in PPO at 308 K Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 CO2 CH4 0.8490 0.2674 25.86 19.10 0.2395 0.1077 Gas 102 S/cm3共STP兲/cm3 cm Hg Xe CO2 18.81 8.56 Auxiliary Information MethodÕApparatusÕProcedure A McBain balance with a quartz spiral was used in the solubility measurements, the correction for buoyancy was introduced. Source and Purity of Materials: PPO was obtained by oxidative coupling method according to Ref. 1. Nothing specified on molecular mass or crystallinity. Estimated Error: No information given. References: A. S. Hay, H. S. Blanchard, G. F. Endres, and J. W. Eustance, J. Am. Chem. Soc. 81, 6335 共1959兲. 1 FIG. 28. Mixed gas sorption CO2 /CH4 in poly共phenylene oxide兲 at 308 K. Solid lines: sorption model for mixed gas sorption C i ⬘ b i p i /(1⫹b j p j ⫹bp i ), 共Dotted lines兲 sorption model for pure gases. ⫽k Di p i ⫹C Hi Auxiliary Information MethodÕApparatusÕProcedure Standard pressure decay system 共Ref. 1兲 was used in pure gas sorption. Mixed gas sorption experiments were performed using a special apparatus having additional chambers for preparation and chromatographic sampling of gas mixtures. Source and Purity of Materials: No information given. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Methane; CH4; 关74-82-8兴 共3兲 Poly共2, 6-dimethylphenylene oxide兲 共PPO兲; 关24938-67-8兴 共XVIII兲 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Decanedioic acid, dioctyl ester 共dioctyl sebacate, DOS兲; C26H50O4 ; 关2432-87-3兴 Phosphoric acid, tri共methyl phenyl兲 ester 共tricresyl phosphate, TCP兲; C21H21O4P; 关1330-78-5兴 共3兲 Poly共2, 6-dimethylphenylene oxide兲 共PPO兲; 关24938-67-8兴 共XVIII兲 Original Measurements: Y. Maeda and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 25, 981 共1987兲. Variables: T/K⫽308– 328 p/MPa⫽0 – 2.2 (0 – 22 atm) Prepared By: A. K. Bokarev Pressure/MPa Experimental Data TABLE 1. Dual mode sorption parameters for CO2 in PPO at different temperatures and its mixtures with plasticizers at 308 K k D /cm 共STP兲 cm 3 ⫺3 ⫺1 atm ⬘ /cm 共STP兲 cm CH 3 ⫺3 ⫺1 b/atm T g /K T/K PPO 308 318 328 0.788 0.586 0.463 32.6 30.0 28.4 0.216 0.164 0.128 481.8 481.8 481.8 308 0.543 21.6 0.181 427.1 318 328 0.654 0.821 14.2 3.8 0.132 0.251 380.9 345.0 308 318 328 0.532 0.763 1.090 20.5 7.3 — 0.141 0.172 — 408.8 354.1 312.3 20% 30% DOS 共mass %兲 10% 20% 30% Pressure/MPa Sorption/ (V 1* 共STP兲/V 3* ) Pressure/MPa Sorption/ (V 1* 共STP兲/V 3* ) Pressure/MPa Pressure/MPa Sorption (V 1* 共STP兲/V 23) Pressure/MPa Sorption (V 1* 共STP兲/V 23) DOS 0 mass % 0.06 0.08 0.10 0.12 0.17 0.19 DOS 10 mass % 0.18 0.23 0.30 0.46 DOS 20 mass % 0.13 0.22 0.27 0.38 DOS 30 mass % 0.20 0.28 0.37 0.48 4.91 5.85 7.10 8.29 10.82 11.27 0.28 0.38 0.41 0.43 0.45 0.47 14.94 17.82 18.07 19.31 19.66 19.91 0.65 0.83 0.84 1.01 1.11 1.17 23.94 27.17 27.87 30.01 31.95 32.35 1.36 1.61 1.87 1.89 1.98 2.01 35.39 37.94 41.03 40.63 41.38 42.38 5.02 6.36 7.90 10.44 0.60 0.84 0.94 1.15 12.63 15.48 16.48 18.77 1.48 1.53 1.78 2.09 21.72 21.97 24.02 26.32 2.14 — — — 26.38 — — — 2.44 3.78 4.28 5.78 0.50 0.65 0.72 0.83 7.27 8.72 9.52 10.67 0.97 1.34 1.43 1.76 12.22 15.22 15.82 18.67 2.09 — — — 21.52 — — — 2.59 3.44 4.39 5.69 0.65 0.95 0.99 1.19 7.53 10.43 10.98 12.83 1.37 1.53 1.81 2.09 14.62 16.32 19.32 22.51 2.14 — — — 23.16 — — — Sorption/ (V 1* 共STP兲/V 3* ) 4.24 4.92 5.94 7.08 8.33 10.60 11.17 0.28 0.37 0.41 0.42 0.46 0.55 0.65 14.92 17.64 18.09 19.34 20.02 21.82 24.08 0.83 0.84 1.02 1.11 1.18 1.30 1.37 27.13 27.92 30.16 31.86 32.41 34.55 35.45 1.61 1.89 1.91 2.00 2.03 — — 38.02 41.15 40.80 41.70 42.38 — — 4.80 7.98 8.66 11.38 12.28 0.41 0.55 0.70 0.79 0.84 14.77 17.60 20.07 21.54 22.21 0.91 1.14 1.34 1.43 1.50 23.45 25.91 28.38 29.38 30.51 1.74 1.76 2.08 2.16 — 32.51 32.16 35.28 35.60 — 4.79 6.38 9.55 11.13 0.44 0.57 0.79 0.95 12.48 14.62 17.88 19.56 1.08 1.27 1.30 1.68 21.13 23.48 23.93 26.70 1.74 1.82 1.98 2.09 27.37 28.15 29.25 30.02 Pressure/MPa TCP 0 mass % 0.04 0.06 0.08 0.11 0.14 0.18 0.20 TCP 10 mass % 0.13 0.18 0.23 0.27 0.35 TCP 20 mass % 0.16 0.21 0.29 0.34 TCP 30 mass % 0.20 0.26 0.31 0.40 Sorption (V * 1 共STP兲/V 23) Pressure/MPa Sorption (V * 1 共STP兲/V 23) Pressure/MPa Sorption (V * 1 共STP兲/V 23) Pressure/MPa Sorption (V * 1 共STP兲/V 23) 3.19 4.67 5.81 7.17 8.19 10.69 11.03 0.30 0.39 0.42 0.44 0.48 0.56 0.66 14.77 17.83 18.05 19.30 19.98 21.79 23.94 0.83 0.84 1.01 1.11 1.18 1.29 1.36 27.21 27.89 30.14 31.83 32.39 34.42 35.21 1.62 1.87 1.89 1.99 2.02 — — 37.90 41.27 40.58 41.48 42.38 — — 4.54 6.13 7.15 8.28 9.75 0.44 0.58 0.70 0.73 0.78 11.44 13.81 15.61 16.29 16.62 0.83 0.91 1.11 1.27 1.35 17.18 18.20 20.21 21.78 22.33 1.46 1.71 1.88 1.95 — 23.68 25.46 26.69 27.13 — 3.17 4.08 5.09 6.10 0.41 0.51 0.67 0.81 7.00 8.12 10.15 11.83 0.86 1.14 1.20 1.40 12.17 14.74 15.30 17.20 1.43 1.89 1.95 — 17.08 20.53 20.98 — 2.48 3.16 3.94 4.73 0.43 0.49 0.55 0.67 5.18 5.73 6.29 7.76 0.93 1.00 1.06 1.18 10.10 10.66 11.22 12.34 1.48 1.57 1.77 2.14 14.91 15.46 17.59 20.49 1325 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 T⫽308 K 0.04 0.06 0.08 0.10 0.12 0.17 0.19 T⫽318 K 0.09 0.18 0.19 0.28 0.32 T⫽328 K 0.13 0.19 0.30 0.38 Sorption/ (V 1* 共STP兲/V 3* ) Sorption (V 1* 共STP兲/V 23) TABLE 4. Effect of the content of TCP 共mass %兲 on CO2 sorption isotherms for PPO at 308 K. 共The original data were represented graphically兲 TABLE 2. Sorption isotherms of carbon dioxide in pure PPO 共The original data were represented graphically兲 Pressure/MPa Pressure/MPa Sorption (V 1* 共STP兲/V 23) IUPAC-NIST SOLUBILITY DATA SERIES System TCP 共mass %兲 10% TABLE 3. Effect of the content of DOS 共mass %兲 on CO2 sorption isotherms for PPO at 308 K 共The original data were represented graphically兲 MethodÕApparatusÕProcedure The apparatus and procedure for measuring sorption isotherms are described in Ref. 1. Source and Purity of Materials: PPO: General Electric Co., M n ⫽22 600. M w ⫽34 000, M z ⫽57 200, glass transition temperature 482 K. Estimated Error: No information given. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. Components: 共1兲 Nitrogen; N2 ; 关7727-37-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共2, 6-dimethyl-1, 4-phenyleneoxide兲 共PPO兲; 关24938-67-8兴 共XVIII兲 Aryl-brominated PPO 共Br content 36% and 91%兲 Original Measurements: R. T. Chern, F. R. Sheu, L. Jia, V. T. Stannett, and H. B. Hopfenberg, J. Membr. Sci. 35, 103 共1987兲. Variables: T/K: 308 p/MPa: 0–3.0 共1–3 atm兲 Prepared By: A. K. Bokarev 1326 Experimental Data Dual-mode sorption parameters for gases in PPO and PPOBr at 308 K Polymer Gas k D /cm⫺3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/共atm⫺1兲 PPO CO2 CH4 N2 0.921 0.321 0.153 32.74 22.19 9.95 0.195 0.107 0.048 PPOBr 共36%兲 CO2 CH4 N2 0.941 0.344 0.162 35.42 24.93 11.83 0.244 0.113 0.053 PPOBr 共91%兲 CO2 CH4 N2 0.969 0.379 0.169 37.54 26.90 15.06 0.292 0.120 0.057 Auxiliary Information MethodÕApparatusÕProcedure A dual-transducer pressure-decay cell, was used for the solubility measurements. For details see Refs. 1 and 2. Source and Purity of Materials: PPO in powder form was obtained from General Electric Co. Bromination of PPO resulted in only aryl-substituted polymer. The ratio of mono- to di-substituted PPO was 2.6 for PPOBr 共36%兲 and 8.6 for PPO 共91%兲. The purity of gases 共Air Products and Chemicals兲 used: Coleman grade CO2 共99.999%兲, instrument grade CH4 共99.7%兲, N2 (⬎99.99%). Estimated Error: Not specified. References: 1 R. T. Chern, W. J. Koros, R. Yui, H. B. Hopfenberg, and V. T. Stannett, J. Polym. Sci., Polym. Phys. Ed. 22, 1061 共1984兲. 2 E. S. Sanders, W. J. Koros, V. T. Stannett, and H. B. Hopfenberg, J. Membr. Sci. 13, 161 共1983兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information Components: 共1兲 Hydrocarbons C1 –C3 共2兲 Poly共phenylene oxide兲 共PPO兲; 关25134-01-4兴 Original Measurements: O. M. Ilinitch, G. L. Semin, M. V. Chertova, and K. I. Zamaraev, J. Membr. Sci. 66, 1 共1992兲. Variables: T/K⫽293.2 p/kPa⫽0–100 Prepared By: O. M. Ilinitch Experimental Data Solubility C/cm3共STP兲 cm⫺3 of hydrocarbons in PPO Gas Methane; CH4; 关74-82-8兴 Ethylene; C2H4; 关74-85-1兴 C Gas p/kPa C 21.3 34.0 46.7 60.0 72.6 84.0 1.0 1.4 1.8 2.3 2.8 3.4 Propane; C3H8; 关74-98-6兴 6.9 13.7 20.3 30.0 34.7 9.7 12.6 14.4 16.1 16.9 6.0 7.6 20.0 25.6 34.7 3.3 4.5 7.0 8.2 9.8 Propylene; C3H6; 关115-07-1兴 4.4 8.1 13.6 20.0 26.7 34.7 6.6 9.3 11.6 13.7 15.4 17.1 4.7 8.0 10.0 14.2 23.3 34.3 36.0 2.6 3.5 4.3 5.1 6.9 8.6 9.2 Auxiliary Information Source and Purity of Materials: PPO was prepared via oxidative polycondensation of 2,6-dimethylphenol. Major possible impurity: phenoquinone and copper. Purity ⬎99.9%; a density 1.17 g/cm3, T g ⫽482 K. All the gases had a purity 99.9%. Estimated Error: ␦ T⫽⫾0.1 K; ␦ p⫽⫾0.2 kPa. ␦ C/C⫽⫾0.1 共compiler兲. Variables: T/K⫽308 p/MPa⫽0–2.5 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Properties of PPO and brominated PPO Characteristics PPO PPOBr 共0.36兲 PPOBr 共0.91兲 PPOBr 共1.06兲 % Repeat unit Mono-Br Di-Br Unmodified Density/g cm⫺3 T g /K 0 0 100 1.061 483 20.4 7.8 71.8 1.203 506 73.9 8.5 17.6 1.380 535 60.0 24.0 16.0 1.390 542 TABLE 2. Sorption isotherms of carbon dioxide in the various polymers at 308 K 共The original data were represented graphically兲 PPOBr 共0.36兲 PPO PPOBr 共0.91兲 PPOBr 共1.06兲 Pressure/MPa Sorption 共V * 1 共STP兲/V * 2) Pressure/MPa Sorption 共V * 1 共STP兲/V * 2) Pressure/MPa Sorption 共V * 1 共STP兲/V * 2) Pressure/MPa Sorption 共V * 1 共STP兲/V 2* ) 0.13 0.17 0.24 0.30 0.36 0.45 0.72 0.81 0.88 1.02 1.17 1.37 1.36 1.50 1.73 1.76 1.94 2.16 2.38 2.63 2.80 8.79 9.93 12.90 14.95 16.31 18.57 24.90 27.17 28.05 30.28 33.20 35.16 36.56 36.70 40.27 41.18 42.91 45.10 47.27 51.06 52.81 0.13 0.20 0.24 0.32 0.49 0.53 0.61 0.76 0.86 0.95 1.02 1.28 1.34 1.41 1.46 1.75 1.88 1.93 2.14 2.32 — 10.19 13.39 15.69 18.43 23.43 24.79 26.37 29.52 31.78 33.11 34.00 38.47 38.90 40.01 40.45 44.20 45.75 46.64 48.83 51.03 — 0.14 0.22 0.40 0.45 0.63 0.88 0.97 1.08 1.33 1.52 1.65 1.73 2.06 2.13 2.22 2.32 2.65 — — — — 12.50 17.33 23.48 24.85 29.61 35.25 36.59 38.60 42.16 44.82 45.9 46.77 51.20 51.86 53.89 54.52 58.25 — — — — 0.12 0.36 0.38 0.24 0.55 0.70 0.74 0.96 0.90 1.11 1.27 1.41 1.53 1.63 1.85 2.06 2.22 2.53 — — — 10.42 22.35 21.41 15.93 26.41 32.35 30.93 35.20 36.86 40.91 41.97 46.29 48.07 48.93 52.27 55.85 57.61 61.35 — — — 1327 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure The conventional McBain balance was used. Original Measurements: R. T. Cher, L. Jia, S. Shimoda, and H. B. Hopfenberg, J. Membr. Sci. 48, 333 共1990兲. IUPAC-NIST SOLUBILITY DATA SERIES Ethane; C2H6; 关74-84-0兴 p/kPa Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共2, 6-dimethylphenylene oxide兲 共PPO兲; 关24938-67-8兴 共XVIII兲 Brominated PPO PPOBr 共0.36兲 PPO PPOBr 共0.91兲 PPOBr 共1.06兲 Sorption 共V 1* 共STP兲/V 2* ) Pressure/MPa Sorption 共V 1* 共STP兲/V 2* ) Pressure/MPa Sorption 共V 1* 共STP兲/V 2* ) Pressure/MPa Sorption 共V 1* 共STP兲/V 2* ) 0.10 0.19 0.47 0.51 0.57 0.70 0.99 1.10 1.17 1.28 1.67 1.73 1.79 2.03 2.21 2.26 2.46 2.63 2.67 — — — — — — — — 2.85 4.50 8.56 9.24 10.11 11.36 14.34 15.30 15.77 16.53 19.10 19.28 19.95 20.98 22.22 22.40 23.04 24.48 24.47 — — — — — — — — 0.03 0.18 0.23 0.29 0.37 0.43 0.52 0.66 0.72 0.80 0.88 0.99 1.08 1.13 1.19 1.27 1.50 1.56 1.69 1.80 2.00 2.07 2.18 2.26 2.36 2.41 2.46 2.08 4.89 6.06 7.32 8.58 9.75 10.91 12.65 13.32 14.38 15.15 16.11 16.97 17.35 18.03 18.79 20.51 20.60 21.75 22.31 23.74 23.72 24.58 25.35 25.82 25.81 26.09 0.11 0.20 0.48 0.53 0.69 0.93 0.96 1.04 1.17 1.26 1.50 1.40 1.61 1.74 1.80 2.02 2.10 2.29 2.50 2.57 — — — — — — — 4.02 6.46 11.51 12.18 14.51 17.10 17.88 18.06 20.20 19.68 21.30 22.70 24.12 24.19 25.06 26.39 26.86 27.90 28.73 29.11 — — — — — — — 0.04 0.18 0.45 0.61 0.80 1.03 1.22 1.45 1.65 1.88 2.07 2.27 2.44 2.57 — — — — — — — — — — — — — 2.17 7.05 12.40 14.13 17.53 19.83 22.25 24.16 25.98 27.30 29.23 30.36 31.79 31.96 — — — — — — — — — — — — — Auxiliary Information MethodÕApparatusÕProcedure Sorption isotherms were measured with a dual transducer barometric device described in Ref. 1. Source and Purity of Materials: Bromination was conducted at 273 K in dilute solution of PPO in chloroform 共⬍5%兲. According to NMR none of the methyl groups were brominated. Aromatic rings were brominated mainly in three and five positions. Estimated Error: No information given References: E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. T. Stannett, J. Membr. Sci. 13, 16 共1983兲. 1 Original Measurements: B. J. Story and W. J. Koros, J. Appl. Polym. Sci. 42, 2613 共1991兲. Variables: Prepared By: T/K⫽308 p/MPa⫽0–2.0 (0 – 20 atm) Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for various gases in CCPO at 308 K Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 CO2 CH4 0.7918 0.2981 26.28 15.53 0.2852 0.1254 PATERSON, YAMPOL’SKII, AND FOGG Pressure/MPa Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Methane; CH4; 关74-28-8兴 共3兲 Carboxylated poly共phenylene oxide兲 共CPPO兲 1328 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 3. Sorption isotherms of methane in the various polymers at 308 K 共The original data were represented graphically兲 Auxiliary Information MethodÕApparatusÕProcedure A standard pressure decay system 共Ref. 1兲 was used in pure gas sorption. Mixed gas sorption experiments were performed using a special apparatus having additional chambers for preparation and chromatographic sampling of gas mixtures. Source and Purity of Materials: CPPO: prepared via lithiation into methyl groups with BuLi/ THF with subsequent carboxylation and acidification. The average content of COOH groups per repeat unit was 0.22. Estimated Error: No information given. References: W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 1 IUPAC-NIST SOLUBILITY DATA SERIES 1329 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 FIG. 29. Mixed gas sorption CO2 /CH4 in CPPO at 308 K and two different pressures. 共Solid lines兲 sorption model for mixed gas ⬘ b i p i /(1⫹b i p i ⫹b j p j ), 共Dotted lines兲 sorption model for pure gases. sorption C i ⫽k Di p i ⫹C Hi Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 Evaluator: TABLE 2. Solubility coefficients S in semicrystalline samples of PETP 共if not stated otherwise兲 Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: This system has been studied thoroughly by a number of investigators.1–9 However, the variation in crystallinity of polymer samples, as well as different temperature and pressure ranges studied preclude an accurate comparison of all the results. Table 1 summarizes the dual mode sorption parameters at 298 K for the samples having different degrees of crystallinity. It is seen that other factors beside crystallinity determine the parameters of sorption isotherms. Moreover, depending on the method of crystallization, different values of model parameters can be observed for the same crystallinity.9 Perhaps, this is caused by the effects of quenching or swelling in high pressure gas. The same is true for the solubility coefficient. S/cm3共STP兲 cm⫺3 atm⫺1 Ref. 290 298 3.1 2.7 3.3 3.1 4.6 2.2 5.0 3.8 1.7 1.7 2.3 0.6 1.1 0.35 6a 1b,c 2b 5b 7a 5b 8a,c 8a 4a 5b 7a 8a,c 8a 5b 308 0 25* 27** 43 46 59 kD ⬘ CH b ⬘b S⫽k D ⫹C H Ref. 318 0.38 0.77 0.73 0.21 0.37 0.36 5.3 2.6 7.0 4.2 5.7 7.9 0.44 1.5 1.3 0.45 0.52 0.35 2.7 4.7 9.8 2.1 3.3 3.1 1 9 9 1 2 5 338 358 a Found by evaluator from the initial slope of sorption isotherms. Calculated using the dual mode sorption parameters. Amorphous sample. b c *Crystallization by heating. **Crystallzation by exposing to high pressure carbon dioxide. Further experimental studies with well characterized polymer samples are required in order to properly evaluate this system. ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1. Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H For the given samples of PETP, very good temperature dependences of the parameters of sorption isotherms have been obtained 共see ⬘ parameter determined by different authors and for the samples e.g., Refs. 5 and 9兲. Figure 30 shows temperature dependence of the C H ⬘ values than those with different pretreatment. It indicates that the differences in crystallization methods cause larger alterations in the C H obtained in independent sorption studies. References: 1 A. S. Michaels, W. R. Vieth, and J. A. Barrie, J. Appl. Polym. Sci. 34, 1 共1963兲. 2 W. R. Vieth, H. H. Alcalay, and A. J. Frabetti, J. Appl. Polym. Sci. 8, 2125 共1964兲. 3 K. Toi, J. Polym. Sci., Polym. Phys. Ed. 11, 1829 共1973兲. W. J. Koros, D. R. Paul, M. Fujii, and H. B. Hopfenberg, J. Appl. Polym. Sci. 21, 2899 共1977兲. W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 16, 1947 共1978兲. O. N. Tigina, Dissertation, GIAP, Moscow, USSR, 1983. 7 M. D. Sefcik, H. K. Yuen, and D. D. Chan, Polymer 26, 2043 共1985兲. 8 Y. Kamiya, T. Hirose, Y. Naito, and K. Mizoguchi, J. Polym. Sci., Part B: Polym. Phys. 26, 159 共1988兲. 9 T. Hirose, K. Mizoguchi, Y. Kamiya, and Y. Terada, J. Appl. Polym. Sci. 37, 1513 共1989兲. 4 5 6 ⬘ /共cm3共STP兲 cm⫺3兲. 共䊐兲 Ref. 1; 共䊏兲 Ref. 2; 共䊉兲 Ref. 5: 共䊊兲 Ref. FIG. 30. Temperature dependence of Langmuir adsorption capacity C H 9 共crystallization by exposure to CO2兲; 共⽧兲 Ref. 9 共crystallization by heating兲. PATERSON, YAMPOL’SKII, AND FOGG T/K TABLE 1. The dual mode sorption parameters and apparent solubility coefficients S at 298 K Crystallinity/% 1330 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 ⬘ values vanish in the vicinity of T g of PETP, in fact, one of the best documented cases of such a behavior. It can be seen too that the C H Table 2 presents the temperature dependence of the solubility coefficients. In spite of the substantial scatter, a decrease in the S values with temperature can be observed. 3.16. Poly„Ethylene Terephthalate…—Carbon Dioxide and Other Gases Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 Original Measurements: W. R. Vieth and K. J. Sladek, J. Colloid Sci. 20, 1014 共1965兲. Variables: T/K⫽313 p/MPa⫽0 – 1.8 Prepared By: A. K. Bokarev Experimental Data Sorption isotherm of carbon dioxide in a PETP Mylar film at 313 K. 共The original data were represented graphically兲 Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.15 0.19 0.21 0.32 0.42 0.46 0.61 0.72 0.75 0.90 2.10 2.35 2.61 3.27 3.57 3.98 4.85 5.46 5.31 5.97 0.93 1.07 1.07 1.23 1.41 1.43 1.54 1.75 1.76 — 5.81 6.37 5.96 6.88 7.69 7.23 8.15 8.65 8.34 — Original Measurements: K. Toi, J. Polym. Sci., Polym. Phys. Ed. 11, 1829 共1973兲. Variables: T/K: 288– 315 p/kPa: 0 – 101.3 Prepared By: A. K. Bokarev Experimental Data Henry’s law is obeyed by O2, Ar, and N2, in all samples of PETP at pressure up to 1 atm. The deviations from Henry’s law were observed for CO2. The dual mode sorption model equation was follow C⫽ 关 1.89p/(1⫹0.45p) 兴 ⫹0.38pa, where a is volume fraction of amorphous phase, for CO2 /PETP systems. The solubility coefficients S/cm3共STP兲cm⫺3 atm⫺1 of gases in PETP-50 at 303 K 0.084 N2 O2 0.092 0.105 1.353 Ar CO2a a PETP-75. Heats of sorption for CO2 in PETP-75 at 70 cm Hg gas pressure was equal to ⫺5.37 kcal/mol. Auxiliary Information Auxiliary Information MethodÕApparatusÕProcedure The experimental technique used to obtain the gas solubility data was identical to that reported by Michaels et al.1 The details of the apparatus and procedure had been described in Ref. 2. Source and Purity of Materials: PETP: commercial grade biaxally oriented Mylar film described in Ref. 2. M w ⫽from 15 000 to 20 000, amorphous volume fraction ␣ ⫽0.54. Estimated Error: No information given. Source and Purity of Materials: Four samples of commercial PETP 共Diafoil, Mitsubishi Plastics Ltd.兲 were studied: one having amorphous structure 共PETP-75兲 and three having the degree of crystallinity of 48.0% 共PETP-50, 75, and 100, where figures are the thickness of the samples兲. Completely amorphous PETP-75 had density 1.331 g/cc. Other samples had ⫽1.400 g/cc. Commercial gases were used. CO2 was purified by the sublimation method by means of liquid nitrogen. Estimated Error: ␦ S/S⫽⫹3%. 1331 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 References: 1 A. S. Michaels, W. R. Vieth, and J. A. Barrie, J. Appl. Phys. 31, 1 共1963兲. 2 W. R. Vieth, H. H. Alcalay, and A. J. Frabetti, J. Appl. Polym. Sci. 8, 2125 共1964兲. MethodÕApparatusÕProcedure Manometric method was used for the measurement of solubility. The pressure changes due to sorption were measured with a cathetometer. IUPAC-NIST SOLUBILITY DATA SERIES Pressure/MPa Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 Original Measurements: W. J. Koros, D. R. Paul, M. Fujii, H. B. Hopfenberg, and V. Stannett, J. Appl. Polym. Sci. 21, 2899 共1977兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethylene terephthalate兲; 共PETP兲; 关25038-59-9兴 共XIX兲 Original Measurements: W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 16, 1947 共1978兲. Variables: T/K⫽308– 338 p/MPa⫽0 – 2.1 Prepared By: A. K. Bokarev Variables: T/K: 298–388 p/MPa: 0 – 2.0 (0 – 20 atm) Prepared By: A. K. Bokarev Experimental Data Sorption isotherms of carbon dioxide in poly共ethylene terephthalate兲 at 308 and 338 K. 共The original data were represented graphically兲 Pressure/MPa Pressure/MPa Sorption (V * 1 (STP)/V * 2) Pressure/MPa Sorption (V * 1 (STP)/V * 2) 1.64 2.88 2.71 3.50 4.63 5.87 5.87 6.66 0.94 1.01 1.08 1.26 1.52 1.57 1.66 1.76 7.39 7.73 7.84 8.79 9.75 9.63 10.09 10.65 1.79 1.85 1.88 1.94 2.03 2.07 — — 10.36 10.87 10.93 11.15 11.60 11.77 — — 1.13 1.35 2.25 2.65 2.76 2.92 0.82 0.96 1.18 1.25 1.26 1.52 3.49 3.60 4.50 4.61 4.44 5.45 1.69 1.81 1.92 1.95 1.97 — 5.50 6.12 6.29 6.23 6.23 — Auxiliary Information MethodÕApparatusÕProcedure Design and operation of the sorption cell have been described in the literature.1,2 Experimental Data Dual-mode sorption parameters for CO2 in PETP T/K k D /cm3共STP兲cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 298 308 318 328 338 348 358 368 378 388 0.362 0.330 0.260 0.234 0.214 0.210 0.196 0.194 0.184 0.167 7.913 5.760 4.960 3.753 2.735 1.814 0.936 0.351 0.322 0.282 0.252 0.197 0.165 0.167 Below 358 K, sorption isotherms of CO2 in PETP show a nonlinear character typical for glassy polymers. Above 358 K, the isotherms are completely linear at pressures at high as 20 atm. Auxiliary Information MethodÕApparatusÕProcedure The apparatus and experimental procedure used for sorption measuring have been described elsewhere.1 Source and Purity of Materials: PETP 共Kinmar兲 from Commercial Plastics Co had the weight average molecular mass of 54 000, T g ⫽358 K, and the degree of crystallinity near 60%. A density of amorphous PETP was 1.331 g/cc, those of semicrystalline samples were in the range 1.4⫾0.003 g/cc. The CO2 used was ⬎99% pure. Source and Purity of Materials: PETP: commercially available transparent and highly crystalline sample.3 Estimated Error: No information given. Estimated Error: No information given. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed., 14, 687 共1976兲. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym Phys. Ed. 14, 1903 共1976兲. 2 W. J. Koros, D. R. Paul, and A. A. Rocha, ibid. 14, 687 共1976兲. 3 W. J. Koros, Ph.D. dissertation, The University of Texas at Austin, 1977. PATERSON, YAMPOL’SKII, AND FOGG T⫽308 K 0.08 0.18 0.19 0.27 0.41 0.60 0.63 0.76 T⫽338 K 0.18 0.22 0.42 0.55 0.59 0.73 Sorption (V * 1 (STP)/V 2* ) 1332 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 Original Measurements: O. N. Tigina, dissertation, GIAP, Moscow, USSR, 1983. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 Original Measurements: M. D. Sefcik, H. K. Yuen, and D. D. Chan, Polymer 26, 2043 共1985兲. Variables: T/K⫽290 and 320 p/MPa⫽0.4– 4.0 Prepared By: S. M. Shishatskii Variables: T/K⫽308– 328 p/kPa⫽0 – 100 共0–1 atm兲 Prepared By: Yu. P. Yampol’skii Experimental Data Solubility of carbon dioxide 共g/g polymer兲 in PETP Experimental Data Sorption isotherms of carbon dioxide in PETP 共the original data were represented graphically兲 p/MPa C 102 T/K p/MPa C 102 290 0.4 0.5 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1.73 2.2 2.3 2.9 3.2 3.8 4.2 4.5 4.8 320 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.8 1.1 1.3 1.5 1.8 1.9 2.1 2.2 2.3 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 5.1 5.3 5.5 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.3 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 2.4 2.5 2.6 2.6 2.7 2.8 2.8 2.9 2.9 T⫽308 K T⫽318 K T⫽308 K* T⫽328 K Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) 2.03 2.03 3.04 5.07 8.11 12.16 17.23 24.32 33.44 48.64 66.87 85.11 102.34 0.06 0.09 0.16 0.27 0.36 0.53 0.71 0.94 1.14 1.48 1.87 2.24 2.53 5.07 8.11 12.16 20.27 27.36 33.44 43.57 53.70 62.82 73.97 84.10 93.22 101.33 0.12 0.19 0.28 0.48 0.62 0.74 0.92 1.09 1.25 1.42 1.59 1.73 1.88 4.05 8.11 12.16 20.27 27.36 33.44 43.57 53.70 62.82 73.97 84.10 94.23 103.35 0.06 0.14 0.22 0.33 0.44 0.54 0.70 0.85 0.95 1.11 1.24 1.36 1.48 3.04 13.17 33.44 101.33 — — — — — — — — — 0.11 0.42 0.86 2.17 — — — — — — — — — *Repeated after all the measurements. Auxiliary Information Auxiliary Information Source and Purity of Materials: PETP 共specification TU-29-02-367-71兲 was studied. It had a density 1.34 g/cc and a degree of crystallinity 25%. Estimated Error: ␦ C/C⫽1.5% Source and Purity of Materials: PETP: B. F. Goodrich Co., glass transition temperature 340 K, amorphous phase content 66%. A powdered sample of PETP was prepared by dissolving the polymer in a mixed solvent 共67% of C2H2Cl4 and 33% of C6H5OH兲 with subsequent precipitation in excess methanol. Surface area of the powder: 7.5 m2/g. Estimated Error: No information given. References: 1 I. F. Golubev and O. A. Dobrovol’skii, Gaz. Prom. N5, 43 共1964兲. 1333 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure The solubility was measured by means of an apparatus of hydro-static weighing, the principle of which had been described in Ref. 1. MethodÕApparatusÕProcedure Sorption isotherms were determined gravimetrically using a Mettler Thermoanalyzer-1. IUPAC-NIST SOLUBILITY DATA SERIES T/K Original Measurements: Y. Kamiya, T. Hirose, Y. Naito, and K. Mizoguchi, J. Polym. Sci., Part B: Polym. Phys. 24, 159 共1988兲. Variables: T/K⫽308– 338 p/MPa⫽0 – 5.0 Prepared By: A. K. Bokarev 1334 Experimental Data FIG. 32. Sorption isotherms of carbon dioxide in amorphous PETP. The dotted arrows show the decreases in concentration accompanying crystallization. Open and filled symbols represent sorption and desorption, respectively. Auxiliary Information MethodÕApparatusÕProcedure The isotherms of gases in the polymer were obtained gravimetrically using a Cahn model 2000 electrobalance. Details of this apparatus were described previously.1 FIG. 31. Sorption isotherms of carbon dioxide in CO2-conditioned crystalline PETP, measured after CO2 sorption experiment at 308 K. Open and filled symbols represent sorption and desorption, respectively. Source and Purity of Materials: CO2: purity 99.99%. Amorphous PETP: Diafoil Ltd., density 1.336 g/cm3. PETP after thermal crystallization for about 5 h at 393 K in an air: density 1.37–1.38 g/cm3. PETP after CO2 exposure crystalline film to 50 atm at 308 K for 24 h or more: density 1.367 g/cm3. Estimated Error: No information given. References: 1 Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Pol. Sci., Polym. Phys. Ed. 24, 535 共1986兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 Original Measurements: T. Hirose, K. Mizoguchi, Y. Kamiya, and K. Terada, J. Appl. Polym. Sci. 37, 1513 共1989兲. Variables: T/K⫽298– 338 p/kPa⫽0 – 100 共0–1 atm兲 amorphous volume fraction ␣ ⫽0.73– 0.96 Prepared By: A. K. Bokarev Experimental Data TABLE 1. Dual mode sorption parameters for CO2 in c-PETP k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 298 308 318 328 338 308a 0.733 0.633 0.522 0.485 0.429 0.633 7.05 5.22 3.94 3.45 2.15 3.19 1.30 1.36 1.30 0.739 0.668 1.50 FIG. 33. Sorption isotherms of carbon dioxide in c-PETP. a After annealing of c-PETP at 338 K. TABLE 2. Dual mode sorption parameters for CO2 in h-PETP T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 298 308 318 328 0.770 0.665 0.579 0.509 2.59 1.64 1.12 0.72 1.52 1.79 1.59 1.33 TABLE 3. Comparison of solubilities of CO2 in c-PETP before and after thermal annealing at 338 K 共The original data were represented graphically兲 Before annealing After annealing at 338 K Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) 13.51 27.34 40.80 54.60 — — 0.99 1.51 2.03 2.40 — — 67.61 83.71 87.94 97.87 — — 2.73 3.21 3.34 3.54 — — 13.79 27.18 41.00 41.74 55.52 60.52 0.67 1.01 1.43 1.39 1.68 1.91 68.15 69.27 80.35 87.62 88.75 97.93 2.01 1.97 2.17 2.33 2.31 2.48 FIG. 34. Sorption isotherms of carbon dioxide in h-PETP. 1335 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Pressure/kPa IUPAC-NIST SOLUBILITY DATA SERIES T/K 1336 MethodÕApparatusÕProcedure Sorption isotherms for gases in the polymer were obtained gravimetrically using a Cahn model 2000 electrobalance. Details of this apparatus were described in Ref. 1 Source and Purity of Materials: Amorphous PETP 共a-PETP兲: Mitsubihi Diafoil Co., erystallization by exposing to CO2 共50 atm, 308 K兲 共c-PETP兲 or thermal 共398 K, 5.3 h兲 共h-PETP兲 a-PETP: density 1.336 g/cm3, ␣ ⫽0.96. c-PETP: density 1.362 g/cm3, ␣ ⫽0.73. h-PETP: density 1.362 g/cm3, ␣ ⫽0.70. Components: 共1兲 Hydrogen; H2; 关1333-74-0兴 Nitrogen; N2; 关7727-37-9兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 Original Measurements: H.-C. Draisbach, D. Jeschke, Naturforschung 17a, 447 共1962兲. Variables: T/K⫽293– 373 p/MPa⫽6.65– 66.5 Prepared By: Yu. P. Yampol’skii H. A. Stuart, Z. Experimental Data Solubility coefficients S 102 /cm3共STP兲/cm3 atm of hydrogen* Estimated Error: No information given. References: 1 T. Hirose, K. Mizoguchi, and Y. Kamiya, J. Appl. Polym. Sci. 34, 1657 共1987兲. and Temperature/K Sample 293 303 313 323 333 343 353 363 373 Amorphous Cryst., 30.6% Cryst., 43.0% 2.68 2.39 2.21 2.47 2.21 2.00 2.29 2.00 1.83 2.12 1.82 1.68 2.01 1.71 1.62 2.00 1.62 1.56 2.09 1.56 1.50 2.27 1.59 1.53 2.45 1.65 1.53 *Smoothed values from the plot, taken by compiler. Enthalpies of sorption ⌬H/共cal/mol of hydrogen兲 Sample T⬍T g T⬎T g Amorphous Cryst., 30.6% Cryst., 43.0% 1700 1900 2000 1900 — — Solubility coefficients S/cm3共STP兲/cm3 atm of nitrogen at 338 K Amorphous 0.0238 Cryst., 30.6% Cryst., 43.0% 0.0231 0.0226 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurement was employed using a high vacuum glass apparatus with McLeod gauge. Source and Purity of Materials: Three samples of commercial PETP 共Terylen兲 were studied: one having amorphous structure and two having the degrees of crystallinity of 30.6 and 43.0%. PETP had T g ⫽343 K. Nothing specified on the purity of gases. Estimated Error: No information given. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information Components: 共1兲 Helium; He; 关7440-59-7兴 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 Ethane; C2H6; 关74-84-0兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 Original Measurements: A. S. Michaels, W. R. Vieth, and J. A. Barrie, J. Appl. Phys. 34, 1 共1963兲. Variables: T/K⫽298– 338 p/MPa⫽0 – 1.26 Prepared By: S. M. Shishatskii Pressure/kPa TABLE 1. Solubility coefficients of various gases in amorphous PETP at 298 K 3 He Ar N2 O2 CO2 CH4 C2H6 0.0078 0.082 0.058 0.100 2.71 0.240 0.99 ␣⫽amorphous volume fraction TABEL 2. Temperature dependence of the solubility coefficients S共cm3共STP兲/cm3 atm) Sample Gas T/K Amorphous Crystalline ( ␣ ⫽0.58) CH4 308 318 337 308 322 338 298 312 328 338 348 0.175 0.116 0.065 — — — — — — — — — — — 0.155 0.100 0.073 2.00 1.20 0.64 0.50 0.34 CO2 Sorption 共V 1* (STP)/V 2* 兲 Pressure/kPa Sorption 共V 1* (STP)/V 2* 兲 TABLE 3. Sorption isotherms of ethane in PETP at 298 K 共The original data were represented graphically兲 ␣ ⫽0.54 ␣ ⫽0.57 6.73 17.02 21.00 28.12 30.35 38.36 41.04 ␣ ⫽1.0 12.62 21.14 23.34 35.39 34.99 39.44 41.22 0.16 0.38 0.42 0.54 0.58 0.70 0.76 52.14 60.11 69.87 83.99 86.62 99.99 103.1 0.91 1.00 1.13 1.23 1.23 1.47 1.51 112.39 115.05 131.02 149.57 161.07 170.80 — 1.61 1.63 1.83 2.00 2.11 2.21 — 0.36 0.57 0.57 0.81 0.85 0.92 0.94 50.16 54.63 58.20 72.94 85.33 87.14 100.03 1.13 1.23 1.29 1.58 1.71 1.77 1.95 109.34 111.56 124.44 137.31 145.76 156.39 — 2.07 2.11 2.28 2.46 2.59 2.71 — 共II兲 ␣ ⫽0.65 4.01 11.47 11.46 17.11 17.09 22.21 39.03 42.82 43.28 ␣ ⫽1.0 7.23 14.21 16.09 22.63 30.10 31.50 0.05 0.15 0.17 0.19 0.21 0.29 0.50 0.49 0.51 47.96 48.38 51.23 53.08 58.71 64.81 69.97 71.85 76.53 0.55 0.60 0.59 0.64 0.67 0.72 0.76 0.77 0.81 85.91 95.27 100.9 101.36 111.21 122.00 125.26 132.79 — 0.89 0.99 1.03 1.05 1.12 1.20 1.26 1.28 — 0.15 0.26 0.27 0.36 0.45 0.47 29.60 33.82 38.52 48.33 50.65 63.75 0.48 0.52 0.54 0.66 0.71 0.86 68.88 73.56 82.45 100.23 — — 0.93 0.98 1.07 1.26 — — ␣ ⫽1.0 Pressure/kPa Sorption 共V 1* (STP)/V 2* 兲 Pressure/kPa Sorption 共V 1* (STP)/V 2* 兲 19.09 31.29 43.39 57.63 73.57 85.53 102.61 124.64 143.81 0.13 0.24 0.33 0.41 0.49 0.55 0.64 0.72 0.78 20.54 43.08 62.01 75.77 89.41 107.63 125.24 140.59 — 0.20 0.38 0.51 0.60 0.67 0.76 0.84 0.92 — 1337 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Pressure/kPa IUPAC-NIST SOLUBILITY DATA SERIES cm 共STP兲/cm atm 3 Sorption 共V 1* (STP)/V 2* 兲 共I兲 Experimental Data Henry’s law is obeyed by He, O2, Ar, N2, and CH4 in amorphous PETP at subatmospheric pressure. Deviations from Henry’s law were observed for CO2 and C2H6 even below 1 atm and at higher pressures. Sorption TABEL 4. Sorption isotherms of carbon dioxide in PETP at 298 K 共I兲 and 313 K 共II兲 and at subatmospheric pressure 共The original data were represented graphically兲 Pressure/MPa Pressure/MPa ␣ ⫽1.0, run II 0.14 0.20 0.28 0.31 0.36 0.41 0.48 0.61 0.73 0.81 0.91 1.00 1.07 1.16 1.24 ␣ ⫽0.57, run IV 0.28 0.41 0.55 — — — 2.89 4.08 4.70 5.22 5.55 6.14 6.77 7.21 7.31 7.68 8.08 8.38 8.60 — — 1.78 1.89 2.48 3.18 3.69 4.25 Sorption 共V 1* (STP)/V 2* 兲 2.71 3.41 3.89 4.48 4.70 5.07 5.74 6.40 6.95 7.24 7.61 7.98 8.27 8.60 9.08 Variables: Prepared By: T/K⫽298– 328 p/MPa⫽0 – 1.7 共17 atm兲 A. K. Bokarev Experimental Data TABLE 1. Solubility constants for oriented poly共ethylene terephtpalate兲, ␣ ⫽0.49 Temperature T/K Solubility constant* S/cm3共STP兲 cm⫺3 atm⫺1 N2 O2 CH4 CH4 CH4 298 298 298 313 328 0.044 0.076 0.200 0.130 0.087 *Value found from Van’t Hoff plot. TABLE 2. Sorption isotherms of carbon dioxide in PETP, ␣ ⫽0.49 共The original data were represented graphically兲 2.55 3.66 4.65 — — — Auxiliary Information MethodÕApparatusÕProcedure A manometric procedure of sorption measurement was used either in glass apparatus 共low pressure sorption measurement兲 or in a steel bomb equipped with high pressure gauge 共0–2.5 MPa兲. Original Measurements: W. R. Vieth, H. H. Alcalay, and A. J. Frabetti, J. Appl. Polym. Sci. 8, 2125 共1964兲. Source and Purity of Materials: Gases 共except CH4兲: purity⬎99.5%. CH4; purity 99%. Amorphous PETP 共Mylar兲: DuPont Co., M w ⫽15 000– 20 000, density 1.331 g/cm3. Semicrystalline samples: density in the range 1.37–1.39 g/cm3. Crystalline samples: prepared by annealing for 1 h at 390–420 K; degree of crystallinity from 35% to 46%. Estimated Error: Relative precision of solubilities: 3.5% and 6% at 95% confidence level for CO2 in low and high pressure measurement. 10% for O2, N2, and CH4 at the the same level of confidence. T⫽298 K T⫽313 K Pressure/kPa Sorption 共V * 1 (STP)/V * 2兲 Pressure/kPa Sorption 共V * 1 (STP)/V * 2兲 5.5 12.5 17.3 36.0 52.5 76.8 105.1 119.2 0.12 0.27 0.38 0.76 0.99 1.34 1.67 1.83 9.7 19.3 34.9 55.3 75.7 93.3 116.4 130.0 0.15 0.28 0.43 0.64 0.82 0.98 1.16 1.27 TABLE 3. Sorption isotherms of carbon dioxide in oriented PETP at 298 K 共The original data were represented graphically兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 0.16 0.17 0.18 0.21 0.27 0.27 0.31 0.33 0.35 0.40 0.45 0.46 3.19 3.42 3.46 3.92 4.24 4.52 4.70 4.88 4.97 5.34 5.61 5.70 0.51 0.58 0.63 0.64 0.73 0.73 0.74 0.81 0.96 0.97 0.98 1.02 6.11 6.71 6.89 6.93 7.53 7.66 7.25 7.80 8.29 8.52 8.29 8.75 1.06 1.14 1.15 1.24 1.36 1.44 1.60 1.64 1.76 — — — 8.74 9.11 9.15 9.47 9.87 10.01 10.87 10.59 11.13 — — — PATERSON, YAMPOL’SKII, AND FOGG ␣ ⫽1.0, run I 0.17 0.25 0.33 0.44 0.48 0.57 0.69 0.78 0.85 0.95 1.04 1.12 1.19 — — ␣ ⫽0.57, run III 0.12 0.15 0.24 0.34 0.47 0.55 Sorption 共V 1* (STP)/V 2* 兲 Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共ethylene terephthalate兲 共PETP兲; 关25038-59-9兴 共XIX兲 1338 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 5. Sorption isotherms of carbon dioxide in PETP at elevated pressure and 298 K 共The original data were represented graphically兲 The isotherms fitted the equations: * p ␣ ⫹C H⬘ bp/ 共 1⫹b p 兲 , C⫽C D ⫹C H ⫽k D ⬘ , and b have the usual meaning, k D* is Henry’s law dissolution constant, and ␣ is the amorphous volume fraction. where the parameters C H The following dual mode sorption parameters are reported for CO2 sorption at 298 K and 0–17 atm pressure range in PETP ( ␣ ⫽0.54): k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.37 5.7 0.52 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共butylene terephthalate兲 共PBTP兲 共XX兲 Original Measurements: L. Thuy and J. Springer, Colloid Polym. Sci. 266, 614 共1988兲. Variables: T/K⫽298– 338 p/MPa⫽0.1– 3.0 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for carbon dioxide in PBTP Heats of sorption, found from Vant’Hoff for S(CO2) in PETP ( ␣ ⫽0.49): ⌬H 共CO2兲⫽⫺7.4 kcal/mol; ⫺31.0 kJ/mol ⌬H 共CH4兲⫽⫺5.4 kcal/mol; ⫺22.6 kJ/mol. Auxiliary Information Source and Purity of Materials: CO2 ,N2 ,O2: minimum purity 99.5%. CH4: purity 99%. PETP 共oriented Mylar兲: Du Pont Co., M w ⫽15 000– 20 000, density 1.39 g/cm3, amorphous volume fraction ␣ ⫽0.49 and 0.54. k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 298 308 318 328 338 0.48 0.42 0.37 0.34 0.29 7.70 5.55 3.70 1.67 — 0.18 0.17 0.16 0.15 — Estimated Error: Relative precision of solubility constants: ⫾8%. References: 1 A. J. Michaels and W. R. Vieth, J. Appl. Phys. 34, 1 共1963兲. FIG. 35. Sorption isotherms of carbon dioxide in PBTP. Auxiliary Information MethodÕApparatusÕProcedure High pressure apparatus was employed including Sartorius microbalance 共model 4436兲. Source and Purity of Materials: PBTP: BASF 共Ultradur B 255O兲. The granular degassed polymer was pressed into thin foil at 528 K and then quickly quenched in a mixture of ice, salt, and water. Density 1.283 g/cm3, degree of crystallinity about 19%, glass transition temperature 316 K. Estimated Error: No information given. 1339 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES MethodÕApparatusÕProcedure The procedure for low pressure measurements was described in Ref. 1. High pressure experiments were performed in a stainless steel bomb equipped with a pressure gauge. T/K Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Bisphenol A polycarbonate 共for brevity here and further, polycarbonate兲 is a well known and widely used industrial plastic produced by General Electric Co. under a tradename Lexan. Many authors dealt with the system PC–carbon dioxide.1–11 The polymer samples studied were nearly identical in majority of the cases. The data have been obtained in the temperature range 293–373 K and at pressures up to 10 MPa. It was the system PC–CO2, which was used as an example for the demonstration of the effects of annealing and conditioning on the sorption parameters,4,9,11 which are generally characteristic of other glassy polymers. Exposing a polymer sample to high pressure gas, results in an increase in the concentration of dissolved gas the larger the higher is the pressure of such conditioning.4 The annealing of polymer samples at sub-T g temperatures leads to a decrease in the concentration of the dissolved gas. The table shows the pressure dependence of the concentration, C, of carbon dioxide dissolved in the polymer samples unconditioned 共‘‘as received’’兲 and exposed to 2 MPa of carbon dioxide prior to solubility measurement. It is seen that the difference between the individual ‘‘sorption isotherms’’ is not dramatic. The last line presents average values of C at different pressures. Original Measurements: F. J. Norton, J. Appl. Polym. Sci. 7, 1649 共1963兲. Variables: T/K: 273–333 p/kPa: 101.3 Prepared By: A. K. Bokarev Experimental Data TABLE 1. Solubility C of CO2 in Lexan at 1 atm* T/K C/cm3 gas 共STP兲/cm3 273 298 323 4.43 12.76 25.10 *Calculated by compiler. Pressure/MPa Auxiliary Information 0.5 1.0 1.5 2.0 Type of sample Ref. 12.2 12.8 13.2 — 11.7 16.6 18.5 19.0 17 18.6 20.6 23.0 23.6 — 24.0 24.5 27.2 27.6 27 28.7 2 4 5 6 — 13.2 12.6 16 19.3 17.9 — 24.0 23.0 26 28.1 27.0 ** * ** ** ** ** * — *Conditioned at 2.0 MPa of CO2. **‘‘As received.’’ References: F. J. Norton, J. Appl. Polym. Sci. 7, 1649 共1963兲. 2 W. R. Vieth and J. A. Eilenberg, J. Appl. Polym. Sci. 16, 945 共1972兲. 1 W. J. Koros, D. R. Paul, and A. Rocha, J. Polym. Sci., Polym. Sci. Ed. 14, 687 共1976兲. A. J. Wonders and D. R. Paul, J. Membr. Sci. 5, 63 共1979兲. 5 A. H. Chan and D. R. Paul, Polym. Eng. Sci. 20, 87 共1980兲. 6 G. K. Fleming and W. J. Koros, Macromolecles 19, 2285 共1986兲. 7 Y. Kamiya, T. Hirose, K. Mizogchi, and K. Terada, J. Polym. Sci., Part B: Polym. Phys. 24, 1525 共1986兲. 8 E. Sada, H. Kumazawa, H. Yakushiji, Y. Bamba, and K. Sakata, Ind. Eng. Chem., Res. 26, 433 共1987兲. 3 4 N. Muruganandam, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 25, 1999 共1987兲. R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B: Polym. Phys. 25, 2497 共1987兲. 11 G. K. Fleming and W. J. Koros, Macromolecules 23, 1353 共1990兲. 9 10 8 10 11 Av. MethodÕApparatusÕProcedure Source and Purity of Materials: Manometric method. Lexan PC from General Electric Co. was studied. No more information given. PATERSON, YAMPOL’SKII, AND FOGG Pressure dependence of the concentration C/共cm3共STP兲 cm⫺3兲 of dissolved CO2 at 308 K Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate Lexan 共PC兲; 关24936-68-3兴 共XXI兲 1340 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.17. Polycarbonate—Carbon Dioxide Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: W. R. Vieth and J. A. Eilenberg. J. Appl. Polym. Sci. 16, 945 共1972兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate; 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: W. J. Koros, D. R. Paul, and A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. Variables: T/K⫽308–338 p/MPa⫽0–2.2 Prepared By: A. K. Bokarev Variables: T/K: 308 K P/MPa: 0.1–2.5 Prepared By: A. K. Bokarev Experimental Data TABLE 1. Dual mode sorption parameters for carbon dioxide in polycarbonate Experimental Data Solubility of carbon dioxide in PC at 308 K* T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 308 318 338 0.765 0.708 0.346 9.53 7.20 7.09 1.50 1.16 0.94 T⫽308 K T⫽318 K T⫽338 K Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.33 0.41 0.56 0.68 0.91 1.20 1.36 1.51 1.88 — 7.72 9.09 11.36 13.54 15.31 17.64 19.08 20.13 22.85 — 0.25 0.40 0.53 0.66 0.8 1.10 1.49 1.69 2.16 — 5.93 8.12 9.32 11.26 12.14 14.55 17.03 18.64 21.52 — 0.20 0.36 0.50 0.72 0.87 1.01 1.25 1.45 1.83 2.16 3.50 5.27 6.88 8.41 9.37 9.76 10.62 11.09 12.84 13.37 Auxiliary Information Source and Purity of Materials: PC: preparation described in Ref. 2, amorphous film, thickness 0.5 mm. 10 20.5 15 26.7 21 32.0 25 37.4 30 42.3 *Smooth values taken from the graph by compiler. TABLE 1. Dual mode sorption parameters for CO2 in polycarbonate at 308 K Method Graphical Nonlinear Least squares k D cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.992 0.933 13.7 15.3 0.392 0.338 Auxiliary Information MethodÕApparatusÕProcedure Measurements of gas solubility in polymer performed using a pressure decay method of dual-volume dual transducer type. Source and Purity of Materials: Bisphenol A polycarbonate 共PC兲 共Lexan兲 was obtained from the General Electric Co. M W ⫽35 800. The CO2 used in experiment was ⬎99% pure. Estimated Error: ␦ C⫽0.45 cm3共STP兲/cm3共polymer兲. Estimated Error: ⬘ ⬍8.7%. Relative precision: C H References: 1 W. R. Vieth, C. S. Frangoulis, and J. A. Rionda, J. Colloid Interface Sci. 22, 454 共1966兲. 2 P. J. Eloranta, thesis, B. S. Department of Chemical Eng., M.I.T., Cambridge, MA, 1968. 1341 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure A pressure decay method was used. Other details are given in Ref. 1. 5 14.2 IUPAC-NIST SOLUBILITY DATA SERIES TABLE 2. Sorption isotherms of carbon dioxide in polycarbonate 共The original data were represented graphically兲 p/atm C * /cm3共STP兲 cm⫺3 Original Measurements: A. J. Wonders and D. R. Paul, J. Member. Sci. 5, 63 共1979兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: A. H. Chan and D. R. Paul, Polym. Eng. Sci. 20, 87 共1980兲. Variables: T/K⫽308 p/MPa⫽0 – 2.02 (0 – 20 atm) Prepared By: A. K. Bokarev Variables: T/K⫽308–348 p/MPa⫽0 – 2.0 (0 – 20 atm) Prepared By: A. K. Bokarev Experimental Data Sorption isotherms of carbon dioxide in polycarbonate at 308 K. 共The original data were represented graphically兲 Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.83 1.02 1.06 1.09 1.12 1.20 1.29 1.40 Sorption (V 1* (STP)/V 2* ) Pressure/MPa 15.13 17.47 17.91 18.34 18.34 19.31 20.07 21.15 1.55 1.63 1.71 1.81 1.96 2.02 — — Sorption (V 1* (STP)/V 2* ) 22.34 23.21 24.50 25.37 26.66 27.53 — — Experimental Data TABLE 1. Temperature dependence of sorption parameters for carbon dioxide in PC. Sorption measurements were made after conditioning at 20 atm of CO2 T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 333 353 373 Van’t Hoff parameters/共kcal/mol⫺1兲 0.64 0.46 0.30 ⫺4.0 18.00 12.78 11.16 — 0.234 0.156 0.098 ⫺4.8 TABLE 2. Dual mode sorption parameters for carbon dioxide in annealed PC. Sorption measurements were made at 308 K after conditioning at 20 atm of CO2 PC sample history 0.80 0.89 1.00 1.12 1.21 1.30 1.39 16.39 17.47 18.33 19.74 20.49 21.36 22.12 1.49 1.60 1.69 1.74 1.95 2.02 — 22.98 24.39 25.14 25.79 26.99 27.85 — Auxiliary Information MethodÕApparatusÕProcedure The sorption apparatus and procedure used in the present sorption experiments are the same as described earlier.1 Results labeled ‘‘initial’’ were obtained by beginning with ‘‘as-received’’ polymer and simply conducting a sorption experiment by increasing experimental pressure. ‘‘Uniform’’ samples were also prepared in a separate bomb using CO2 pressures of 20, 40, and 60 atm for 24 h. Source and Purity of Materials: CO2: purity 99%. PC 共Bisphenol A polycarbonate兲: Lexan, General Electric Co., M w ⫽35 800. Estimated Error: No information given. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. As received Annealed at 398 K for 2h 10 h 1 day 2 day 8.5 day 14 day Annealed at 408 K for 0.5 h 5h 10 h 2 day k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.642 18.00 0.234 0.618 0.609 0.601 0.587 0.611 0.532 15.49 14.66 14.17 13.89 12.89 13.71 0.230 0.220 0.231 0.228 0.238 0.238 0.574 0.570 0.550 0.560 17.05 15.43 15.20 14.80 0.220 0.226 0.227 0.230 PATERSON, YAMPOL’SKII, AND FOGG Series on initial exposure film 0.08 3.12 0.11 3.88 0.22 5.92 0.33 7.76 0.43 9.70 0.51 10.78 0.72 13.69 0.79 14.88 Series after CO2 exposure at 20 atm 0.09 4.20 0.20 7.00 0.31 9.26 0.42 11.20 0.51 12.61 0.58 13.58 0.70 15.20 Pressure/MPa 1342 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 FIG. 38. Same as for Fig. 37 except that the annealing temperature was equal to 408 K. Auxiliary Information MethodÕApparatusÕProcedure The equilibrium solubility of CO2 in the polymer was measured by a pressure decay technique described earlier, Ref. 1. Source and Purity of Materials: PC 共Lexan兲: General Electric Co., M w ⫽35 800, glass transition temperature 418 K. Estimated Error: No information given References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. FIG. 37. Equilibrium sorption of carbon dioxide in PC samples annealed at 398 K. Sorption measurements were made at 308 K after conditioning at 20 atm of CO2. 1343 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES FIG. 36. Effect of temperature on carbon dioxide sorption in PC for ‘‘as-received’’ material conditioned at 20 atm of CO2. Original Measurements: G. K. Fleming and W. J. Koros, Macromolecules 19, 2285 共1986兲. Variables: T/K⫽308 p/MPa⫽0 – 6.2 Prepared By: A. K. Bokarev Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: Y. Kamiya, T. Hirose, K. Mizoguchi, and K. Terada, J. Polym. Sci., Part B: Polym. Phys. 24, 1525 共1986兲. Variables: T/K⫽308– 328 p/MPa⫽0 – 5.0 Prepared By: A. K. Bokarev 1344 Experimental Data TABLE Experimental Data 共For all the following tables, the original data were represented graphically兲 1. Sorption and desorption isotherms of carbon dioxide in PC at 308 K, first series of experiments ‘‘As received’’ film FIG. 39. Sorption and desorption isotherms of carbon dioxide in polycarbonate at 308 K. Open and filled symbols represent sorption and desorption, respectively. Auxiliary Information MethodÕApparatusÕProcedure Gas sorption measurements were made with a pressure decay cell that has been used at pressures up to 30 atm.1,2 With slight modification, this design was used to make sorption measurements up to 68 atm. Source and Purity of Materials: CO2 : Linde, Inc., purity 99.99%. PC: General Electric Co. 共commercial grade film兲, density 1.200⫾0.001 g/cm3. Estimated Error: No information given. References: 1 W. J. Koros, Ph.D. dissertation, University of Texas of Austin, Austin, TX, 1977. 2 W. J. Koros and D. R. Paul, J. Membr. Sci. 5, 63 共1978兲. Rod specimens Pressure/MPa Sorption 共V * 1 共STP兲/V * 2) Pressure/MPa Sorption 共V * 1 共STP兲/V * 2) Pressure/MPa Sorption 共V * 1 共STP兲/V * 2) Pressure/MPa Sorption 共V * 1 共STP兲/V 2* ) 0.10 0.41 0.70 0.98 1.37 1.87 2.39 4.86 — — — — — — — — — 3.31 9.10 13.16 16.78 21.41 26.63 32.14 47.85 — — — — — — — — — 0.04 0.09 0.17 0.22 0.29 0.43 0.68 0.97 1.26 1.58 1.92 2.02 2.27 2.65 2.99 3.49 3.91 4.32 6.63 9.38 11.11 13.86 18.19 23.69 28.61 32.08 35.42 37.89 38.18 39.93 41.96 43.28 44.60 46.21 0.32 1.41 2.98 4.86 — — — — — — — — — — — — — 7.94 21.13 34.91 49.14 — — — — — — — — — — — — — 0.36 0.58 1.00 1.93 3.41 4.78 — — — — — — — — — — — 15.16 20.94 27.74 38.47 45.61 47.55 — — — — — — — — — — — PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 TABLE 2. Sorption and desorption isotherms of carbon dioxide in polycarbonate film at 308 K, second and third series Second series TABLE 4. Sorption and desorption isotherms of carbon dioxide in polycarbonate film at 318 K First series** Third series Sorption 共V 1* 共STP兲/V 2* ) Pressure/MPa Desorption 共V 1* 共STP兲/V 2* ) Pressure/MPa Sorption 共V 1* 共STP兲/V 2* ) Pressure/MPa Desorption 共V 1* 共STP兲/V 2* ) 0.17 0.29 0.36 0.49 0.57 0.78 0.96 1.15 1.44 1.78 2.05 2.35 2.67 2.98 3.49 3.96 4.40 4.82 6.64 9.96 11.55 14.44 15.46 18.50 20.96 22.99 26.18 29.37 31.83 33.87 35.76 37.36 40.42 43.33 45.95 47.99 0.17 0.23 0.27 0.39 0.59 0.77 1.04 1.32 1.76 2.23 2.87 3.34 3.90 4.37 — — — — 5.63 10.25 12.27 16.17 20.22 24.41 28.47 32.23 36.58 39.49 42.55 44.31 45.63 47.10 — — — — 0.04 0.25 0.43 0.65 0.87 1.21 1.54 1.91 2.42 2.90 3.43 3.90 4.32 4.79 4.76 — — — 3.74 8.66 11.99 15.75 19.22 22.99 26.76 30.38 34.16 37.36 40.42 43.33 45.37 49.72 47.99 — — — 0.12 0.13 0.16 0.30 0.43 0.75 1.06 1.92 2.43 3.47 — — — — — — — — 5.77 7.50 8.51 12.85 16.89 23.83 27.89 38.46 41.52 46.05 — — — — — — — — TABLE 3. Sorption and desorption isotherms of carbon dioxide in polycarbonate film at 328 K, measured after experiments at 298 K Sorption Intermediate sorption* Desorption Solubility 共V 1* 共STP兲/V 2* ) Pressure/MPa Solubility 共V 1* 共STP兲/V 2* ) Pressure/MPa Solubility 共V 1* 共STP兲/V 2* ) 0.24 0.33 0.48 0.87 1.30 1.97 2.98 3.70 4.34 4.94 — — 4.41 6.13 7.84 12.12 15.69 21.12 26.99 30.14 32.87 35.16 — — 0.13 0.14 0.15 0.22 0.30 0.51 0.81 1.11 1.87 2.59 3.37 4.17 2.56 3.70 4.70 5.98 7.69 11.54 15.96 19.25 24.96 28.69 31.7 34.00 0.91 1.88 3.01 4.00 — — — — — — — — 16.25 23.40 28.56 31.57 — — — — — — — — Solubility 共V 1* 共STP兲/V 2* ) Sorption 0.79 1.53 2.95 5.00 11.62 18.35 28.96 40.32 Desorption 0.44 1.16 2.20 3.51 — — — — — — — — — 13.12 23.67 32.10 37.35 — — — — — — — — — Pressure/MPa Solubility 共V 1* 共STP兲/V 2* ) Sorption 0.14 0.38 0.57 0.92 1.12 1.54 2.03 2.98 3.95 4.91 4.98 9.52 12.83 15.84 18.84 22.71 25.66 30.49 34.94 38.86 Desorption 0.09 0.26 0.56 0.80 1.71 2.93 4.08 3.99 9.81 15.58 19.65 28.99 34.92 38.17 Pressure/MPa Solubility 共V 1* 共STP兲/V 2* ) 0.56 1.06 1.61 2.41 3.36 4.47 4.91 — — — — — — — — — — — — 15.58 20.44 24.93 29.52 34.05 37.82 40.08 — — — — — — — — — — — — *Experiments for decending scanning isotherm. **Series of experiments on ‘‘as received’’ film. ***Experiments for ascending scanning isotherm. Auxiliary Information MethodÕApparatusÕProcedure Sorption isotherms for gases in the polymer were obtained gravimetrically using a Cahn model 2000 electrobalance. Details of this apparatus are described in Ref. 1. Source and Purity of Materials: CO2: purity 99.99%. PC 共Bisphenol A polycarbonate兲: film 共thickness 75 m兲, rod 共diameter 3 mm兲; densities at 298 K 1.194 g/cm3 共‘‘as received’’兲 and 1.192 g/cm3 共after CO2 exposure兲; glass transition temperature 417 K. Estimated Error: No information given. References: 1 Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Polym. Sci., Polym. Phys. Ed. 24, 535 共1986兲. 1345 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Pressure/MPa Pressure/MPa IUPAC-NIST SOLUBILITY DATA SERIES Pressure/MPa Intermediate sorption*** Second series Original Measurements: R. G. Wissinger and M. E. Paulaitis, J. Polym. Sci., Part B: Polym. Phys. 25, 2497 共1987兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: G. K. Fleming and W. J. Koros, Macromolecules 23, 1353 共1990兲. Variables: T/K⫽308.2 p/MPa⫽0 – 10.2 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽308 p/MPa⫽0 – 6.3 共0–900 psia兲 Prepared By: Yu. P. Yampol’skii Experimental Data Solubility of carbon dioxide C C/cm3共STP兲/g polymer* 9.8 18 27 35 43 51 69 88 102 13 21 27 34 40 47 59 63 65 Experimental Data The effects of conditioning 共pretreatment兲 of the polymer by exposing it prior to sorption experiments to high pressure carbon dioxide atmosphere was studied. TABLE 1. Dual mode sorption parameters for carbon dioxide sorption in PC at 308 K 共p: conditioning pressure兲 p/psia Pressure-based model 300 600 900 Fugacity-based model 300 600 900 *Taken from a graph by the compiler. p/MPa k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 2.07 4.14 6.21 0.681 0.587 0.542 17.30 29.61 29.21 0.261 0.194 0.167 2.07 4.14 6.21 0.844 0.843 0.868 15.16 19.42 21.24 0.303 0.265 0.257 Auxiliary Information MethodÕApparatusÕProcedure The gravimetric method was used. The polymer samples were suspended from a quartz spring. The corrections for buoyancy were introduced using CO2 densities up to higher pressure. Source and Purity of Materials: PC 共General Electric Co兲 had glass transition temperature 420 K. The purity of CO2 共Linde Co兲 was 99.99%. Estimated Error: ␦ C/C⫽⫾1 cm3共STP兲/g polymer. TABLE 2. Dual mode desorption parameters for carbon dioxide in PC at 308 K 共p: conditioning pressure兲 Fugacity-based model p/psia p/MPa k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 300 600 900 2.07 4.14 6.21 0.617 0.254 0.261 21.00 46.59 59.50 0.285 0.125 0.117 The differences between sorption and desorption parameters are indicative for hysteresis phenomena. PATERSON, YAMPOL’SKII, AND FOGG p/atm 1346 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 FIG. 42. Sorption isotherms of CO2 at 308 K in CO2-conditioned, ‘‘as-received,’’ and annealed PC. The annealed sample was first CO2conditioned at 900 psia and then annealed at 408 K for 500 h under vacuum. 共䊊兲 ‘‘as-received;’’ 共䊉兲 900 psia conditioned; 共䊐兲 annealed. Auxiliary Information MethodÕApparatusÕProcedure The procedures and apparatus for sorption measurements were identical with those described in Ref. 1. Source and Purity of Materials: CO2: purity 99.99%. PC 共Bisphenol A polycarbonate兲: General Electric, density 1.200 g/cm3. Estimated Error: No information given. References: 1 G. K. Fleming and W. J. Koros, Macromolecules 19, 2285 共1986兲. FIG. 41. Initial CO2 sorption and desorption in PC at 308 K after conditioning pressures of 300, 600, and 900 psia. 共䊊兲 ‘‘as-received;’’ 共䊉兲 desorption. 1347 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES FIG. 40. Sorption isotherms of CO2 in PC at 308 K for conditioning pressures of 300, 600, and 900 psia. 共䊊兲 ‘‘as-received;’’ 共䊉兲 CO2conditioned. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-828兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: E. Sada, H. Kumszawa, H. Yakushji, Y. Bamba, K. Sakata, and S.-T. Wang, Ind. Eng. Chem., Res. 26, 433 共1987兲. Variables: T/K⫽293– 313 p/MPa⫽0.2– 3.0 Prepared By: Yu. P. Yampol’skii T/K k D /(cm3共STP兲/cm3 atm) ⬘ /(cm3共STP兲/cm3) CH b/atm⫺1 CO2 293 303 313 293 303 313 0.911 0.804 0.702 0.335 0.308 0.280 23.1 19.9 16.0 6.40 5.62 4.72 0.264 0.197 0.124 0.157 0.120 0.0872 Auxiliary Information Source and Purity of Materials: PC films were provided by Teijin Co. Estimated Error: No information given. References: W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. 1 p/kPa C/cm3共STP兲 cm⫺3 10 30 50 101 11.6⫾1.1 22.0⫾1.6 31.2⫾1.2 51.4⫾2.0 References: 1 E. G. Davis and M. L. Rooney, Kolloid Z.-Z. Polym. 249, 1043 共1971兲 2 E. G. Davis and M. L. Rooney, J. Polym. Sci., Polym. Phys. Ed. 10, 2325 共1972兲. S. Frimpong, C. A. Plank, and W. L. S. Laukhauf, Chem. Eng. J. 42, 25 共1989兲 3 PATERSON, YAMPOL’SKII, AND FOGG Gas MethodÕApparatusÕProcedure Equilibrium sorption was measured by the pressure decay method in the cell similar to one described in Ref. 1. The pressure changes in the cell were continuously measured by a pressure transducer. Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: The system sulfur dioxide–polycarbonate has been studied by Davis and Rooney1,2 and by Frimpong et al.3 In all the papers, the same commercial material Lexan 共General Electric Co.兲 was investigated. The parameters of the dual mode sorption isotherm reported in Refs. 1 and 3 are fairly close, so the following pressure dependence of the solubility at 298 K can be recommended. Experimental Data Dual mode sorption parameters CH4 Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 1348 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.18. Polycarbonate—Sulfur Dioxide Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: E. G. Davis, M. L. Rooney, and Z.-Z. Kolloid Polym. 249, 1043 共1971兲. Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Polycarbonate; 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: E. G. Davis and M. L. Rooney, J. Polym. Sci., Polym. Phys. Ed. 10, 2325 共1972兲. Variables: T/K⫽298 p/kPa⫽0 – 100 Prepared By: A. K. Bokarev Variables: T/K: 298 p/kPa: 13.87; 79.46 Prepared By: A. K. Bokarev Experimental Data Dual mode sorption parameters for sulfur dioxide in polycarbonate at 298 K Experimental Data Solubility of sulfur dioxide in polycarbonate k D /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/cm Hg⫺1 p/kPa C/cm3共STP兲 cm⫺3 0.522 10 0.241 13.87 79.46 12.8 40.6 Sorption isotherm of sulfur dioxide in polycarbonate at 298 K. 共The original data were represented graphically兲 Sorption (V 1* (STP)/V * 2) Pressure/kPa Sorption (V * 1 (STP)/V * 2) 3.20 6.52 12.01 17.72 23.65 28.12 33.53 39.41 45.56 5.27 8.15 11.48 14.27 16.88 19.01 21.11 22.83 25.08 49.53 56.7 62.33 67.71 74.37 81.25 88.11 95.75 99.97 27.05 30.32 31.87 33.44 36.02 38.41 40.63 43.71 45.67 Auxiliary Information MethodÕApparatusÕProcedure A modified McBain balance technique described in Ref. 1 was used to measure the solubility of sulfur dioxide in the polymer. Source and Purity of Materials: SO2: purity 99.95%. PC: Lexan, General Electric Co., density 1.119 g/cm3, glass transition temperature 422 K. Estimated Error: No information given. Source and Purity of Materials: PC 共‘‘Lexan’’兲 with ⫽1.119 g/cm3, provided by General Electric Co. 共USA兲. M w ⫽45 000; T g ⫽422 K. Sulfur dioxide of 99.95% purity was used. Estimated Error: dT/K: ⫾0.5. 1349 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 References: 1 S. Prager and A. F. Long, J. Am. Chem. Soc. 73, 4072 共1951兲. MethodÕApparatusÕProcedure A modified McBain balance technique was used to measure the solubility of sulfur dioxide in the polymer. IUPAC-NIST SOLUBILITY DATA SERIES Auxiliary Information Pressure/kPa Original Measurements: S. Frimpong, C. A. Plank, and W. L. S. Laukhauf, Chem. Eng. J. 共Lausanne兲 42, 25 共1989兲. Variables: T/K⫽283.2– 343.2 p/kPa⫽0 – 100 Prepared By: Yu. P. Yampol’skii MethodÕApparatusÕProcedure A McBain quartz spring balance was employed for sorption measurement. The apparatus is described in Ref. 2. 1350 Source and Purity of Materials: PC 共Lexan 101兲: General Electric Co., glass transition temperature 421 K 共DSC兲, melting point 496.8 K. Estimated Error: Relative precision in T: ⫾0.1 K. References: C. A. Plank, W. L. S. Laukauf, and G. R. Ranade, J. Appl. Polym. Sci. 30, 2695 共1985兲. 2 G. R. Ranade, V. M. Nadgir, C. A. Plank, and W. L. S. Laukauf, J. Appl. Polym. Sci. 28, 201 共1983兲. 1 Experimental Data FIG. 43. Sorption isotherms of sulfur dioxide in polycarbonate. Dual mode sorption parameters for sulfur dioxide in polycarbonate T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 283.2 298.2 313.2 343.2 61.66 40.26 26.27 11.72 22.45 13.93 9.52 4.08 19.39 16.33 15.57 12.13 The experiment data for 298.2 and 313.2 K were correlated by the equation C⫽123.212 exp关1.0772⫻10⫺3 共 RT/cal mol⫺1兲共 ln共 p/atm兲 ⫹ 共 2355/共共 T/K兲 ⫺33兲兲 ⫺10.24兲兴 based on adsorption potential theory in Ref. 1. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 3.19 Polycarbonate—Methane Components: 共1兲 Methane; CH4; 关74-82-8兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Four papers are available for the system polycarbonate–methane. Pope et al.4 studied history effects on sorption isotherms 共unconditioned film, the film conditioned by exposure to high pressure carbon dioxide gas and exchange-conditioned by subsequent sweeping CO2 by methane兲 and showed the significant changes in the isotherm’s shape caused by the pretreatment of a sample. On the other hand, the other papers1–3 reported the dual mode sorption parameters but did not study the effects of different pretreatment of the films on the parameters of the sorption model. Below the solubility coefficients at 308 K are shown based on the dual mode sorption parameters1–3 and by the initial slope of the isotherms.4 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 Nitrogen; N2; 关7727-37-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 26, 729 共1988兲. W. J. Koros, Ph.D. dissertation, The University of Texas at Austin, 1977. Variables: T/K: 308 p/MPa: 0–2.33 Prepared By: A. K. Bokarev Experimental Data Dual mode sorption parameters for polycarbonate at 308 K Parameter k D /(cm 共STP兲/cm atm兲 3 S/cm3共STP兲 cm⫺3 atm⫺1 0.85 0.84 0.99 0.54 1.0 1 2 3 4* 4** Ref. ⬘ /(cm3共STP兲/cm3) CH b/(atm⫺1) CO2 CH4 N2 0.685 18.81 0.147 8.38 0.0909 2.11 0.215 0.100 0.074 Auxiliary Information In spite of possible different film history, the solubility coefficients lie within fairly narrow limits. Accordingly, sorption isotherms are given for the samples with different pretreatment. Solubility of methane C/共cm3共STP兲 cm⫺3兲 in PC at 308 K and different pressure p/MPa Ref. 1 Ref. 2 A B 0.5 1.0 2.0 3.0 3.2 5.3 8.2 10.4 3.3 5.6 9.5 12.9 2.5 4.3 6.8 8.2 5.0 8.2 13.0 15.7 These data indicate a possible range of variation of the solubility of CH4 in polycarbonate at different pressures. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. E. Sada, H. Kumazawa, H. Yakushiji, Y. Bamba, K. Sakata, and S-T. Wang, Ind. Eng. Chem., Res. 26, 433 共1987兲. T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 26, 729 共1988兲. 4 D. S. Pope, G. K. Fleming, and W. J. Koros, Macromolecules 23, 2988 共1990兲. 2 3 1351 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 References: 1 W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. Source and Purity of Materials: Bisphenol A polycarbonate 共Lexan兲 was obtained from the General Electric Co. M w ⫽35 800. Each gas was of chromatographic quality 共purity ⬎99.99%兲. Estimated Error: Nothing specified. Ref. 4 A Unconditioned film. B Exchange-conditioned film. MethodÕApparatusÕProcedure The sorption apparatus and procedures used in the present sorption experiments are the same as described earlier.1 IUPAC-NIST SOLUBILITY DATA SERIES *Unconditioned film. **Exchange-conditioned film. 3 Components: 共1兲 Methane; CH4; 关74-82-8兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: D. S. Pope, G. K. Fleming, and W. J. Koros, Macromolecules 23, 2988 共1990兲. Variables: T/K⫽308 p/MPa⫽0 – 6.89 Prepared By: Yu. P. Yampol’skii Experimental Data Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Only two papers are available for this system.1,2 However, they cover the same temperature 共303–333 K兲 and pressure 共0–0.1 MPa兲 ranges. In both cases, the polymer is probably Lexan from General Electric Co. recast from methylene dichloride. This enables a meaningful comparison of the data to be done. The parameters of sorption isotherms at 323 K reported in Refs. 1 and 2 agree within the estimated error. Hence, the following pressure dependence was calculated for propane solubility in polycarbonate. p/kPa C/cm3共STP兲 cm⫺3 10 30 50 101 0.83⫾0.03 1.67⫾0.05 2.37⫾0.02 4.03⫾0.05 Auxiliary Information MethodÕApparatusÕProcedure Two methods of conditioning were studied. Conventionally conditioned isotherms were obtained with the samples which had been previously in contact with CO2 gas under pressure of 6.21 MPa for 2–3 h with consequent pumping for 2 days. Both isotherms were obtained by pressure decay method.1 Exchange conditioning involved exposing the samples to CO2 gas and then sweeping it by a CH4 flux with the subsequent gravimetric determination of sorption. Source and Purity of Materials: CH4 : purity ⬎99.99%. PC: General Electric Co., density 1.200 g/cm3, glass transition temperature 423 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci.: Polym. Phys. Ed. 14, 1903 共1976兲. PATERSON, YAMPOL’SKII, AND FOGG References: 1 J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci. 20, 21 共1980兲. 2 J. A. Yavorsky and H. J. Spencer, J. Appl. Polym. Sci. 25, 2109 共1980兲. FIG. 44. Sorption isotherms of methane in polycarbonate for unconditioned, carbon dioxide conditioned and exchange conditioned samples. 1352 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.20. Polycarbonates—Propane and Other Gases Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: J. A. Yavorsky and H. J. Spencer, J. Appl. Polym. Sci. 25, 2109 共1980兲. Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: J. A. Barrie, M. J. L. Williams, and K. Munday, Polym. Eng. Sci. 20, 21 共1980兲. Variables: T/K: 321.7; 323 p/kPa; Not stated Prepared By: A. K. Bokarev Variables: T/K⫽303– 333 p/kPa⫽0 – 8.0 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Thermal treatment of films Experimental Data ⬘ b), and errors 共%兲 for propane in polycarbonate Dual mode sorption parameters, solubility coefficients S, (S⫽k D ⫹C H Thermal treatment PC-1 PC-A1 PC-A2 PC-10 3 days in vacuum at 313–323 K Treatment of PC-1 plus 49 h at 408 K in vacuum Treatment of PC-A1 plus 51 h at 408 K in vacuum 3 days in vacuum at 353 K T/K 303 313 323 333 102 k D / cm3共STP兲 cm⫺3 cm Hg⫺1 6.07 5.01 4.01 2.55 共⫾7%兲 共⫾2%兲 共⫾8%兲 共⫾17%兲 ⬘/ CH cm3共STP兲 cm⫺3 1.67 1.25 1.02 1.22 b/cm Hg⫺1 共⫾11%兲 共⫾4%兲 共⫾21%兲 共⫾31%兲 0.311 0.254 0.167 0.094 共⫾30%兲 共⫾9%兲 共⫾43%兲 共⫾50%兲 S/ cm3共STP兲 cm⫺3 cm Hg⫺1 0.579 0.368 0.210 0.140 共⫾18%兲 共⫾5%兲 共⫾19%兲 共⫾19%兲 TABLE 2. Dual mode sorption parameters for the propane–polycarbonate system Sample T/K PC-1 PC-10 323.0 321.7 PC-A1 PC-A2 323.0 323.0 k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/共cm Hg兲⫺1 0.72 1.5 0.23 0.08 0.53 0.48 0.22 0.22 Unannealed films 4.5 3.0 Annealed films 4.5 4.5 Auxiliary Information MethodÕApparatusÕProcedure The volumetric sorption procedure was used to determine the sorption equilibrium properties. Estimated Error: No estimates possible. FIG. 45. Sorption isotherms for propane in PC. Auxiliary Information MethodÕApparatusÕProcedure Sorption isotherms were measured using an electronic vacuum microbalance Sartorius, model 4102 as described in Ref. 1. Source and Purity of Materials: PC films: cast from methylene chloride; glass transition temperature 420 K. Estimated Error: See table. References: J. A. Barrie and D. Machin, J. Makromol. Sci.-Phys. B. 3, 645 共1969兲. 1 1353 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Source and Purity of Materials: The bisphenol-A polycarbonate. Lexan, was supplied by the General Electric Co. M n ⫽12 500; M w ⫽35 300. Films were cast on mercury at about 307–309 K from 5% to 10% solutions in methylene chloride. The thermal treatment of the films is summarized in Table 1. The T g for these films were in the range 421–428 K. Propane used was 99.5% pure and was subjected to freeze– pump–thaw cycles. IUPAC-NIST SOLUBILITY DATA SERIES Sample Original Measurements: W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Original Measurements: W. J. Koros, and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. Variables: Prepared By: Prepared By: A. K. Bokarev T/K⫽308 p/MPa⫽0 – 2.53 A. K. Bokarev Variables: T/K⫽308 p/MPa⫽0.1– 2.6 Experimental Data Sorption isotherm of nitrogen in polycarbonate at 308 K. 共The original data were represented graphically兲 Experimental Data Dual mode sorption parameters for various gases in polycarbonate at 308 K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 Ar He CH4 N2 0.1534 0.0145 0.1473 3.093 0.313 8.382 0.063 0.0121 0.0841 0.0909 2.109 0.0564 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 Pressure/MPa Sorption 共V 1* (STP)/V 2* 兲 0.08 0.11 0.14 0.19 0.30 0.40 0.60 0.75 0.90 1.14 1.29 0.18 0.21 0.27 0.42 0.58 0.69 1.03 1.34 1.58 1.85 2.01 1.37 1.44 1.63 1.82 2.03 2.25 2.29 2.49 2.60 2.59 — 2.14 2.21 2.47 2.72 2.96 3.18 3.24 3.50 3.57 3.63 — Auxiliary Information MethodÕApparatusÕProcedure Measurement of gas solubility was performed using a pressure decay method with a dual-volume dual transducers system 共see also Ref. 1兲. In order to achieve superior precision the ratio of the two working volumes should be close to 1. It was shown that the reduction of this ratio from 9.7 to 1.45 resulted in much less scatter. Source and Purity of Materials: N2: purity⬎99%. PC 共Bisphenol A polycarbonate兲: Lexan, General Electric Co., M w ⫽35 800. Estimated Error: Relative precision of solubilities: ⫾0.07 cm3共STP兲/cm3 polymer. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. FIG. 46. Sorption isotherms of various gases in polycarbonate at 308 K. Auxiliary Information Source and Purity of Materials: Gases; purity ⬎99%. PC 共Bisphenol A polycarbonate, Lexan兲; General Electric Co., M w ⫽35 800. Estimated Error: No information given. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. PATERSON, YAMPOL’SKII, AND FOGG Gas MethodÕApparatusÕProcedure The sorption apparatus and procedure used in the present sorption experiments are the same as described earlier.1 1354 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Helium; He; 关7440-59-7兴 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4 ; 关74-82-8兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 Tetramethylpolycarbonate 共TMPC兲; 关38797-88-5兴 共XXII兲 Tetrachloropolycarbonate 共TCPC兲; 关26913-25-7兴 共XXIV兲 Tetrabromopolycarbonate 共TBPC兲; 关28774-93-8兴 共XXV兲 Original Measurements: N. Muruganandam, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 25, 1999 共1987兲. Variables: T/K⫽308– 358 p/MPa⫽0.1– 2.0 (1 – 20 atm) Prepared By: A. K. Bokarev Experimental Data Dual mode sorption parameters for various gases in the polycarbonates at 308 K Polymer TBPC* CH4 TMPC TCPC TBPC PC TMPC TCPC TBPC N2 PC TMPC TCPC TBPC ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.685 1.011 0.860 0.840 0.179 18.81 27.66 26.35 24.59 17.77 0.262 0.283 0.316 0.395 0.128 Conditioned Conditioned Conditioned Conditioned Conditioned 0.281 0.289 0.275 0.147 0.244 0.340 0.209 12.29 12.22 12.37 8.38 15.34 11.26 15.05 0.106 0.128 0.141 0.084 0.100 0.150 0.120 Unconditioned Unconditioned Unconditioned Conditioned Conditioned Conditioned Conditioned 0.091 0.102 0.145 0.148 2.11 8.43 6.22 4.63 0.056 0.032 0.046 0.061 Unconditioned Unconditioned Unconditioned Unconditioned Conditions FIG. 47. Comparison of sorption isotherms of methane at 308 K in TMPC for unconditioned and conditioned films. FIG. 48. Comparison of sorption isotherms of methane at 308 K in TCPC for unconditioned and conditioned films. 1355 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 *At 358 K. IUPAC-NIST SOLUBILITY DATA SERIES CO2 PC TMPC TCPC TBPC k D /cm3共STP兲 cm⫺3 atm⫺1 1356 FIG. 51. Sorption isotherms of methane at 308 K in polycarbonates conditioned by prior CO2 exposure. 共䊊兲 PC; 共⽧兲 TMPC; 共䊐兲 TCPC; 共䊉兲 TBPC. FIG. 50. Sorption isotherms of carbon dioxide at 308 K in polycarbonates conditioned by prior CO2 exposure. FIG. 52. Sorption isotherms of nitrogen at 308 K in polycarbonates without prior CO2 exposure. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 FIG. 49. Comparison of sorption isotherms of methane at 308 K in TBPC for unconditioned and conditioned films. Auxiliary Information MethodÕApparatusÕProcedure Sorption was measured using the method described in Ref. 1 Sorption data were collected using films never exposed to CO2 共unconditioned films兲 and films that had been exposed to CO2 at 20 atm for 24 h. Source and Purity of Materials: Gases: purity 99%. PC: General Electric Co., density 1.200 g/cm3. TMPC: Bayer AG, density 1.083 g/cm3. TBPC: Dow Chemical Co., density 1.953 g/cm3. h/(dl/g) Polymer Mw PC TMPC TCPC TBPC 35 800 — — — — 0.530 0.534 0.417 T g /K 423 466 503 536 Components: 共1兲 Methane; CH4; 关74-82-8兴 共2兲 Tetramethylpolycarbonate 共TMPC兲; 关38797-88-5兴 共XXII兲 Original Measurements: D. S. Pope, G. K. Fleming, and W. J. Koros, Macromolecules 23, 2988 共1990兲. Variables: T/K⫽308 p/MPa⫽0 – 5 Prepared By: Yu. P. Yampol’skii Experimental Data Sorption isotherms of methane at 308 K in unconditioned, conventionally conditioned, and exchange-conditioned samples of TMPC. 共The original data were represented graphically兲 Unconditioned References: 1 W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. Conventionally conditioned Exchange-conditioned Sorption/ (V * 1 (STP)/V * 2) Pressure/MPa Sorption/ (V * 1 (STP)/V * 2) Pressure/MPa Sorption/ (V * 1 (STP)/V * 2) 0.42 0.93 1.49 2.05 2.60 3.12 3.72 4.31 4.94 4.82 8.25 11.04 13.20 15.15 16.79 18.52 20.04 21.45 0.72 1.77 2.89 3.83 4.87 — — — — 9.44 15.67 20.73 24.11 27.17 — — — — 0.52 1.07 1.77 2.47 3.06 3.80 4.48 — — 9.25 14.90 20.21 24.26 26.84 29.83 32.29 — — Auxiliary Information Source and Purity of Materials: CH4: purity 99.99%. TMPC: Dow Chemical Co., density 1.08 g/cm3, glass transition temperature 476 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 1357 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure Two methods of conditioning were studied. Conventionally conditioned isotherms were obtained with the samples which had been previously in contact with CO2 gas under pressure of 6.21 MPa for 2–3 h with consequent pumping for 2 days. Exchange conditioning involves exposing samples to CO2 gas and then sweeping it with methane flux. For exchange conditioning runs a gravimetric technique was used, in two other types of experiments a pressure decay method was applied.1 IUPAC-NIST SOLUBILITY DATA SERIES Pressure/MPa Original Measurements: G. K. Fleming and W. J. Koros, J. Polym. Sci., Part B: Polym. Phys. 28, 1137 共1990兲. Variables: T/K⫽308 p/MPa⫽0 – 6.2 (0 – 62 atm) Prepared By: Yu. P. Yampol’skii MethodÕApparatusÕProcedure Pressure decay sorption cell and procedure used are described in Ref. 1. 1358 Source and Purity of Materials: CO2: Linde Inc., purity 99.99%. TMPC: Bayer AG, density 1.083 g/cm3, glass transition temperature 475 K, d spacing 6.0 Å 共WAXD兲. Estimated Error: No information given. Experimental Data Sorption isotherm of carbon dioxide in TMPC on a fugacity basis at 308 K. 共The original data were represented graphically兲 Fugacity/MPa Sorption (V 1* (STP)/V 2* ) Fugacity/MPa Sorption (V 1* (STP)/V 2* ) 0.21 0.60 0.98 1.33 1.65 1.95 2.26 2.51 2.77 13.53 26.09 35.48 42.17 48.41 52.61 57.50 61.95 64.81 3.03 3.27 3.47 3.72 3.91 4.13 4.30 4.47 — 68.80 71.90 75.91 80.36 84.60 88.39 92.86 93.49 — FIG. 53. Sorption 共open points兲 and desorption 共filled points兲 isotherms of carbon dioxide in TMPC for maximum conditioning pressures of 37.95 共䊊兲 共䊉兲 and 62.1 共䊐兲 共䊏兲 atm. 共⽧兲 second desorption References: 1 G. K. Fleming and W. J. Koros, Macromolecules 19, 2285 共1986兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Tetramethylpolycarbonate 共TMPC兲; 关38797-88-5兴 共XXII兲 Components: 共1兲 Helium; He; 关7440-59-7兴 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Tetrabromopolycarbonate 共TBPC兲; 关28774-93-8兴 共XXV兲 Original Measurements: M. W. Hellums, W. J. Koros, G. R. Husk, and D. R. Paul, J. Membr. Sci. 46, 93 共1989兲. Variables: T/K⫽308 p/MPa⫽0 – 6.06 Prepared By: Yu. P. Yampol’skii Original Measurements: G. K. Fleming and W. J. Koros, J. Polym. Sci., Part B: Polym. Phys. 28, 1137 共1990兲. Variables: T/K⫽308 p/MPa⫽0.3– 3.3 Prepared By: V. I. Bondar Experimental Data TABLE 1. Sorption and desorption isotherms of carbon dioxide in HFPC at 308 K. 共The original data were represented graphically兲 Experimental Data Solubility of gases C/(cm3共STP兲/cm3) in TBPC at different pressures* Sorption p/atm C Gas p/atm C He 7.2 12.6 18.4 25.5 0.40 0.55 0.80 1.05 CH4 3.0 7.2 12.0 17.3 23.0 4.4 7.6 10.6 12.8 14.7 N2 3.6 7.4 11.7 17.3 20.0 1.4 2.6 3.6 4.8 5.4 CO2 5.4 9.5 15.0 20.7 19 25 32 37.5 1.0 2.35 5.0 8.2 12.5 0.6 1.2 2.6 3.95 5.5 Desorption Pressure/MPa Solubility (V * 1 (STP)/V * 2) Pressure/MPa Solubility (V * 1 (STP)/V * 2) 0.59 0.88 1.20 1.54 1.83 2.08 2.23 2.39 2.63 2.89 3.12 3.29 — 30.19 36.46 42.07 46.17 49.61 52.41 53.70 54.99 57.14 59.07 60.57 61.42 — 0.32 0.69 1.03 1.37 1.63 1.91 2.11 2.37 2.60 2.77 2.94 3.09 3.29 13.48 20.83 26.23 30.76 36.60 40.70 43.72 47.82 51.28 53.43 56.24 58.40 61.42 Experimental Data TABLE 2. Sorption isotherms of carbon dioxide in HFPC at 308 K on fugacity basis. 共The original data were represented graphically兲 *Taken from the graphs by compiler. Fugacity/MPa Sorption (V 1* (STP)/V 2* ) 0.36 0.72 1.08 1.36 1.63 1.85 2.11 2.32 2.52 2.68 2.82 16.40 26.28 33.42 38.05 42.04 45.62 49.40 52.97 55.92 58.65 61.38 Auxiliary Information Source and Purity of Materials: TBPC was prepared from tetrabromo-bisphenol A using standard interfacial polymerization technique. It had the following characteristics: ⫽1.083 g/cc, T g ⫽466 K Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul. J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 1359 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure Pressure decay apparatus was used in sorption measurement 共see Ref. 1兲. IUPAC-NIST SOLUBILITY DATA SERIES Gas O2 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Hexafluoropolycarbonate 共HFPC兲; 关32291-26-2兴 共XXVI兲 Type Pressure Fugacity k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 1.09 1.33 28.05 25.48 0.255 0.275 Auxiliary Information MethodÕApparatusÕProcedure Pressure decay sorption cell and procedure were described in Ref. 1. Source and Purity of Materials: HFPC: Dow Chemical Co., density 1.478 g/cm3, glass transition temperature 445 K, d spacing 5.8 A 共WAXD method兲. The polymer was conditioned before measurement of sorption isotherms by exposing to CO2 at 33 atm. Components: 共1兲 Methane; CH4; 关74-82-8兴 Tetramethylhexafuropolycarbonate 共TMHFPC兲; 关125431-72-3兴 共XXIII兲 Original Measurements: D. S. Pope, G. K. Fleming, and W. J. Koros, Macromolecules 23, 2988 共1990兲. Variables: T/K⫽308 p/MPa⫽0 – 3 Prepared By: Yu. P. Yampol’skii Experimental Data Sorption isotherms of methane at 308 K in unconditioned, conventionally conditioned, and exchange-conditioned samples of TMHFPC. 共The original data were represented graphically兲 Unconditioned Estimated Error: No information given. Conventionally conditioned Exchange-conditioned Pressure/MPa Sorption (V 1* (STP)/V * 2) Pressure/MPa Sorption (V * 1 (STP)/V * 2) Pressure/MPa Sorption (V * 1 (STP)/V * 2) 0.20 0.60 1.05 1.61 2.23 2.94 3.51 8.50 12.66 16.39 20.03 23.33 0.70 1.41 2.12 2.72 — — 11.09 17.75 22.64 26.45 — — 0.34 0.71 1.23 1.75 2.23 2.69 7.02 12.18 17.93 22.42 25.65 28.38 Auxiliary Information MethodÕApparatusÕProcedure Two methods of conditioning were studied. Conventionally conditioned isotherms were obtained with the samples which had been previously in contact with CO2 gas under pressure of 6.2 MPa for 2–3 h with consequent pumping for 2 days. Exchange conditioning involves exposing samples to CO2 gas and then sweeping it with a methane flux. For exchange conditioning runs a gravimetric technique was used. In two other types of experiments a pressure decay method was applied.1 Source and Purity of Materials: CH4: purity ⬎99.99%. TMHFPC: synthesized, density 1.200 g/cm3, glass transition temperature 481 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. PATERSON, YAMPOL’SKII, AND FOGG References: 1 G. K. Fleming and W. J. Koros, Macromolecules 19, 2285 共1986兲. 1360 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 3. Dual mode sorption parameters for carbon dioxide in HFPC at 308 K Components: 共1兲 Helium; He; 关7440-59-7兴 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Tetrabromohexafluoropolycarbonate 共TBHFPC兲; 关126430-95-3兴 共XXVII兲 Original Measurements: M. W. Hellums, W. J. Koros, G. R. Husk, and D. R. Paul, J. Membr. Sci. 46, 93 共1989兲. Variables: T/K⫽308 p/MPa⫽0 – 6.0 Prepared By: Yu. P. Yampol’skii Variables: Prepared By: T/K⫽308 p/MPa⫽0 – 2.0 共0–20 atm兲 Yu. P. Yampol’skii p/atm C Gas p/atm C He 2.4 8.7 15.6 23.0 35.0 0.2 0.6 1.05 1.5 2.35 CH4 3.0 9.0 13.5 18 22 26.5 32.5 5.3 11.5 14.8 17.3 19 21.5 23.5 1.0 3.0 6.0 9.0 14.0 0.6 2.0 3.4 4.9 6.8 CO2 0.6 1.6 2.4 4.1 6.3 0.4 1.3 1.9 3.1 4.65 3.5 8.0 15.5 22 28 39 52 22 36 47 60 74 100 116 k D /cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm3 C H, b/atm⫺1 N2 CO2 0.166 0.978 3.15 19.8 0.071 0.306 Auxiliary Information MethodÕApparatusÕProcedure The measurement of sorption was carried out using a pressure decay sorption cell as described in Ref. 1. The films were cast from methylene dichloride solution. Source and Purity of Materials: NBPC 共Eastman Kodak Co兲 had a density 1.20 g/cc, the glass transition temperature of 508 K. The intrinsic viscosity in methylene dichloride solution was 0.55 dl/g. Purity of gases not indicated. Estimated Error: No information given. References: W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. 1 Auxiliary Information MethodÕApparatusÕProcedure Pressure decay apparatus was used in sorption measurement 共see Ref. 1兲. Source and Purity of Materials: TBHFPC was prepared from tetrabromohexafluorobisphenol A using standard interfacial polymerization technique. It had the following characteristics: ⫽1.987 g/cc, T g ⫽528 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 1361 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 *Taken from the graphs by compiler. Gas IUPAC-NIST SOLUBILITY DATA SERIES Gas O2 Original Measurements: J. S. McHattie, W. J. Koros, and D. R. Paul, J. Polym. Sci.: Part B: Polym. Phys. 29, 731 共1991兲. Experimental Data Dual mode sorption parameters at 308 K Experimental Data Solubility of gases C/cm3共STP兲/cm3 in TBPC at different pressures* N2 Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Bisphenol norbornene polycarbonate 共NBPC兲 共XXVIII兲 Original Measurements: J. S. McHattie, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym Phys. 29, 731 共1991兲. Variables: T/K⫽308 p/MPa⫽0 – 2.0 共0–20 atm兲 Prepared By: Yu. P. Yampol’skii Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Bisphenol chloral polycarbonate 共BCPC兲; 关31546-39-1兴 共XXX兲 Original Measurements: J. S. McHattie, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 29, 731 共1991兲. Variables: T/K⫽308 p/MPa⫽0 – 2.0 共0–20 atm兲 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters at 308 K Experimental Data Dual mode sorption parameters at 308 K Gas k D /cm 共STP兲/cm atm ⬘ /cm 共STP兲/cm CH CO2 CH4 0.545 0.223 18.5 5.65 3 3 1362 3 3 ⫺1 b/atm 0.172 0.106 Gas k D /cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm3 CH b/atm⫺1 CO2 CH4 0.718 0.130 14.9 6.64 0.271 0.088 Auxiliary Information Auxiliary Information MethodÕApparatusÕProcedure The measurement of sorption was carried out using a pressure decay apparatus 共see Ref. 1兲. The films were cast from methylene dichloride solution. Source and Purity of Materials: PCZ 共Mitsubishi Gas Chemical Co兲 had a density 1.20 g/cc and glass transition temperature of 458 K. Its intrinsic viscosity in chloroform was 0.49 dl/g. Purity of gases not indicated. Estimated Error: No information given. References: 1 W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. MethodÕApparatusÕProcedure The measurement of sorption was carried out using a pressure decay apparatus 共see Ref. 1兲. The films were cast from methylene dichloride solution. Source and Purity of Materials: PCPC from General Electric Co had a density 1.39 g/cc and glass transition temperature of 437 K. Its intrinsic viscosity in chloroform was 0.66 dl/g. Purity of gases not indicated. Estimated Error: No information given. References: W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. 1 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Bisphenol-Z-polycarbonate 共PCZ兲; 关25135-52-8兴 共XXIX兲 3.21. Poly„Aryl-bis-isopropylidene Ether Ketone…—Carbon Dioxide and Methane Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共aryl-bis-isopropylidene ether ketone兲 共PAEK-12H兲; 关122165-94-0兴 共XXXI兲 Variables: T/K⫽308 p/MPa⫽0 – 2.0 Original Measurements: J. M. Mohr and D. R. Paul, Polymer 32, 2387 共1991兲 Prepared By: V. I. Bondar Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共aryl-isopropylidene-hexafluoro-isopropylidene ether ketone兲 共PAEK-6H6F兲; 关122165-96-2兴 共XXXII兲 Poly共aryl-hexafluoroisopropylidene-isopropylidene ether ketone兲 共PAEK-6F6H兲; 关122165-95-1兴 共XXXIII兲 Original Measurements: J. M. Mohr and D. R. Paul, Polymer 32, 2387 共1991兲. Variables: T/K⫽308 p/MPa⫽0 – 2.0 Prepared By: V. I. Bondar Experimental Data Dual mode sorption parameters for carbon dioxide in PAEK-12H at 308 K k D /cm3共STP兲 cm⫺3 atm⫺1 0.700 Experimental Data Dual mode sorption parameters for carbon dioxide in polymers at 308 K ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 9.22 0.305 k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 6H6F 6F6H 0.840 0.756 10.90 12.70 0.373 0.331 CH4 CO2 Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.13 0.26 0.42 0.55 0.70 0.87 1.01 1.19 1.36 1.54 1.74 1.97 2.07 3.19 5.51 7.71 9.38 11.13 12.31 14.46 15.51 16.79 17.96 19.31 21.38 22.33 0.17 0.34 0.50 0.68 0.86 1.04 1.21 1.38 1.57 1.75 2.02 — — 0.95 1.76 2.37 2.94 3.47 4.19 4.98 5.49 5.94 6.46 6.92 — — MethodÕApparatusÕProcedure A pressure decay method was used described in Ref. 1. Source and Purity of Materials: PAEK-12H: synthesized 共Ref. 2兲, density 1.166 g/cm3, glass transition temperature 444 K. Estimated Error No information given. FIG. 54. Sorption isotherms of carbon dioxide in PAEK-6H6F 共䊊兲 and PAEK-6F6H 共䊉兲. Auxiliary Information References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 2 G. L. Tullos, P. E. Cassidy, and A. K. St. Clair, Proc. ACS. Div. Polym. Materials 60, 310 共1989兲. MethodÕApparatusÕProcedure A pressure decay method was used as described in Ref. 1. Source and Purity of Materials: PAEK-6H6F, PAEK-6F6H: synthesized by the procedure described in Ref. 2. 6H6F: density 1.287 g/cm3, T g ⫽452 K. 6F6H: density 1.284 g/cm3, T g ⫽454 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 2 G. L. Tullos, P. E. Cassidy, and A. K. St. Clair, Proc. ACS, Div. Polym. Materials 60, 310 共1989兲. 1363 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information IUPAC-NIST SOLUBILITY DATA SERIES Sorption isotherms of carbon dioxide and methane in PAEK-12H at 308 K. 共The original data were represented graphically兲 Polymer Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共aryl-bis-hexafluoroisopropylidene ether ketone兲 共PAEK-12F兲; 关122165-97-3兴 共XXXIV兲 Original Measurements: J. M. Mohr and D. R. Paul, Polymer 32, 2387 共1991兲. Variables: T/K⫽308 p/MPa⫽0 – 2.0 Prepared By: V. I. Bondar Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polyarylate Ardel 共PA兲; 关25639-68-3兴共LXX兲 Original Measurements: T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 26, 729 共1988兲. Variables: T/K⫽308 p/MPa⫽0 – 2.33 Prepared By: A. K. Bokarev Experimental Data Dual mode sorption parameters for carbon dioxide in PAEK-12F at 308 K k D /cm3共STP兲 cm⫺3 atm⫺1 0.970 1364 Experimental Data TABLE 1. Dual mode sorption parameters for gases in polyarlyate at 308 K ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 14.32 0.381 Sorption isotherms of carbon dioxide and methane in PAEK-12F at 308 K. 共The original data were represented graphically兲 Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 CO2 CH4 N2 0.631 0.181 22.69 6.45 0.215 0.100 0.081 1.22 0.074 CH4 CO2 Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.14 0.31 0.47 0.63 0.77 0.93 1.09 1.27 1.41 1.58 1.76 1.90 2.05 6.00 10.48 13.37 15.47 18.01 20.20 22.30 23.68 25.70 27.35 29.36 30.93 32.32 0.16 0.23 0.34 0.50 0.65 0.84 1.01 1.18 1.33 1.49 1.67 1.83 2.00 1.81 2.55 3.19 3.93 4.70 5.40 5.95 6.63 7.23 7.63 8.12 8.47 8.82 Auxiliary Information MethodÕApparatusÕProcedure A pressure decay method was used described in Ref. 1. Source and Purity of Materials: PAEK-12F synthesized 共Ref. 2兲, density 1.401 g/cm3, glass transition temperature 458 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 2 G. L. Tullos, P. E. Cassidy, and A. K. St. Clair, Proc. ACS, Div. Polym. Materials 60, 310 共1989兲. TABLE 2. Sorption isotherms of various gases in polyarylate at 308 K 共The original data were represented graphically兲 CH4 CO2 N2 Pressure/MPa Sorption 共V * 1 (ST P)/V * 2) Pressure/MPa Sorption 共V * 1 (ST P)/V * 2) Pressure/MPa Sorption 共V * 1 (ST P)/V * 2) 0.21 0.27 0.31 0.35 0.60 0.65 0.73 0.97 1.04 1.13 1.38 1.46 1.58 1.84 1.91 2.30 2.33 — — — — — — — 7.30 9.17 10.11 11.14 15.81 16.74 18.33 21.03 21.96 23.27 25.49 26.52 27.72 29.38 29.94 33.08 33.36 — — — — — — — 0.26 0.32 0.36 0.42 0.62 0.70 0.78 0.85 1.04 1.13 1.21 1.29 1.48 1.56 1.65 1.74 1.92 2.02 2.12 2.18 — — — — 1.65 1.98 2.22 2.53 3.39 3.82 4.09 4.44 4.97 5.40 5.66 5.95 6.38 6.71 6.97 7.23 7.66 7.92 8.16 8.31 — — — — 0.19 0.23 0.30 0.33 0.40 0.44 0.59 0.68 0.70 0.85 0.92 1.03 1.11 1.19 1.29 1.40 1.49 1.57 1.64 1.75 1.82 1.94 2.04 2.22 0.30 0.37 0.44 0.54 0.54 0.63 0.78 0.89 0.98 1.13 1.20 1.30 1.39 1.52 1.61 1.70 1.74 1.87 1.98 2.04 2.15 2.19 2.26 2.46 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.22. Polyarylate—Various Gases Auxiliary Information MethodÕApparatusÕProcedure The sorption apparatus and procedures used in the present sorption experiments are the same as described earlier.1 Source and Purity of Materials: CO2 ,CH4 ,N2: purity ⬎99.99%. PA 共Ardel D-100兲: Union Carbide Co., density 1.21 g/cm3, glass transition temperature 457 K. Estimated Error: No information given. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74082-8兴 共2兲 Polyarylate Ardel 共PA兲; 关25639-68-3兴 共LXX兲 Original Measurements: F. R. Sheu, R. T. Chern, V. T. Stannett, and H. B. Hopfenberg, J. Polym. Sci., Part B: Polym. Phys. 26, 883 共1988兲. Variables: T/K⫽308 p/MPa⫽1 – 2.3 Prepared By: Yu. P. Yampol’skii References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. Experimental Data Dual mode sorption parameters Gas k D ,/cm3共STP兲 cm⫺3 atm⫺1 ⬘ ,/cm3共STP兲 cm⫺3 CH b/atm⫺1 CO2 CH4 0.98 0.27 19.8 9.0 0.30 0.12 MethodÕApparatusÕProcedure Sorption apparatus and procedure were described in Ref. 1. Source and Purity of Materials: Polymer from Union Carbide had a density of 1.204 g/cm3 and glass transition temperature 463 K. Estimated Error: No information given. References: 1 E. S. Sanders, W. J. Koros, H. B. Hopfenberger, and V. T. Stannett, J. Membr. Sci. 13, 61 共1982兲 1365 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Auxiliary Information Original Measurements F. R. Sheu, R. T. Chern, V. T. Stannett, and H. B. Hopfenberg, J. Pol. Sci., Part B: Polym. Phys. 26, 883 共1988兲. Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Polyarylate 共Ardel-D 100兲; 关25639-68-3兴 共LXX兲 Original Measurements: G. R. Ranade, R. Chandler, C. A. Plank, and W. L. S. Laukhauf, Polym. Eng. Sci. 25, 164 共1985兲. Variables: T/K⫽308 p/MPa⫽0.1–2.3 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽298–336 p/kPa⫽0–90 Prepared By: S. M. Shishatskii Experimental Data TABLE 1. Dual mode sorption parameters for gases in polyarylate at 308 K Experimental Data Dual mode sorption parameters for sulfur dioxide in polyarylate k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 CO2 CH4 1.98 0.27 19.8 9.0 0.30 0.12 278 298 313 328 336 1.78 32.47 14.99 5.01 3.50 4.69 16.06 25.07 20.01 24.04 1.60 16.03 5.02 2.77 1.26 TABLE 2. Sorption isotherms of carbon dioxide and methane in polyarylate at 308 K 共The original data were represented graphically兲 CO2 CH4 Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.09 0.12 0.13 0.17 0.29 0.32 0.39 0.48 0.58 0.63 0.68 4.55 5.87 6.75 7.91 11.10 12.26 13.70 15.87 17.44 18.45 19.31 0.78 0.97 1.09 1.14 1.21 1.44 1.63 1.73 1.77 1.92 2.19 21.18 23.88 25.44 26.30 26.85 29.83 31.79 32.92 33.64 35.04 37.85 0.12 0.33 0.53 0.72 0.96 1.11 1.31 1.59 1.85 2.21 — 1.41 3.15 4.62 5.79 7.21 8.03 9.06 10.21 11.19 12.42 — Auxiliary Information MethodÕApparatusÕProcedure Sorption apparatus and procedure were the same as in Ref. 1. Source and Purity of Materials: PA: Union Carbide Co., density 1.204 g/cm3, glass transition temperature 463 K. Estimated Error: No information given. References: 1 E. S. Sanders, W. J. Koros, H. B. Hopfenberg, and V. T. Stannett, J. Membr. Sci. 13, 61 共1983兲. FIG. 55. Sorption isotherms of sulfur dioxide in polyarylate. Auxiliary Information MethodÕApparatusÕProcedure Sorption was measured using a gravimetric technique 共a McBain quartz spring balance兲. For detailed description of the experimental procedure see Ref. 1. Source and Purity of Materials: Polyarylate 共Ardel-D 100兲: Union Carbide, copolyester of bisphenol A with 50/50 mixture of iso- and terephthalic acid. Density 1.21 g/cm3, M n ⫽12 300, M w ⫽29 800. Estimated Error: Precision in T: ⫾0.1 K References: 1 G. R. Ranade, V. M. Nadgir, C. A. Plank, and W. L. S. Laukhuf, J. Appl. Polym. Sci. 28, 201 共1983兲. PATERSON, YAMPOL’SKII, AND FOGG Gas CO2 1366 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polyarylate Ardel 共PA兲; 关25639-68-3兴 共LXX兲 3.23. Polyhydroxyether—Carbon Dioxide, Methane, Nitrogen Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polyhydroxyether 共PHE兲; 关26402-79-9兴 共LXIX兲 Variables: T/K: 308 p/MPa: 0–2.33 Original Measurements: T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 26, 729 共1988兲. Prepared By: A. K. Bokarev Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polyhydroxyether 共PHE兲; 关26402-79-9兴 共LXIX兲 Variables: Prepared By: T/K⫽308 p/MPa⫽0–2.5 A. K. Bokarev Experimental Data Dual mode sorption parameters for PHE at 308 K Experimental Data TABLE 1. Dual mode sorption parameters for various gases in polyhydroxyether at 308 K Parameters CO2 CH4 k D /cm3共STP兲 cm⫺3 atm⫺1 0.289 0.051 ⬘ /cm3共STP兲 cm⫺3 CH b/atm 10.01 ⫺1 0.184 2.70 0.067 Source and Purity of Materials: PHE 共Union Carbide兲 had a tradename Phenoxy PKHH. Density: 1.18 g/cm3; T g ⫽376 K. Each gas was of chromatographic quality (purity⬎99.99%). References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 CO2 CH4 0.289 0.051 10.01 2.70 0.184 0.067 TABLE 2. Sorption isotherms of various gases in polyhydroxyether at 308 K 共The original data were represented graphically兲 CH4 CO2 N2 Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.30 0.35 0.39 0.44 0.66 0.75 0.83 0.90 1.09 1.19 1.26 1.36 1.54 1.65 1.73 1.82 2.01 2.11 2.19 2.28 — — — — — — — — — 3.52 4.26 4.82 5.38 6.76 7.41 8.06 8.71 9.34 9.89 10.44 10.90 11.63 11.90 12.26 12.72 13.63 13.81 14.08 14.44 — — — — — — — — — 0.30 0.36 0.41 0.47 0.52 0.69 0.76 0.86 0.92 1.00 1.13 1.20 1.30 1.38 1.45 1.55 1.64 1.73 1.83 1.90 2.01 2.09 2.18 2.28 — — — — — 0.57 0.62 0.74 0.81 0.90 1.19 1.21 1.36 1.45 1.52 1.69 1.76 1.93 1.92 2.07 2.16 2.21 2.30 2.35 2.49 2.54 2.66 2.68 2.78 — — — — — 0.27 0.32 0.37 0.42 0.49 0.55 0.66 0.74 0.81 0.89 0.97 1.04 1.11 1.19 1.26 1.34 1.44 1.53 1.55 1.64 1.73 1.81 1.92 2.00 2.08 2.18 2.27 2.35 2.46 0.11 0.13 0.17 0.19 0.26 0.19 0.19 0.26 0.30 0.33 0.39 0.33 0.31 0.37 0.39 0.43 0.48 0.46 0.41 0.54 0.52 0.57 0.61 0.59 0.63 0.65 0.69 0.72 0.74 1367 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Pressure/MPa IUPAC-NIST SOLUBILITY DATA SERIES Auxiliary Information MethodÕApparatusÕProcedure The sorption apparatus and procedures used in the present sorption experiments are the same as described earlier.1 Original Measurements: T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 26, 729 共1988兲. 1368 MethodÕApparatusÕProcedure The sorption apparatus and procedures used in the present sorption experiments are the same as described earlier.1 Source and Purity of Materials: CO2 ,CH4 ,N2: purity⬎99.99%. PHE 共Phenoxy PKHH兲: Union Carbide, density 1.18 g/cm3, glass transition temperature 376 K. Estimated Error: No information given. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共phenolphthalein phthalate兲 共PPhPh兲; 关24938-86-1兴 共XXXVI兲 Original Measurements F. R. Sheu and R. T. Chern, J. Polym. Sci., Part B: Polym. Phys. 27, 1121 共1989兲. F. R. Sheu, R. T. Chern, V. Stannett, and H. B. Hopfenberg, J. Polym. Sci., Part B: Polym. Phys. 26, 883 共1988兲. Variables: T/K⫽308.2 p/MPa⫽0–2.0 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Dual mode sorption parameters for CO2, CH4, and N2 in different polymers at 308.2 K Polymer Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 PPhPh-tere CO2 CH4 N2 CO2 CH4 N2 1.312 0.321 0.155 1.230 0.324 36.37 13.76 4.67 34.66 13.74 0.413 0.160 0.065 0.413 0.154 0.151 1.229 0.329 0.157 4.39 31.54 13.00 4.12 0.077 0.452 0.154 0.067 PPhPh-50:50 PPhPh-iso CO2 CH4 N2 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.24. Poly„Phenolphthalein Phthalate…—Various Gases Auxiliary Information TABLE 2. Sorption isotherms of carbon dioxide in poly共phenolphthalein phthalate兲s at 308.2 K 共The original data were represented graphically兲 PPha-tere PPha-50:50 TABLE 3. Sorption isotherms of methane in poly共phenolphthalein phthalate兲s at 308.2 K 共The original data were represented graphically兲 PPha-iso PPha-tere PPha-50:50 PPha-iso Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.07 0.09 0.13 0.16 0.25 0.31 0.34 0.41 0.44 0.59 0.64 0.74 0.78 0.86 0.94 10.09 12.10 15.42 17.15 21.47 24.35 25.22 27.67 29.54 32.85 34.58 37.03 38.04 40.06 40.63 0.07 0.10 0.16 0.30 0.38 0.43 0.51 0.64 0.80 0.83 0.89 1.02 1.25 1.29 1.31 9.22 12.25 15.71 22.91 25.07 27.23 29.25 32.71 36.17 37.03 38.04 40.06 44.24 44.96 44.96 0.20 0.24 0.31 0.42 0.51 0.59 0.74 0.79 0.90 1.02 1.15 1.21 1.34 1.44 1.55 16.71 19.60 22.05 26.08 27.67 30.69 32.71 34.29 35.88 38.62 40.20 40.92 42.94 45.10 46.54 0.16 0.20 0.27 0.34 0.43 0.52 0.62 0.72 0.77 0.86 0.98 1.03 1.13 1.14 1.24 3.06 3.94 4.82 5.55 6.58 7.67 8.49 9.37 9.68 10.61 11.02 11.59 12.26 12.10 13.08 0.16 0.19 0.29 0.31 0.41 0.50 0.57 0.61 0.69 0.74 0.83 0.98 1.11 1.21 1.32 2.96 3.63 4.77 5.18 6.32 7.20 7.87 8.23 9.11 9.32 10.09 11.07 11.95 12.62 13.23 0.09 0.14 0.23 0.34 0.29 0.47 0.49 0.56 0.68 0.70 0.84 0.89 0.97 1.08 1.12 1.82 2.65 3.94 5.23 4.56 6.68 6.89 7.56 8.39 8.70 9.78 10.14 10.60 11.37 11.63 1.04 1.21 1.28 1.32 1.43 1.57 1.59 1.67 1.81 1.85 1.92 42.80 46.11 47.98 47.12 49.28 51.73 52.45 54.32 54.61 55.04 56.63 1.41 1.64 1.66 1.74 1.78 1.93 1.97 — — — — 46.40 50.29 50.58 51.87 52.02 53.46 54.61 — — — — 1.62 1.76 1.84 1.91 — — — — — — — 46.40 48.41 50.58 51.59 — — — — — — — 1.34 1.39 1.51 1.61 1.72 1.73 1.85 1.86 1.95 1.99 13.23 13.70 14.31 15.24 15.02 15.49 16.16 15.85 16.15 16.88 1.42 1.48 1.60 1.74 1.87 1.94 1.98 — — — 13.80 13.95 14.67 15.07 15.84 16.41 16.72 — — — 1.25 1.32 1.40 1.51 1.58 1.69 1.79 1.90 — — 12.46 12.87 13.28 13.69 14.10 14.71 15.17 15.63 — — 1369 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Pressure/MPa PPha-tere PPha-50:50 PPha-iso Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.08 0.11 0.16 0.21 0.28 0.32 0.37 0.42 0.50 0.58 0.68 0.72 0.81 0.92 0.99 0.34 0.50 0.68 0.87 1.13 1.25 1.47 1.60 1.87 2.12 2.47 2.70 2.85 3.15 3.36 0.08 0.22 0.28 0.35 0.42 0.50 0.59 0.65 0.78 0.82 0.93 0.98 1.13 1.19 1.34 0.36 0.85 0.11 1.40 1.64 1.94 2.28 2.43 2.78 2.94 3.23 3.40 3.73 3.87 4.28 0.11 0.15 0.20 0.28 0.39 0.46 0.53 0.61 0.71 0.83 0.93 1.02 1.17 1.26 1.38 0.44 0.63 0.78 1.06 1.36 1.65 1.88 2.07 2.50 2.74 3.03 3.24 3.66 3.91 4.18 1.11 1.13 1.19 1.28 1.32 1.47 1.49 1.64 1.67 1.83 1.88 1.84 1.93 3.65 3.73 3.89 4.07 4.21 4.69 4.74 4.79 4.95 5.28 5.44 5.53 5.52 1.56 1.65 1.73 1.90 1.95 — — — — — — — — 4.74 4.92 5.09 5.48 5.58 — — — — — — — — 1.46 1.62 1.73 1.82 1.89 — — — — — — — — 4.27 4.66 4.94 5.11 5.21 — — — — — — — — Original Measurements: R. T. Chern and C. N. Provan, Macromolecules 24, 2203 共1991兲. Variables: T/K⫽308 p/MPa⫽0 – 2.1 Prepared By: Yu. P. Yampol’skii Experimental Data FIG. 56. Sorption isotherms of carbon dioxide 共䊐兲, methane 共䊉兲, and ethane 共䊊兲 in the polymer at 308 K. Auxiliary Information Auxiliary Information MethodÕApparatusÕProcedure A pressure decay sorption cell was used in the measurements. Source and Purity of Materials: Gas purity: CO2 99.99%; CH4 99.7%; N2 99.999%. PPhPh: synthesized by interfacial polycondensation from phthaloyl chlorides and phenolphthalein. PPhPh-50:50: synthesized by reacting phenolphthalein with a mixture of 50:50 terephthaloyl and isophthaloyl chlorides. Iso-: T g ⫽522 K, density 1.304 g/cm3 50:50 isomers: T g ⫽552 K, density 1.298 g/cm3 Tere-: T g ⫽572 K, density 1.297 g/cm3. Estimated Error: Precision in T: ⫾0.1 K. MethodÕApparatusÕProcedure A pressure decay method was used. Source and Purity of Materials: Poly共tetrabromophenolphthaleinterephthalate兲: g/cm3, M w ⫽26 000, M w /M n ⫽2.0, glass transition temp. 592 K. Estimated Error: No information given. density 1.750 PATERSON, YAMPOL’SKII, AND FOGG Pressure/MPa Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 Ethane; C2H6; 关74-84-0兴 共2兲 Poly共tetrabromophenolphthalein-terephthalate兲 共XXXVII兲 1370 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 4. Sorption isotherms of nitrogen in poly共phenolphthalein phthalate兲s at 308.2 K 共The original data were represented graphically兲 3.25. Polysulfone—Carbon Dioxide Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Methane; CH4; 关74-82-8兴 共2兲 Copolyester 共Kodar A-150兲 Original Measurements: P. Masi, D. R. Paul, and J. W. Barlow, J. Polym. Sci., Polym. Phys. Ed. 20, 15 共1982兲. Variables: T/K⫽308 p/MPa⫽0 – 3.5 Prepared By: A. K. Bokarev Experimental Data Dual mode sorption parameters for various gases in copolyester at 308 K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 Ar CH4 N2 0.117 0.174 0.078 2.09 2.76 1.40 0.050 0.094 0.034 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Several investigations have been carried out for this system.1–6 In most cases PSF from Union Carbide has been studied, except the 5 paper by Sada et al. where Toray Co. provided the sample and the work by McHattie et al.6 where the polymer was synthesized in the ⬘ b at different laboratory. A comparison of the dual mode sorption parameters as well as the apparent solubility coefficients S⫽k D ⫹C H ⬘ can be observed. However, systematic temperatures is shown in Fig. 58. A fairly good agreement between the values of k D and C H discrepancies in the affinity parameter b can be noted between those reported by Japanese authors5 and found for PSF from Union Carbide. These differences are also reflected in the temperature dependence of S. Since the pressure range studies and the scatter of the experimental points are similar in two groups of the data, one is tempted to attribute this disagreement to some differences of the polymer sample. FIG. 57. Sorption isotherms of various gases in Kodar A-150 at 308 K. Auxiliary Information MethodÕApparatusÕProcedure Sorption was measured using a pressure decay method described in Ref. 1. The specimens before measurement were exposed to CO2 at 20 atm for 1 day. Source and Purity of Materials: Copolyester 共Kodar A-150兲: Eastman Chemical Products, Inc., film completely amorphous, ratio of units of isophthalic and terephthalic acids 20/80, M n ⫽22 000, glass transition temperature 360 K 共thermal analysis兲. Estimated Error: No information given. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. 1371 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Gas Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲 T/K kD ⬘ CH b ⬘b S⫽k D ⫹C H Ref. 293 308 338 0.801 0.705 0.231 26.0 18.9 17.5 0.410 0.325 0.134 11.5 6.8 2.6 3,4 1,3 3,4 1372 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Critical Evaluation: The following dual mode sorption parameters as a function of temperature can be recommended for sorption of carbon dioxide in PSF from Union Carbide at the pressure range 0–2.0 MPa. ⬘ /cm3 (ST P) cm⫺3 ; b/atm⫺1 . Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H References: 1 A. J. Erb and D. R. Paul, J. Membr. Sci. 8, 11 共1981兲. J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 30, 4019 共1985兲. J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 33, 1823 共1987兲. 4 Y. Maeda and D. R. Paul, J. Polym. Sci.: Part B: Polym. Phys. 25, 957 共1987兲. 5 E. Sada, H. Kumazawa, P. Xu, and M. Nishigaki, J. Membr. Sci. 37, 165 共1988兲. 6 J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840 共1991兲. 2 3 PATERSON, YAMPOL’SKII, AND FOGG ⬘ vs T/K FIG. 58. 共a兲 log S vs 1/(T/K); 共b兲 log kD vs 1/(T/K); 共c兲 log b vs 1/(T/K); 共d兲 C H ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1. 共䊉兲 Ref. 1; 共䊊兲 Ref. 4; 共䊐兲 Ref. 5; 共⽧兲 Ref. 6. Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1 ; C H 3.26. Polysulfone—Methane and Other Gases Components: 共1兲 Methane; CH4; 关74-82-8兴 共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Only three papers are available for the solubility of methane in PSF at the pressure range 0–2.0 or 0–3.0 MPa.1–3 The polymer specimens were provided by Union Carbide Co.,1 Toray Co.,2 or synthesized in the laboratory.3 The summary of the dual mode sorption parameters and the apparent solubility coefficients S are presented below. kD ⬘ CH b ⬘b S⫽k D ⫺C H Ref. 303 308 308 313 323 0.441 0.161 0.257 0.413 0.376 9.26 9.86 6.58 7.63 6.07 0.116 0.0698 0.0901 0.0886 0.0748 1.5 0.84 0.85 1.08 0.83 2 1 3 2 2 ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1 . Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H A rather poor agreement between the data of different authors is observed. One may assume that this is the result of different samples studied as it is true for the system PSE–carbon dioxide. Another possible source of errors can be caused by too narrow pressure range for methane sorption. Indeed, the affinity constants b reported in Ref. 1–3 are equal to 0.07–0.12 atm⫺1. So the point of intersection of the initial slope and the high pressure 共Langmuir兲 asymptote should be close to pressure 8.6–14.3 atm, which is not too far from the maximum pressure of the isotherms. Hence, the limiting slope of the Langmuir part of isotherms has not been probably reached. Further experimental studies of well characterized sample are required before this system can be properly evaluated, and recommended values can be advanced. References: 1 A. J. Erb and D. R. Paul, J. Membr. Sci. 8, 11 共1981兲. 2 E. Sada, H. Kumazawa, P. Xu, and M. Nishigaki, J. Membr. Sci. 37, 165 共1988兲. 3 J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840 共1991兲. Original Measurements: Y. Kamiya, T. Hirose, K. Mizoguchi and K. Terada, J. Polym. Sci., Part B: Polym. Phys. 24, 1525 共1986兲. Variables: Prepared By: T/K⫽308– 338 p/MPa⫽0 – 5.0 A. K. Bokarev Experimental Data TABLE 1. Sorption and desorption isotherms of carbon dioxide in polysulfone at 308 K 共The original data were represented graphically兲 First series 共‘‘as received’’ film兲 Second series Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Desorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Desorption (V 1* (STP)/V 2* ) 0.11 0.33 0.69 1.16 2.03 3.50 4.96 — — 3.66 8.07 13.24 17.85 25.64 34.70 43.54 — — 0.14 0.39 0.67 1.18 2.00 3.00 3.94 — — 7.09 16.48 22.44 29.92 36.94 41.39 43.52 — — 0.14 0.32 0.58 0.99 1.50 2.04 2.83 3.69 4.31 5.98 11.73 16.13 21.52 26.46 30.73 35.65 39.67 42.49 0.24 1.60 3.58 4.93 — — — — — 11.4 33.99 42.33 44.65 — — — — — 1373 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES T/K Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 Ethane; C2H6; 关74-84-0兴 共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲 T⫽318 K T⫽328 K T⫽338 K N2 CH4 Pressure/MPa Solubility (V 1* (STP)/V 2* ) Pressure/MPa Solubility (V 1* (STP)/V 2* ) Sorption 0.34 0.85 1.19 1.58 1.87 2.47 3.07 3.63 4.33 5.04 — — — Desorption 9.93 16.91 20.18 22.42 25.09 28.07 30.46 32.70 34.80 37.20 — — — 0.33 0.52 0.81 1.06 1.54 1.86 2.47 3.10 3.57 4.03 4.53 5.00 — 8.00 9.93 13.05 15.43 18.71 20.94 23.78 26.46 28.26 29.90 31.25 32.90 — 0.10 0.31 0.60 0.82 1.15 1.54 1.87 2.37 2.91 3.28 3.85 4.40 4.92 2.81 6.37 9.64 11.87 14.70 17.08 19.16 21.40 23.35 24.69 26.49 27.84 29.49 0.12 0.37 0.64 1.16 1.60 2.06 2.47 3.04 3.54 4.14 4.95 — — 6.96 13.78 18.38 24.33 27.75 30.43 32.37 34.17 35.67 36.57 37.19 — — 0.15 0.39 0.65 1.07 1.52 2.03 2.55 3.06 3.63 4.32 — — — 5.92 11.56 15.87 20.18 23.15 25.99 27.93 29.43 30.78 32.13 — — — 0.18 0.40 0.70 0.88 1.27 1.59 1.95 2.53 2.98 3.49 4.00 4.47 4.83 6.22 10.52 14.09 16.02 19.15 20.93 22.72 24.96 26.16 27.66 28.57 29.32 29.78 Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Desorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Desorption (V 1* (STP)/V 2* ) 0.11 0.31 0.60 1.07 1.55 2.53 3.05 4.03 5.00 — — 1.39 3.14 5.35 7.24 9.30 11.91 12.59 14.37 15.53 — — 0.11 0.29 0.58 1.11 2.04 3.02 4.00 5.03 — — — 1.64 3.54 5.68 8.04 11.17 13.15 14.61 15.68 — — — 0.12 0.23 0.45 0.62 1.14 2.05 2.74 3.50 4.19 4.88 4.97 0.29 0.48 1.06 1.47 2.37 3.80 4.69 5.43 6.06 6.61 6.63 0.12 0.31 0.41 1.09 1.59 2.60 3.52 4.36 — — — 0.44 0.84 1.12 2.46 3.18 4.63 5.52 6.30 — — — TABLE 5. Dual mode sorption parameters for nitrogen in polysulfone at 308 K k D /cm3共STP兲 cm⫺3 atm⫺1 TABLE 3. Sorption and desorption isotherms of ethane in polysulfone at 308 K, measured after CO2 sorption experiments 共The original data were represented graphically兲 Sorption Desorption Pressure/MPa Solubility (V * 1 (STP)/V * 2) Pressure/MPa Solubility (V * 1 (STP)/V * 2) 0.12 0.30 0.52 0.84 1.09 1.14 2.03 3.04 5.65 9.12 11.80 14.65 15.50 16.37 19.53 21.98 0.10 0.30 0.55 1.05 1.97 — — — 7.39 12.16 15.53 18.63 21.27 — — — 0.043 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 7.5 0.031 Auxiliary Information MethodÕApparatusÕProcedure Sorption isotherms for gases in the polymer were obtained gravimetrically using a Cahn Model 2000 electrobalance. Details of this apparatus were described previously.1 Source and Purity of Materials: Gas purity: CO2 99.99%, CH4 99.9%, C2H6 99.7%. PSF 共Udel Polysulfone兲: Nissan Chemical Industries Ltd., densities 共at 298 K兲 1.240 g/cm3 共‘‘as received’’兲 and 1.238 g/cm3 共after CO2 exposure兲, glass transition temperature 455 K. Estimated Error: No information given. References: 1 Y. Kamiya, K. Mizoguchi, Y. Naito, and T. Hirose, J. Polym. Sci., Polym. Phys. Ed. 24, 535 共1986兲. PATERSON, YAMPOL’SKII, AND FOGG Solubility (V 1* (STP)/V 2* ) Pressure/MPa TABLE 4. Sorption and desorption isotherms of CH4 and N2 in polysulfone at 308 K, measured after CO2 sorption experiments 共The original data were represented graphically兲 1374 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 2. Sorption and desorption isotherms of carbon dioxide in polysulfone measured after CO2 sorption experiment at 308 K 共The original data were represented graphically兲 Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲 Original Measurements: A. J. Erb and D. R. Paul, J. Membr. Sci. 8, 11 共1981兲. J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 33, 1823 共1987兲. Variables: T/K⫽308 p/MPa⫽0 – 3.0 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for various gases in ‘‘as-received’’ polysulfone films at 308 K Gas Ar N2 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.150 6.72 0.0317 0.0753 0.664 0.161 9.98 17.90 9.86 0.0156 0.3260 0.0698 FIG. 60. Effects of history of sample treatment on sorption isotherms: CO2 sorption at 308 K. Auxiliary Information MethodÕApparatusÕProcedure Sorption apparatus and procedure are described in Ref. 1. Source and Purity of Materials: Commercial PSF: Union Carbide Corp., studied in the form of melt extruded film; glass transition temperature 455 K 共DSC兲. Estimated Error: No information given. References: W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. 1 FIG. 59. Sorption isotherms of various gases in ‘‘as-received’’ polysulfone films. 1375 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES CO2 CH4 k D /cm3共STP兲 cm⫺3 atm⫺1 Original Measurements: J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 30, 4019 共1985兲. Variables: T/K⫽308 p/MPa⫽0 – 2.2 (0 – 22 atm) Prepared By: S. M. Shishatskii Experimental Data Sorption isotherm of carbon dioxide in polysulfone at 308 K. 共The original data were represented graphically兲 Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.12 0.17 0.28 0.32 0.45 0.61 0.68 0.81 0.85 1.04 5.95 7.97 11.07 11.49 14.10 16.37 17.29 18.89 18.97 21.08 1.10 1.20 1.39 1.46 1.61 1.79 1.83 2.02 2.07 2.12 21.58 22.68 24.11 24.70 25.54 27.14 27.14 28.41 28.66 29.17 Auxiliary Information MethodÕApparatusÕProcedure Sorption isotherm was obtained using a dual-volume dual-transducer cell design based on the pressure decay principle. Source and Purity of Materials: PSF: conditioned at the highest CO2 pressure before measurement; glass transition temperature 455 K. Estimated Error: No information given. Original Measurements: Y. Maeda and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 25, 957 共1987兲. J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 33, 1823 共1987兲. Variables: T/K⫽293– 338 p/MPa⫽0 – 2.2 (0 – 22 atm兲 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for carbon dioxide in polysulfone at different temperatures and its mixtures with plasticizers at 308 K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 293 K 308 K 338 K DDS 共mass %兲 0.801 0.725 0.231 26.0 19.2 17.5 0.410 0.390 0.134 10% 20% 30% PNA 共mass %兲 10% 20% TCP 共mass %兲 5% 10% 15% 20% 0.563 0.296 0.458 13.6 10.2 8.8 0.394 0.226 0.312 0.392 0.363 13.9 8.1 0.159 0.278 0.503 0.426 0.476 0.443 13.9 12.2 9.7 7.4 0.280 0.259 0.248 0.271 System PSF PATERSON, YAMPOL’SKII, AND FOGG Pressure/MPa Components: 共1兲 Carbon dioxide; CO2 ; 关124-38-9兴 共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲 共3兲 4,4⬘-Dichlorodiphenyl sulfone 共DDS兲; (C12H8兲2C12S; 关38980-51-7兴 共4兲 N-phenyl-2-naphtylamine 共PNA兲; C16H13N; 关135-88-6兴 共5兲 Tricresyl phosphate 共TCP兲; C21H21O4P; 关1330-78-5兴 1376 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲 FIG. 64. Effect of the content of TCP 共mass %兲 on CO2 sorption isotherms for polysulfone at 308 K. 1377 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 FIG. 62. Effect of the content of DDS 共mass %兲 on CO2 sorption isotherms for polysulfone at 308 K. FIG. 63. Effect of the content of PNA 共mass %兲 on CO2 sorption isotherms for polysulfone at 308 K. IUPAC-NIST SOLUBILITY DATA SERIES FIG. 61. Effect of temperature on CO2 sorption isotherms in pure polysulfone. MethodÕApparatusÕProcedure The apparatus and procedure for measuring sorption isotherms were described in Ref. 1. Source and Purity of Materials: PSF: Union Carbide Corp., glass transition temperature 459 K. Estimated Error: No information given. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 Nitrogen; N2; 关7727-37-9兴 共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲 Original Measurements: T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci.: Part B: Polym. Phys. 26, 729 共1988兲. A. J. Erb, M.S. thesis, The University of Texas at Austin, 1977. Variables: T/K: 308 p/MPa: 0–2.33 Prepared By: A. K. Bokarev 1378 Experimental Data Dual mode sorption parameters fro PSF at 308 K Parameters k D /cm 共STP兲/cm atm 3 3 ⬘ /共cm3共STP兲/cm3兲 CH b/(atm⫺1) CO2 CH4 N2 0.664 17.91 0.161 9.86 0.0753 9.98 0.326 0.070 0.0156 Auxiliary Information MethodÕApparatusÕProcedure The sorption apparatus and procedures used in the present sorption experiments are the same as described earlier.1 Source and Purity of Materials: PSF: no information given. Each gas was of chromatographic quality 共purity ⬎99.99%兲. Estimated Error: Nothing specified. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲 Original Measurements: E. Sada, H. Kumazawa, P. Xu, and M. Nishigaki, J. Membr. Sci. 37, 165 共1988兲. Variables: T/K⫽303–323 p/MPa⫽0–2.0 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for carbon dioxide and methane in polysulfone T/K CH4 Pressure 303 313 323 Fugacity 303 313 323 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.646 0.595 0.547 0.508 20.5 19.4 18.3 17.1 0.195 0.178 0.168 0.155 0.737 0.677 0.630 0.595 19.6 18.5 17.4 16.2 0.199 0.183 0.168 0.155 0.441 0.413 0.376 9.26 7.63 6.07 0.1160 0.0886 0.0748 0.489 0.445 0.415 8.37 6.60 5.12 0.1210 0.0976 0.0785 FIG. 65. Sorption isotherms of carbon dioxide in polysulfone. FIG. 66. Sorption isotherms of methane in polysulfone. Auxiliary Information MethodÕApparatusÕProcedure Sorption was measured using a pressure decay method. Source and Purity of Materials: PSF 共Torayslon-PSF兲: Toray Co., film samples; glass transition temperature 463 K. Estimated Error: No information given. 1379 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES CO2 Pressure 303 308 313 318 Fugacity 303 308 313 318 k D /cm3共STP兲 cm⫺3 atm⫺1 Original Measurements: E. Sada, H. Kumazawa, and P. Xu, J. Polym. Sci., Part B: Polym. Phys. 27, 919 共1989兲. Variables: T/K⫽313 p/MPa⫽0–1.8 共0–18 atm兲 Prepared By: A. K. Bokarev Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲 Original Measurements: J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840 共1991兲. Variables: Prepared By: T/K⫽308 p/MPa⫽0–2.0 共0–20 atm兲 Yu. P. Yampol’skii Experimental Data Solubility of carbon dioxide C,/cm3共STP兲/cm3 in PSF membranes at 313 K* 1380 Experimental Data TABLE 1. Solubility of gases C/cm3共STP兲/cm3 in PSF* Pressure, atm Pressure/atm Sample 2 4 6 8 10 12 14 16 18 20 3.0 5.6 5.7 9.5 7.9 12.4 10.2 14.9 12.1 16.8 14.0 18.9 15.9 20.5 17.7 22.5 19.5 23.6 21.2 25.2 Gas As cast Commercial *Smooth values taken from the graph by compiler. CH4 Dual-mode sorption parameters for CO2 in PSF films at 313 K Sample k D /cm 共STP兲/cm atm ⬘ /cm 共STP兲/cm CH Cast PSF Commercial PSF 共Torayslon-PS兲 0.813 0.547 6.61 18.3 3 N2 CO2 3 3 10 15 20 1.2 2.2 3.1 3.9 15.0 3.6 21.7 6.0 26.6 8.0 30.5 9.9 *Smoothed values taken from the plot by compiler. 3 b/atm ⫺1 0.155 0.168 Auxiliary Information MethodÕApparatusÕProcedure The apparatus and procedure for measuring sorption isotherms were described in Ref. 1. 5 Source and Purity of Materials: The commercial polysulfone samples Torayslon-PS 共Toray Co. Ltd.兲 and P-1700 共Union Carbide兲 were used. P-1700 had the glass transition temperature 459 K. A dense PSF 共P-1700兲 membrane was prepared by casting a mixed solution of 25.5% PSF, 55.5% N,N-dimethylacetamide, and 19.0% acetone by weight. Purity of CO2 not specified. Estimated Error: No information given. References: 1 E. Sada, H. Kumazawa, and Y. Yoshio, J. Polym. Sci., Polym. Phys. Ed. 26, 1035 共1989兲. TABLE 2. Dual mode sorption parameters Gas k D /cm3共STP兲/cm3 atm N2 CO2 0.166 CH4 ⬘ /cm3共STP兲/cm3 CH 0.957 0.728 0.257 19.6 6.58 b/atm⫺1 0.104 0.260 0.0901 Auxiliary Information MethodÕApparatusÕProcedure The measurement of sorption was carried out using a pressure decay method.1 Source and Purity of Materials: PSF was synthesized according to Ref. 2. It had a density 1.240 g/cc and the glass transition temperature 459 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 2 R. N. Johnson, A. G. Farnham, R. A. Clendinning, W. F. Hale, and C. N. Merriam, J. Polym. Sci.: Part A-1 5, 2375 共1967兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polysulfone 共PSF兲; 关25135-51-7兴 共XXXVIII兲 Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Dimethyl bisphenol A polysulfone 共DMPSF兲; 关58978-16-8兴 Original Measurements: J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840 共1991兲. Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Tetramethyl bisphenol A polysulfone 共TMPSF兲; 关32034-67-6兴 Original Measurements: J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840 共1991兲. Variables: T/K⫽308 p/MPa⫽0–2.0 共0–20 atm兲 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽308 p/MPa⫽0–2.0 共0–20 atm兲 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Solubility of gases C/cm3共STP兲/cm3 in DMPSF* Experimental Data Dual mode sorption parameters Pressure/atm 5 10 15 20 N2 CO2 CH4 1.05 11.8 3.1 1.8 17.2 5.0 2.5 21.3 6.3 3.05 25.0 7.4 *Smoothed values taken from the plot by compiler. k D /cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm3 CH b/atm⫺1 N2 CO2 CH4 0.225 0.597 0.460 3.74 26.0 7.26 0.0461 0.261 0.233 Auxiliary Information MethodÕApparatusÕProcedure The measurement of sorption was carried out using a pressure decay method.1 TABLE 2. Dual mode sorption parameters* Gas k D /cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm/3 CH b/atm⫺1 CO2 CH4 0.505 0.135 17.8 8.64 0.235 0.0564 *Fit for nitrogen did not converge. Auxiliary Information MethodÕApparatusÕProcedure The measurement of sorption was carried out using a pressure decay method.1 Source and Purity of Materials: DMPSF was synthesized according to Ref. 2. It had a density 1.213 g/cc and the glass transition temperature 453 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 2 D. K. Mohanty, Y. Sachdeva, J. L. Hedrick, J. F. Wolfe, and J. E. McGrath, Polymer Preprints, ACS, Div. Polym. Chem. 25, 2, 19 共1984兲. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 2 R. N. Johnson, A. G. Farnham, R. A. Clendinning, W. F. Hale, and C. N. Merriam, J. Polym. Sci.: Part A-1 5, 2375 共1967兲. 1381 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Estimated Error: No information given. Source and Purity of Materials: TMPSF was synthesized according to Ref. 2. It had a density 1.151 g/cc and the glass transition temperature 515 K. IUPAC-NIST SOLUBILITY DATA SERIES Gas Gas Original Measurements: J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 2618 共1991兲. Variables: T/K⫽308 p/MPa⫽0–2.0 共0–20 atm兲 Prepared By: Yu. P. Yampol’skii Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Bisphenol F polysulfone 共PSF-F兲; 关31694-05-0兴 Original Measurements: J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 2618 共1991兲. Variables: T/K⫽308 p/MPa⫽0–2.0 共0–20 atm兲 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters Experimental Data Dual mode sorption parameters Gas k D /cm 共STP兲/cm atm ⬘ /cm 共STP兲/cm CH CO2 CH4 0.785 0.180 21.0 7.32 3 3 1382 3 3 ⫺1 b/atm 0.285 0.146 Gas k D /cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm3 CH b/atm⫺1 CO2 CH4 0.505 0.246 22.6 8.84 0.162 0.0571 Auxiliary Information Auxiliary Information MethodÕApparatusÕProcedure The measurement of sorption was carried out using a pressure decay method.1 Source and Purity of Materials: HFPSF was synthesized according to Ref. 2. It had a density 1.427 g/cc and the glass transition temperature 465 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 2 R. N. Johnson, A. G. Farnham, R. A. Glendinning, W. F. Hale, and C. N. Merriam, J. Polym. Sci.: Part A-1 5, 2375 共1967兲. MethodÕApparatusÕProcedure The measurement of sorption was carried out using a pressure decay method.1 Source and Purity of Materials: PSF-F was synthesized according to Ref. 2. It had a density 1.282 g/cc and the glass transition temperature 452 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 2 D. K. Mohanty, Y. Sachdeva, J. L. Hedrick, J. E. Wolfe, and J. E. McGrath, Polymer Preprints, ACS, Div. Polym. Chem. 25, 2, 19 共1984兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Hexafluorobisphenol A polysulfone 共HFPSF兲; 关31694-07-2兴 Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Dimethyl bisphenol Z polysulfone 共DMPSF-Z兲; 关134140-27-5兴 共XLIII兲 Original Measurements: J. S. McHattie, W. J. Koros, and D. R. Paul, Polymer 32, 840 共1991兲. Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polyethersulfone 共PES兲 Victrex 600 P; 关25667-42-9兴 共XLIV兲 Original Measurements: E. S. Sanders, J. Membr. Sci. 37, 63 共1988兲. Variables: T/K⫽308 p/MPa⫽0–2.0 共0–20 atm兲 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽308 p/MPa⫽0–4.0 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters Experimental Data Dual mode sorption parameters for various gases in polyethersulphone at 308 K k D /cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm3 CH b/atm⫺1 Gas k D /cm3共STP兲/cm3 atm⫺1 ⬘ /cm3共STP兲/cm3 CH b/atm⫺1 N2 CO2 CH4 0.153 0.560 0.330 0.694 18.6 5.21 0.196 0.252 0.0907 Ar CO2 CH4 N2 0.147 0.631 0.168 0.086 7.23 29.78 10.80 5.98 0.054 0.313 0.123 0.047 Auxiliary Information TABLE 2. Sorption isotherms of various gases in polyethersulphone at 308 K. 共The original data were represented graphically兲 MethodÕApparatusÕProcedure The measurement of sorption was carried out using a pressure decay method.1 Source and Purity of Materials: DMPSF-Z was synthesized according to Ref. 2. It had a density 1.227 g/cc and the glass transition temperature 470 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 2 D. K. Mohanty, Y. Sachdeva, J. L. Hedrick, J. E. Wolfe, and J. E. McGrath, Polymer Preprints, ACS, Div. Polym. Chem. 25, 2, 19 共1984兲. Pressure/MPa Sorption (V * 1 (STP)/V * 2) Pressure/MPa Sorption (V * 1 (STP)/V * 2) 0.20 0.32 0.51 0.89 1.02 1.00 1.48 2.32 3.68 4.06 1.35 1.47 1.83 1.87 2.12 5.00 5.26 6.32 6.39 6.84 2.52 2.67 3.06 3.32 — 7.90 8.10 9.03 9.52 — 0.15 0.18 0.27 0.27 0.30 0.40 0.46 0.58 0.69 11.38 12.79 14.60 15.91 15.90 18.02 20.63 23.04 24.75 0.77 1.07 1.21 1.27 1.45 1.74 1.78 1.83 2.09 25.76 29.37 31.58 31.47 34.19 36.89 36.79 37.49 39.90 2.15 2.21 2.23 2.40 2.49 2.61 2.62 2.61 2.86 39.89 39.89 41.10 41.39 41.89 43.80 42.89 42.29 44.79 0.32 0.51 0.93 0.97 1.18 3.81 5.21 7.51 7.71 8.61 1.72 1.79 1.89 2.35 2.37 10.39 10.69 10.89 12.28 12.17 2.66 2.88 2.91 3.31 3.65 12.87 13.56 13.26 14.34 15.13 0.22 0.35 0.45 0.49 0.62 0.77 0.89 1.03 0.77 1.13 1.35 1.52 1.94 2.23 2.52 2.81 1.17 1.27 1.41 1.47 1.84 1.98 2.23 — 3.10 3.26 3.58 3.68 4.29 4.55 4.87 — 2.33 2.57 3.02 3.24 3.41 3.69 3.91 — 5.16 5.58 5.90 6.45 6.48 6.97 7.26 — Ar CO2 CH4 N2 1383 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Sorption (V * 1 (STP)/V * 2) Pressure/MPa IUPAC-NIST SOLUBILITY DATA SERIES Gas 1384 MethodÕApparatusÕProcedure A high pressure sorption apparatus used was very similar to equipment described in Ref. 1. Source and Purity of Materials: Amorphous PES 共grade 600 P, VICTREX兲: ICI, glass transition temperature 508 K. Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Cellulose; 关9004-34-6兴 共XLV兲 G. M. Eaton, dissertation: The University of Tennessee, Knoxville, 1986. Estimated Error: No information given. Variables: T/K⫽298–323 Prepared By: Yu. P. Yampol’skii References: E. S. Sanders, W. I. Koros, H. B. Hopfenberg, and V. T. Stannett, J. Membr. Sci. 13, 161 共1983兲. 1 Original Measurements: Experimental Data Four types of cellulosic fibers were studied: native cellulose 共ethanol extracted cotton兲, modified cellulose 共NaOH mercerized cotton and liquid ammonia treated cotton兲, and regenerated cellulose 共viscose rayon兲. Sorption of sulfur dioxide by cellulose fibers 共mg/g fiber兲 Dried fiber Temperature/K Fiber type Extracted cotton Mercerized cotton Ammonia treated cotton Viscose rayou Conditioned fiber* 298 303 308 323 298 9.23 26.28 18.89 3.06 8.56 16.19 10.49 0.51 11.85 15.15 5.16 0.53 7.05 13.29 1.10 — 72.08 74.27 63.03 4.19 *The tabular data for this fiber in the dissertation appear to be inconsistent with the graphical data while the graphical data appear to be consistent with those for the dried fiber. The compiler concludes that typographical errors were made in the data table and the solubility values for the conditioned fiber were therefore taken directly from the graph by digitization. These data should therefore be considered as highly tentative. Auxiliary Information MethodÕApparatusÕProcedure An exposure chamber was developed which would simulate ambient conditions. Fiber samples were dried or conditioned to 69% rel. humidity and exposed to 3 ppm sulfur dioxide for 5 h at 170 cc/min. Then the samples were exposed to a stream of dry air at the same flow rate for 4 h. The concentration of gas exiting the chamber was monitored and compared with the known concentration of gas introduced into the chamber to evaluate the amount of gas sorbed. Source and Purity of Materials: Native cotton 共Starlab, Knoxville兲 and unfinished rayon staple 共American Enka兲 were studied. The cotton was extracted in a Soxhlet for 4 h. with ethanol. Mercerization was carried out in 18% solution of NaOH for 15 min at ambient temperature. The duration of ammonia treatment was 30 s 3 ppm certified standard sulfur dioxide in dry air 共Matheson Co兲 was used. Estimated Error: No information given. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.27. Cellulose—Sulfur Dioxide Auxiliary Information 3.29. Ethyl Cellulose—Various Gases 3.28. Nitrocellulose—Various Gases Components: 共1兲 He; Ar; N2; O2 ; CO2 ; SO2 ; NH3 ; C2H6; C3H8; n-C4H10. 共2兲 Nitrocellulose; 共NC兲; 关9004-70-0兴 共XLVI兲 Variables: T/K: 298 p/kPa: 5.3–6.9 Original Measurements: Components: 共1兲 He; Ar; N2 ; O2 ; CO2; SO2 ; NH3 ; C2H6; C3H8; n-C4H10. 共2兲 Ethyl Cellulose 共EC兲; 关9004-57-3兴 共XLVII兲 P. Y. Hsieh, J. Appl. Polym. Sci. 7, 1743 共1963兲. Prepared By: A. K. Bokarev Variables: T/K: 298 p/kPa: 6–8 Experimental Data Solubility coefficients of gases for nitrocellulose films at 298 K Prepared By: A. K. Bokarev Experimental Data Solubility coefficients of gases for ethyl cellulose films at 298 K Solubility coefficient/cm3共STP兲 cm⫺3 cm Hg⫺1; Solubility coefficient; cm3共STP兲 cm⫺3 cm Hg⫺1; Gas Gas Volumetric Gravimetric — 0.0009 0.0019 0.0016 0.0131 0.2215 1.2359 0.0533 0.0534 0.0248 0.0016 0.0006 0.0013 0.0014 0.0096 0.0977 0.7265 0.0483 0.0394 0.0147 共2兲 Helium; 关7440-59-7兴 共3兲 Nitrogen; 关7727-37-9兴 共4兲 Oxygen; 关7782-44-7兴 共5兲 Argon; 关7440-37-1兴 共6兲 Carbon dioxide; 关124-38-9兴 共7兲 Sulfur dioxide; 关7446-09-5兴 共8兲 Ammonia; 关7664-41-7兴 共9兲 Ethane; 关115-07-1兴 共10兲 Propane; 关74-98-6兴 共11兲 n-Butane; 关106-97-8兴 Volumetric Gravimetric — 0.0021 0.0024 0.0026 0.0207 0.4978 0.605 0.0748 0.1534 0.3887 0.0024 0.0019 0.0023 0.0025 0.0200 0.3596 0.484 0.0484 0.1263 0.2655 Auxiliary Information Auxiliary Information Source and Purity of Materials: NC from the Hercules Powder Co. had a density of 1.46 g/cm3. Gases from the Matheson Co. had the minimum purity of 99.5%, except ethane for which the purity was 99%. Estimated Error: No information given. MethodÕApparatusÕProcedure Both gravimetric and volumetric methods were used. In gravimetric one sorption isotherms were determined with a quartz helix microbalance. The change in elongation of the quartz helix was detected by a linear variable differential transformer, Type 060 SLB and was amplified and read by means of a linear variable differential transformer indicator, Model 300B. No details on volumetric method were given. Source and Purity of Materials: EC 共T50, content ethoxy groups 49.5%兲 was obtained from the Hercules Powder Company. The density was 1.10 g cm⫺3. Gases from the Matheson Co. had the minimum purity of 99.5%, except ethane for which the purity was 99%. Estimated Error: No information given. 1385 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure Both gravimetric and volumetric methods were used. In gravimetric one, sorption isotherms were determined with a quartz helix microbalance. The change in elongation of the quartz helix was detected by a linear variable differential transformer, Type 060 SLB and was amplified and read by means of a linear variable differential transformer indicator, Model 300B. No details on volumetric method were given. IUPAC-NIST SOLUBILITY DATA SERIES 共2兲 Helium; 关7440-59-7兴 共3兲 Nitrogen; 关7727-37-9兴 共4兲 Oxygen; 关7782-44-7兴 共5兲 Argon; 关7440-37-1兴 共6兲 Carbon dioxide; 关124-38-9兴 共7兲 Sulfur dioxide; 关7446-09-5兴 共8兲 Ammonia; 关7664-41-7兴 共9兲 Ethane; 关115-07-1兴 共10兲 Propane; 关74-98-6兴 共11兲 n-Butane; 关106-97-8兴 Original Measurements: P. Y. Hsieh, J. Appl. Polym. Sci. 7, 1743 共1963兲. Original Measurements: A. H. Chan, W. J. Koros, and D. R. Paul, J. Membr. Sci. 3, 117 共1978兲. Variables: T/K⫽308 p/MPa⫽0–2.6 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for carbon dioxide in ethyl cellulose at 308 K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 4.847 0.365 1.189 Sorption isotherm of carbon dioxide in ethyl cellulose at 308 K. 共The original data were represented graphycally兲 Sorption V * 1 (STP)/V * 2 0.15 0.24 0.37 0.66 1.32 1.97 2.35 2.62 3.44 5.09 7.44 11.50 19.76 27.19 32.29 35.59 Auxiliary Information MethodÕApparatusÕProcedure Sorption apparartus used was described in Ref. 1. Source and Purity of Materials: EC: Dow Chemical Co., presumed ethoxy groups content 48.6%, glass transition temperature in the region 393–398 K. Estimated Error: No information given. References: W. J. Koros, and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 1 Original Measurements: R. M. Barrer, J. A. Barrie, and J. Slater, J. Polym. Sci. 27, N 115, 177 共1958兲. A. H. Chan, W. J. Koros, and D. R. Paul, J. Membr. Sci. 3, 117 共1978兲. Variables: T/K⫽303.7–353 p/kPa⫽0–24 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Enthalpies of sorption of hydrocarbon gases in ethyl cellulose ⫺⌬H H ⫺⌬H D Gas n-Butane 2-Methylpropane 2,2-Dimethylpropane /kcal mol⫺1 /kJ mol⫺1 /kcal mol⫺1 /kJ mol⫺1 4.33 2.01 9.10 18.12 8.41 38.07 3.28 2.25 9.36 13.72 9.41 39.16 PATERSON, YAMPOL’SKII, AND FOGG Pressure/MPa Components: 共1兲 n-Butane; C4H10; 关106-97-8兴 2-Methylpropane; C4H10; 关75-28-5兴 2.2-Dimethylpropane C5H12; 关463-82-1兴 共2兲 Ethyl Cellulose 共EC兲; 关9004-57-3兴 共XLVII兲 1386 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Ethyl Cellulose 共EC兲; 关9004-57-3兴 共XLVII兲 TABLE 2. Sorption isotherms of various gases in ethyl cellulose measured by Barrer et al. 共The original data were represented graphically兲 n-C4H10 Pressure/cm Hg 5.86 9.75 13.27 17.26 20.58 23.22 5.34 8.81 11.87 15.34 17.88 4.82 7.78 10.47 11.30 13.17 — 2.85 4.20 6.58 8.81 9.69 — 2.33 3.42 5.49 6.12 7.36 Pressure/cm Hg T⫽303.7 K 1.93 5.20 7.06 10.86 14.80 — T⫽313.5 K 2.77 4.59 6.85 11.59 14.52 T⫽323.3 K 3.54 5.79 8.39 11.15 14.04 16.16 T⫽333 K 2.02 4.28 7.00 10.06 13.16 15.64 T⫽343 K 2.39 5.11 8.24 11.67 14.93 Sorption, 105 s/ 共mol1 cm⫺3 2 兲 4.38 8.79 10.87 13.70 16.35 — 3.83 5.81 7.65 10.82 12.42 3.38 4.98 6.61 8.04 9.30 10.01 1.40 2.83 4.19 5.61 6.8 7.44 1.12 2.34 3.53 4.62 5.66 Pressure/cm Hg T⫽323.3 K 2.80 4.91 7.23 11.23 13.62 15.40 T⫽338.6 K 2.12 4.10 6.65 9.68 14.34 T⫽348 K 4.87 7.86 11.15 16.15 — — T⫽353 K 2.65 5.27 8.49 11.95 15.67 — T/K Sorption, 105 s/ (mol1 cm⫺3 2 兲 4.00 5.70 7.61 9.65 11.19 12.52 1.77 3.20 4.63 5.99 7.52 2.69 3.81 5.13 6.38 — — 1.33 2.41 3.39 4.61 5.52 — n-C4H10 303 313 323 333 343 iso-C4H10 303 313 323 333 343 neo-C5H12 323 338 348 353 k D /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/cm Hg⫺1 0.1656 0.1161 0.1020 0.1007 0.0610 3.71 3.73 2.30 1.28 1.30 0.2173 0.1232 0.1297 0.1395 0.1005 0.0909 0.0614 0.0978 0.0552 0.0698 3.34 2.94 0.75 2.03 0.51 0.1810 0.0087 0.4587 0.0688 0.1362 0.1023 0.0699 0.0390 0.0346 1.68 1.45 2.37 1.26 0.2074 0.1149 0.0638 0.0894 Auxiliary Information MethodÕApparatusÕProcedure A glass volumetric apparatus was employed. The sorption system was immersed in a thermostat and the pressure was read by a cathetometer. A nonlinear least squares program was used to calculate sorption parameters as in Ref. 1 Source and Purity of Materials: EC: Standard Ethocel, density 1.13 g/cm3, M n ⫽35 000. Estimated Error: Relative precision: p⫾6.6%. Precision in T: ⫾0.05 K. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. 1387 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 6.70 9.99 11.51 14.50 — T⫽333 K 2.93 4.61 8.38 12.15 14.03 — T⫽343 K 3.57 5.62 9.99 11.57 14.43 Sorption, 105 s/ (mol1 cm⫺3 2 兲 neo-C5H12 IUPAC-NIST SOLUBILITY DATA SERIES T⫽303.7 K 1.78 3.57 5.69 8.82 11.71 14.53 T⫽313.5 K 2.56 5.18 7.81 11.61 15.14 T⫽323.3 K 3.60 iso-C4H10 TABLE 3. Dual mode sorption parameters for gases in EC calculated by Chan et al. by treatment o sorption isotherms 共The original data were represented graphically兲 1388 Original Measurements: E. Casur and T. G. Smith, J. Appl. Polym. Sci. 31, 1425 共1986兲. Variables: T/K⫽303– 343 p/kPa⫽0 – 26 Prepared By: A. K. Bokarev Pressure/kPa Experimental Data TABLE 1. Dual mode sorption parrameters for various gases in ethyl cellulose Gas T/K k D /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/cm Hg⫺1 C2H6 303 313 323 333 343 349 303 313 323 333 343 303 313 323 333 343 0.0476 0.0378 0.0295 0.0248 0.0199 0.1181 0.1319 0.1012 0.0769 0.0613 0.0493 0.2282 0.1884 0.1635 0.1439 0.1181 0.348 0.300 0.299 0.280 0.250 0.303 0.479 0.295 0.217 0.096 0.089 3.718 2.650 1.577 0.809 0.303 0.0349 0.0307 0.0225 0.0179 0.0169 0.4251 0.2914 0.2601 0.2347 0.3280 0.3267 0.3128 0.2684 0.2645 0.3043 0.4251 C3H8 C4H10 T⫽303 K 1.81 3.11 4.36 5.75 7.09 9.86 12.55 15.27 18.00 21.93 26.09 T⫽333 K 1.71 3.05 4.21 5.59 6.93 9.61 12.38 15.20 17.83 21.80 25.87 Sorption (V 1* (STP)/V 2* ) Pressure/kPa T⫽313 K 1.76 3.10 4.44 5.79 7.08 9.81 12.44 15.21 17.94 21.91 25.93 T⫽343 K 1.66 2.96 4.25 5.77 6.97 9.70 12.38 15.15 17.78 21.89 25.90 1.43 1.99 2.46 2.97 3.42 4.19 4.87 5.48 6.03 6.83 7.63 0.38 0.63 0.82 1.03 1.22 1.55 1.87 2.19 2.51 2.98 3.45 Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) 0.93 1.36 1.78 2.15 2.48 3.05 3.61 4.09 4.60 5.24 5.83 T⫽323 K 1.76 2.96 4.44 5.73 7.07 9.75 12.39 15.16 17.79 21.86 25.97 0.61 0.91 1.20 1.48 1.71 2.19 2.59 2.99 3.34 3.93 4.46 0.26 0.42 0.57 0.71 0.81 1.09 1.35 1.61 1.85 2.19 2.57 TABLE 4. Sorption isotherms of ethane in EC at various temperatures TABLE 2. Heats of sorption in ethyl cellulose/共kcal/mol兲. Values obtained from van’t Hoff plots for k D ,b and the solubility coeffi⬘ b), respectively cient S (S⫽k D ⫺C H Gas ⌬ HD ⌬ HH ⌬ HS Ethane Propane n-Butane ⫺4.46 ⫺5.10 ⫺3.27 ⫺4.12 ⫺2.10 ⫺1.65 ⫺4.68 ⫺7.13 ⫺8.46 共For Tables 3, 4 and 5, the orriginal data were represented graphically.兲 Pressure/kPa T⫽303 K 2.99 5.67 8.33 11.02 13.63 17.65 25.87 T⫽333 K 2.99 5.61 8.26 10.92 13.50 17.56 25.82 Sorption (V 1* (STP)/V 2* ) 0.11 0.23 0.36 0.47 0.58 0.74 1.08 0.07 0.12 0.18 0.24 0.29 0.38 0.55 Pressure/kPa T⫽313 K 2.88 5.60 8.40 11.02 13.68 17.66 25.84 T⫽343 K 2.95 5.57 8.26 11.03 13.50 17.60 25.72 Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)V 2* ) 0.09 0.19 0.29 0.38 0.46 0.59 0.85 T⫽323 K 2.80 5.64 8.30 10.99 13.65 17.63 25.82 0.08 0.15 0.22 0.29 0.36 0.46 0.66 0.06 0.10 0.14 0.20 0.23 0.30 0.44 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 3. Sorption isotherms of n-butane in ethyl cellulose Components: 共1兲 Ethane; C2H6; 关115-07-1兴 Propane: C3H8; 关74-98-6兴 n-Butane; C4H10; 关106-97-8兴 共2兲 Ethyl Cellulose 共EC兲; 关9004-57-3兴 共XLVII兲 3.30. Cellulose Acetate—Carbon Dioxide TABLE 5. Sorption isotherms of propane in EC at various temperatures Pressure/kPa 0.60 0.81 0.99 1.31 1.61 1.92 2.17 2.56 2.92 0.30 0.45 0.58 0.71 0.91 1.09 1.28 Pressure/kPa T⫽313 K 4.37 5.62 7.07 9.81 12.43 15.14 17.80 21.84 25.98 T⫽343 K 5.66 8.33 10.92 13.70 17.66 21.84 25.95 Sorption (V 1* (STP)/V 2* ) Pressure/kPa Sorption (V 1* (STP)/V 2* ) 0.44 0.57 0.72 0.92 1.20 1.39 1.60 1.92 2.22 T⫽323 K 5.74 8.37 11.07 13.81 17.80 21.80 25.99 — — 0.42 0.60 0.78 0.97 1.20 1.44 1.68 — — 0.25 0.34 0.46 0.57 0.73 0.88 1.05 Auxiliary Information MethodÕApparatusÕProcedure Sorption was determined by a gravimetric method using a Cahn microbalance 共Model KG兲. Corrections were made for buoyancy effects. Source and Purity of Materials: Gases: purity 99.99%. EC 共Ethocel 10 cp兲: Dow Chemical Co., contained 48%–49.5% ethoxy groups, density 1.13 g/cm3, glass transition temperature 396 K. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Cellulose acetate 共CA兲; 关9004-35-7兴 共XLVIII兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Three papers are available on the system cellulose acetate–carbon dioxide.1–3 In all the cases the degree of esterification and the origin of the samples were the same: CA obtained from Eastman Kodak Co. contained 39.8% of acetyl groups. Stern and De Meringo1 studied sorption of CO2 in CA at 273–343 K and reported the dual mode sorption parameters for somewhat narrower range of temperature. In a subsequent paper2 of the same group the reported isotherm at 303 K was confirmed, but no sorption parameters were given. Sada et al.3 studied the sorption in the temperature range 293–313 K. The table summarizes the sorption parameters found in Refs. 1 and 3 for this system. It can be seen that there is a reasonable agreement for Henry’s law solubility coefficient k D , but not for other two model ⬘ and b values reported in both papers monotonously decrease with temperature, but there is a significant discrepancy parameters. The C H between two sets of values. Dual mode sorption parameters at different temperatures T/K kD ⬘ CH b ⬘b S⫽k D ⫹C H Ref. 273.2 283.2 293.2 302.9 303.2 313.2 318.2 3.4 2.9 1.83 1.24 1.24 1.10 0.79 44.57 35.26 22.7 20.3 42.6 17.7 36.5 0.511 0.441 0.500 0.437 0.134 0.280 0.107 26.2 18.5 13.2 10.1 6.9 6.0 4.7 1 1 3 3 1 3 1 ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1 Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H The temperature dependencies of S and k D are shown in Figs. 67 and 68. Estimated Error: No information given. FIG. 67. Temperature dependence of apparent solubility coefficient S/共cm3共STP兲 cm⫺3 atm⫺1兲. 1389 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES T⫽303 K 4.40 5.77 7.10 9.80 12.51 15.17 17.83 21.94 25.94 T⫽333 K 5.70 8.33 11.03 13.73 17.73 21.88 25.95 Sorption (V 1* (STP)/V 2* ) Original Measurements: S. A. Stern and A. H. De Meringo, J. Polym. Sci., Polym. Phys. Ed. 16, 735 共1978兲. Variables: T/K⫽273.0– 343.0 p/MPa⫽0 – 4.0 Prepared By: A. K. Bokarev 1390 Experimental Data Dual mode sorption parameters for carbon dioxide in cellulose 2,4-acetate FIG. 68. Temperature dependence of Henry’s law solubility coefficient k D /共cm3共STP兲 cm⫺3 atm⫺1兲. T/K k D /cm3共STP兲 g⫺1 atm⫺1 ⬘ /cm3共STP兲 g⫺1 CH b/atm⫺1 273.0 283.0 303.0 318.0 2.50 2.13 0.911 0.580 32.77 25.93 31.31 26.81 0.511 0.441 0.134 0.107 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Cellulose 2,4-acetate 共CA兲; 关9004-35-7兴 共XLVIII兲 From the temperature dependence of k D and S it was found, respectively, log共 S/ 共 cm3共STP兲cm3 atm⫺1兲兲 ⫽⫺3.8226⫹1438.7/共 T/K兲 log共 k D / 共 cm3共STP兲cm3 atm⫺1兲兲 ⫽⫺3.9595⫹1236.3/共 T/K兲 ⌬H D ⫽⫺23.7⫾1.8 kJ/mol ⌬H S ⫽⫺27.5⫾2.3 kJ/mol. It is difficult to give much credit to the parameters reported in any of these works. Nevertheless, as one may tentatively suspect the effects of exposing the polymer to high pressure of CO2 as a main reason for these differences, the data of Sada et al.3 should be regarded as describing the sample ‘‘as received,’’ while those of Stern and De Meringo1 as characterizing the polymer swollen in high pressure gas. ⬘ are typical for such samples. Much larger values of the Langmuir capacity parameter C H References: 1 S. A. Stern and A. H. De Meringo, J. Polym. Sci., Polym. Phys. Ed. 16, 735 共1978兲. 2 S. A. Stern and S. S. Kulkarni, J. Membr. Sci. 10, 235 共1982兲. 3 E. Sada, H. Kumazawa, Y. Yoshio, S.-T. Wang, and P. Xu, J. Polym. Sci., Part B: Polym. Phys. 26, 1035 共1988兲. FIG. 69. Sorption isotherms of carbon dioxide. Continuous curves: Gas solubilities calculated from the dual mode sorption model. Dotted curve: Gas solubility at 343 K calculated from the empirical relation C⫽1.4p exp(⫺0.02p). Auxiliary Information MethodÕApparatusÕProcedure A volumetric method was used in measurement of the solubility. The gas pressure decay with time was followed by means of a gauge. Corrections for the equation of state of CO2 were made according to Ref. 1. Source and Purity of Materials: CO2: purity 99.9%. CA: Eastman Kodak, Trademark Edukit; content of acetyl groups 39.8%, density 1.36 g/cm3. Estimated Error: Standard error of estimate of CO2 concentration: from 5.5% at 273 K to 14% at 343 K. References: 1 N. E. Van Huff, G. Houghton, and J. Coull, J. Chem. Eng. Data 8, 336 共1963兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Cellulose 2,4-acetate 共CA兲; 关9004-35-7兴 共XLVIII兲 Original Measurements: S. A. Stern and S. S. Kulkarni, J. Membr. Sci. 10, 235 共1982兲. Variables: T/K⫽263– 303 p/MPa⫽0 – 4 (0 – 40 atm) Prepared By: A. K. Bokarev Experimental Data TABLE 1. Dual mode sorption parameters for methane in cellulose 2.4-aceteate 共sample I兲 k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 303 293 288 283 273 263 0.024⫾0.035 0.067⫾0.018 0.083⫾0.061 0.099⫾0.019 0.101⫾0.043 0.119⫾0.028 10.03⫾2.99 8.32⫾1.21 8.35⫾3.54 8.22⫾1.14 10.22⫾2.71 11.48⫾1.61 0.052⫾0.016 0.076⫾0.013 0.087⫾0.043 0.109⫾0.022 0.104⫾0.040 0.117⫾0.024 Heats of solution of CH4 in cellulose 2,4-acetate 共sample I兲 Apparent heat of ordinary dissolution: ⌬H D ⫽⫺5.4 kcal/mol; ⫺22.6 kJ/mol. Apparent heat of ‘‘hole-filling’’: ⌬H H ⫽⫺2.9 kcal/mol; ⫺12.1 kJ/mol. Solubility⫽共vol. of gas at STP/cm3兲/共mass of unswollen polymer /g兲 TABLE 2. Solubility isotherm of carbon dioxide in cellulose 2,4-acetate 共sample II兲 at 303 K 共The original data were represented graphically兲 Time sequence Pressure/MPa Solubility (V 1* (STP)/m* 2) Time sequence 1 2 3 4 2.07 0.97 0.57 2.67 38.80 25.63 18.13 44.60 5 6 7 — Pressure/MPa Solubility (V 1* (STP)/m* 2) 2.61 2.53 43.70 42.21 — — Sample III, prior to exposure to CO2 Sample I, after exposure to CO2 Pressure/MPa Solubility (V * 1 (STP)/m* 2) Time sequence Pressure/MPa Solubility (V * 1 (STP/m* 2) 0.47 0.68 1.03 1.51 1.68 2.15 2.48 2.83 3.12 3.59 — — 2.56 3.41 4.39 5.45 5.84 6.59 7.04 7.56 7.93 8.43 — — 1 2 3 4 5 6 7 8 9 10 11 12 1.80 2.50 0.83 0.30 2.13 0.58 2.81 1.28 1.43 3.22 3.79 2.55 3.73 4.12 2.65 1.43 4.00 2.28 4.34 3.25 3.26 4.71 4.89 4.22 1391 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 3. Effect of CO2 exposure on the solubility isotherm of CH4 in cellulose 2,4-acetate at 293 K 共The original data were represented graphically兲 IUPAC-NIST SOLUBILITY DATA SERIES T/K 1392 Polymer sample k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 Sample I after CO2 exposure Sample II prior CO2 exposure Sample II after CO2 exposure Sample III prior CO2 exposure 0.067⫾0.018 8.32⫾1.21 0.076⫾0.013 0.046⫾0.033 3.09⫾2.92 0.159⫾0.070 0.082⫾0.019 6.23⫾2.27 0.120⫾0.059 0.038⫾0.019 4.12⫾1.62 0.151⫾0.031 The fact that the Henry’s law dissolution was found to be more exothermic than Langmuir ‘‘hole-filling’’ process lead the authors to test a different type of sorption isotherm-‘‘two Langmuir sorption model’’ proposed by Vieth et al.2 ⬘ 共 1 兲 b 共 1 兲 p/ 关 1⫹b 共 1 兲 p 兴 ⫹C H⬘ 共 2 兲 b 共 2 兲 p/ 关 1⫹b 共 2 兲 p 兴 . C⫽C H The parameters of this model are presented in Table 5. TABLE 5. ‘‘Two Langmuir sorption model’’ parameters T/K ⬘ (1)/cm3共STP兲 g⫺1 CH ⬘ (2)/cm3共STP兲 cm⫺3 CH b(1)/atm⫺1 b(2)/atm⫺1 303 293 288 283 273 263 12.09 14.14 15.11 16.26 17.21 20.61 2.76 3.18 3.56 4.39 5.01 6.03 0.021 0.020 0.020 0.018 0.021 0.018 0.126 0.146 0.158 0.165 0.177 0.220 FIG. 71. Reproducibility of solubility isotherms of methane in cellulose 2,4-acetate at 293 K. Solubility⫽共vol. of gas at STP/cm3兲/共mass of unswollen polymer/g兲. 共Solid line兲 calculated from the dual mode sorption model with sample I, after exposure to CO2. 共䊊兲 measurements with sample II prior to CO2 exposure. 共䊉兲 measurements with sample II after exposure to high-pressure CO2. Auxiliary Information MethodÕApparatusÕProcedure The solubility of CO2 and CH4 in cellulose 2.4-acetate was measured by a volumetric method. The apparatus and experimental procedure used have been described in Ref. 1. Source and Purity of Materials: CO2 : Matheson, purity 99.99%. CH4 : Matheson, purity 99.97%. CA: Eastman Kodak Co., density 1.36 g/cm3. Sample I: previously exposed to carbon dioxide in the temperature range from 273 to 343 K and at pressure up to 45 atm. Estimated Error: Relative precision of solubilities: CO2 10%, CH4 between 16% and 20%. References: 1 S. A. Stern and A. H. De Meringo, J. Polym. Sci., Polym. Phys. Ed. 16, 735 共1978兲. 2 W. R. Vieth and M. A. Amini, Ind. Eng. Chem. Fundam. 16, 82 共1977兲. FIG. 70. Solubility isotherms of methane in cellulose 2.4-acetate 共sample I兲. Solubility⫽共vol. of gas at STP/cm3兲/共mass of unswollen polymer/g兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 4. Effect of exposure to CO2 at high pressures on the dual mode sorption parameters for CH4 in cellulose 2,4-acetate at 293 K 3.31. Poly„␥-Methyl Glutamate…—Carbon Dioxide Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Cellulose Acetate 共CA兲; 关9004-35-7兴 共XLVIII兲 Original Measurements: E. Sada, H. Kumazawa, Y. Yoshio, S.-T. Wang, and P. Xu, J. Polym. Sci., Part B: Polym. Phys. 26, 1035 共1988兲. Variables: T/K⫽293– 313 p/MPa⫽0 – 1.5 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for carbon dioxide in cellulose acetate Components: 共1兲 Xenon; Xe; 关7440-63-3兴 Carbon dioxide; CO2 ; 关124-38-9兴 共2兲 Poly共␥-methyl-L-glutamate兲 共PMG兲; 关25086-16-2兴 共XLIX兲 Original Measurements: T. Yoshida, A. Takizawa, and Y. Tsujita. J. Appl. Polym. Sci. 22, 279 共1978兲. Variables: T/K⫽293– 308 p/kPa⫽6.6– 52.5 Prepared By: Yu. P. Yampol’skii Experimental Data T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 293 302 313 1.83 1.24 1.10 22.7 20.3 17.7 0.500 0.437 0.280 FIG. 73. Sorption isotherms of carbon dioxide 共a兲 and xenon 共b兲 in PMG. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊐兲 293 K, 共䊉兲 298 K, 共䊊兲 303 K, 共⫹兲 308 K. Broken line is heat treated sample. Auxiliary Information Source and Purity of Materials: PMG: Kyowa Hakko K. K; viscosity average degree of polymerization about 1150. Estimated Error: Weight determination accuracy: ⫾10 mg for 50–100 mg samples. Precision in T: ⫾0.5 K. FIG. 72. Sorption isotherms of carbon dioxide in cellulose acetate. Auxiliary Information MethodÕApparatusÕProcedure Sorption was measured by the pressure decay method. The procedure and apparatus were similar to those described in Ref. 1. Source and Purity of Materials: CA: Eastman Kodak 共E 398-3兲; content of acetyl groups 39.8%. The film cast from acetone solution was annealed in a water bath at 363 K for 10 min. The film was dried in vacuum for 24 h before measurement of sorption. References: 1 T. H. Hildebrand and R. Scott, The Solubility of Nonelectrolytes 共New York, 1964兲. 2 T. M. Prausnitz. J. Phys. Chem. 66, 640 共1962兲. Estimated Error: No information given. References: W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 667 共1976兲. 1 1393 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure Cahn microbalance was used to determine sorption. Fugacity ratio was calculated by means of corresponding state principle.1,2 IUPAC-NIST SOLUBILITY DATA SERIES ⌬H H ⫽⫺22.7 kJ/mol; ⌬H D ⫽⫺17.8 kJ/mol. Original Measurements: Y. Tsujita, T. Sumitomo, M. Nomura, and A. Takizawa, J. Appl. Polym. Sci. 30, 2723 共1985兲. Variables: T/K⫽298– 308 p/kPa⫽0 – 40 Prepared By: Yu. P. Yampol’skii MethodÕApparatusÕProcedure Method of sorption measurement was described in Ref. 1. 1394 Source and Purity of Materials: PMG: Ajimoto Co.; M w ⫽100 000. Films were cast from CHCl3, DMFA, mixture of DMFA and CH2Cl2. PMG in -form was cast from CH2Cl2, then treated by 80% water solution of HCOOH and dried. Estimated Error: No information given. Experimental Data Different forms of PMG:PMG cast from chloroform 共C兲, dimethyl-formamide 共D兲, mixture of methylene chloride– dimethylformamide 共D-D兲, and -form of PMG 共兲. Sorption⫽(vol. of gas at STP/cm3)/mol of residue. References: 1 H. Kodama, Y. Tsujita, and A. Takizawa, J. Macromol. Sci. Phys. 17, 57 共1980兲. TABLE 1. Parameters of Langmuir equation p/n⫽1/ab⫹ p/b Sample a/(cm Hg) ⫺1 b/cm3共STP兲 mol⫺1 0.036 0.022 0.035 0.018 660 370 480 371 C D D-D  TABLE 2. Sorption isotherms of carbon dioxide in the different forms of PMG at 共a兲 298 K and 共b兲 308 K 共The original data were represented graphically兲 Fugacity ratio 104 f 1 / f 01 共a兲 Form C 12.25 21.64 38.96 Form D-D 22.01 39.50 59.01 Form D 7.44 11.64 21.07 Form  13.50 23.29 30.99 共b兲 Form C 22.53 39.48 Form D-D 18.18 36.17 Form D 19.94 29.74 Sorption (V 1* 共STP兲/n 2* ) Fugacity ratio 104 f 1 / f 01 Sorption (V 1* 共STP兲/n 2* ) Fugacity ratio 104 f 1 / f 01 Sorption (V 1* 共STP兲/n 2* ) 106.36 145.08 198.34 46.00 54.17 63.06 219.72 242.58 260.50 70.69 84.52 — 286.40 319.70 — 115.18 165.03 210.67 — — — — — — — — — — — — 25.15 40.93 56.57 29.91 38.41 48.98 66.93 82.59 101.98 61.01 72.12 83.78 116.04 132.77 146.08 38.99 52.73 60.47 39.25 51.88 62.23 69.33 89.04 102.39 70.51 83.85 — 113.90 129.05 — 138.62 191.14 56.05 65.70 244.8 265.73 73.47 84.10 283.30 312.15 100.53 140.91 53.91 71.55 172.97 217.15 92.31 — 254.05 — 54.33 70.33 39.92 52.90 85.58 102.26 64.36 — 115.19 — PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共␥-methyl-L-glutamate兲 共PMG兲; 关25086-16-2兴 共XLIX兲 Components: 共1兲 Xenon; Xe; 关7440-63-3兴 共2兲 Poly共␥-ethyl-L-glutamate兲 共PELG兲; 关25189-52-0兴 共LI兲 Original Measurements: T. Yoshida, A. Takizawa and Y. Tsujita, J. Appl. Polym. Sci. 22, 279 共1978兲. Components: 共1兲 Xenon; Xe; 关7440-63-3兴 共2兲 Poly共n-alkyl-L-glutamates兲 共LI兲 Original Measurements: T. Yoshida, A. Takizawa, and Y. Tsujita, J. Appl. Polym. Sci. 22, 279 共1978兲. Variables: T/K⫽293– 308 p/kPa⫽6.6– 52.5 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽293 p/kPa⫽6.6–52.5 Yu. P. Yampol’skii Experimental Data Auxiliary Information Source and Purity of Materials: Xe: purity 99.99%. PELG: Ajinimoto K. K.; viscosity average degree of polymerization about 1150. Estimated Error: Weight determination accuracy: ⫾10 mg for 50–100 mg samples. Precision in T: ⫾0.5 K. References: 1 T. H. Hildebrand and R. Scott, The Solubility of Nonelectrolytes 共New York, 1964兲. 2 T. M. Prausnitz, J. Phys. Chem. 66, 640 共1962兲. FIG. 75. Sorption isotherms of xenon in poly共n-alkyl-L-glutamates兲 at 298 K. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊏兲Me, 共䊐兲 Et, 共䊉兲 Pr, 共䊊兲 Bu, 共⫹兲 Amyl. Auxiliary Information MethodÕApparatusÕProcedure Cahn electrobalance was used to measure sorption. Corresponding state principle was applied for calculation of fugacity ratio.1,2 Source and Purity of Materials: Xe: purity 99.999%. Poly共n-alkyl-L-glutamates兲 and alkyls C3 –C5: prepared according to Ref. 3 by ester exchange method. Other alkyl derivatives: Kyuowa Hakko K. K. and Ajimoto Co.; degree of polymerization 1150. Estimated Error: Weight determination accuracy: ⫾10 mg for 50–100 mg samples. Precision in T: ⫾0.5 K. References: 1 T. H. Hildebrand and R. Scott, The Solubility of Nonelectrolytes 共New York, 1964兲. 2 T. M. Prausnitz, J. Phys. Chem. 66, 640 共1962兲. 3 A. Takizawa, H. Okada, S. Kadota, and H. Nonovama, J. Appl. Polym. Sci. 18, 1443 共1974兲. 1395 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 MethodÕApparatusÕProcedure Cahn electrobalance was used to measure sorption. Corresponding state principle was applied for calculation of fugacity ratio.1,2 Experimental Data IUPAC-NIST SOLUBILITY DATA SERIES FIG. 74. Sorption isotherms of xenon in PELG. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊐兲 293 K, 共䊉兲 298 K, 共䊊兲 303 K, 共⫹兲 308 K. Broken line is heat treated sample. Prepared By: Original Measurements: T. Yoshida, A. Takizawa, and Y. Tsujita, J. Appl. Polym. Sci. 22, 279 共1978兲. Variables: T/K⫽293– 303 p/kPa⫽6.6– 52.5 Prepared By: Yu. P. Yampol’skii Experimental Data Sorption isotherms of carbon dioxide in poly共␥-octyl-L-glutamate兲 based on fugacity. 共The original data were represented graphically.兲 3 Sorption⫽vol. of gas at STP/mol of polymer 共cm 共STP兲/n polymer兲 T⫽293 K T⫽298 K Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共␥-benzyl-L-glutamate兲 共PBLG兲; 关25014-27-1兴 共LII兲 Original Measurements: Y. Oohachi, H. Hamano, T. Yoshida, Y. Tsujita, and A. Takizawa, J. Appl. Polym. Sci. 22, 1469 共1978兲. T. Yoshida, A. Takizawa, and Y. Tsujita, J. Appl. Polym. Sci. 22, 279 共1978兲. Variables: T/K⫽293–308 p/kPa⫽6.6–52.5 Prepared By: Yu. P. Yampol’skii Experimental Data T⫽303 K Sorption 共cm3 mol⫺1兲 Fugacity ratio 104 f r / f 01 Sorption 共cm3 mol⫺1兲 Fugacity ratio 104 f 1 / f 01 Sorption 共cm3 mol⫺1兲 15.38 32.19 52.59 73.39 — 89.52 119.68 153.57 181.53 — 13.27 27.16 44.05 60.92 78.14 78.75 114.45 131.26 150.66 173.40 11.52 21.48 39.73 54.42 68.76 68.72 96.98 127.89 150.62 170.74 Auxiliary Information Source and Purity of Materials: CO2: purity 99.999%. Poly共␥-octyl-L-glutamate兲: prepared according to Ref. 1 by a ester exchange method. Estimated Error: Weight determination accuracy: ⫾10 mg for 50–100 mg sample. Relative precision in T: ⫾0.5 K. References: 1 A. Takizawa, H. Okada, S. Kadota, and H. Nonovama, J. Appl. Polym. Sci. 18, 1443 共1974兲. FIG. 76. Fugacity ratio calculated by corresponding state principle, Refs. 1,2. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. Sorption isotherms of carbon dioxide in PBLG. 共䊏兲 PBLG cast from benzene at 318 K, 共䊐兲 same film heat treated, 共䊉兲 PBLG cast from benzene at 333 K, 共䊊兲 same film heat treated, 共⫹兲 cast from ethylene dichloride at 298 K. Auxiliary Information MethodÕApparatusÕProcedure Cahn electrobalance was used to measure sorption. Source and Purity of Materials: PBLG: prepared by benzylation of L-glutamic acid with subsequent polymerization. The degree of polymerization was always 1200, except the sample cast from ethylene dichloride where it was equal to 550. Heat treatment was performed at 413 K for several hours. Estimated Error: Weight determination accuracy: ⫾10 mg for 50–100 mg samples. Precision in T: ⫾ 0.5 K. References: T. H. Hildebrand and R. Scott, The Solubility of Nonelectrolytes 共New York, 1964兲. 2 T. M. Prausnitz, J. Phys. Chem. 66, 640 共1962兲. 1 PATERSON, YAMPOL’SKII, AND FOGG Fugacity ratio 104 f 1 / f 01 MethodÕApparatusÕProcedure A Cahn electrobalance was used to measure the sorption. 1396 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共␥-octyl-L-glutamate兲 3.32. Poly„-Benzyl-L-Aspartate…—Carbon-Dioxide Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共␥-benzyl-L-glutamate兲 共PBG兲; 关25014-27-1兴 共LII兲 Original Measurements: S. Vivatpanachart, Y. Tsujita, and A. Takizawa, Makromol. Chem. 182, 1197 共1981兲. Variables: T/K⫽283 p/kPa⫽6.5– 46 Prepared By: S. M. Shishatskii Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共-benzyl-L-aspartate兲 共PBLA兲 共LIII兲 Original Measurements: H. Kodama, Y. Tsujita, and A. Takizawa, J. Macromol. Sci. Phys. B 17, 57 共1980兲. Variables: T/K⫽303–313 p/kPa⫽9.3–43.9 Prepared By: Yu. P. Yampol’skii Experimental Data Experimental Data The sorption isotherms can be presented by the Langmuir equation: p/n⫽1/ab⫹ p/b, where p is pressure and n is the volume of carbon dioxide in cm3共STP兲/mol of residue. The parameters have the following values: b⫽0.065 cm3共STP兲/residue, a⫽250 cm Hg⫺1. Auxiliary Information Source and Purity of Materials: Racemic PBG was obtained by dissolution of equal amounts of L and D forms of the polymer. Both forms were prepared by polymerization of corresponding N-carboxyanhyrides. Estimated Error: No information given. References: H. Kodama, Y. Tsujita, and A. Takizawa, J. Macromol. Sci. Phys. 17, 57 共1980兲. 1 FIG. 77. Sorption isotherms of carbon dioxide in the ␣ and forms of PBLA. Sorption⫽共vol. of gas at STP/cm3兲/mol of residue. 共䊐兲 303 K, 共䊉兲 308 K, 共䊊兲 313 K. Continuous line: ␣ form; broken line: form. Source and Purity of Materials: PBLA: M w ⫽12 000. Hexagonal or ␣-form: prepared by casting from 4 mass % CHCl4 solution. Tetragonal or -form: prepared by annealing of ␣-form films at 423 K. Estimated Error: No information given. 1397 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were performed by means of electrobalance Cahn RG. IUPAC-NIST SOLUBILITY DATA SERIES MethodÕApparatusÕProcedure The method of sorption determination was the same as described in Ref. 1. 1398 TABLE 3. Sorption and desorption isotherms of hydrogen chloride in nylon at 273 and 293 K Components: 共1兲 Hydrogen chloride; HCl; 关7647-01-0兴 Ammonia; NH3; 关7664-41-7兴 共2兲 Poly共hexamethylene adipinamide兲 共Nylon 66兲; 关32131-17-2兴 共LIV兲 Variables: T/K⫽194.3–303.6 p/kPa⫽0–120 Original Measurements: T⫽273 K L. H. Reverson and L. E. Peterson, J. Phys. Chem. 60, 1172 共1956兲. Prepared By: Yu. P. Yampol’skii Experimental Data 共For the following tables the original data were represented graphically.兲 Relative pressure⫽ratio of partial pressure and its saturated vapor pressure at the temperature of the experiment. TABLE 1. Sorption and desorption isotherms of ammonia in nylon at 241.9 and 303.6 K T⫽241.9 K T⫽303.6 K Sorption Desorption Sorption Desorption Relative pressure Solubility (103 m 1 /m 2 ) Relative pressure Solubility (103 m 1 /m 2 ) Relative pressure Solubility (103 m 1 /m 2 ) Relative pressure Solubility (103 m 1 /m 2 ) 0.004 0.010 0.016 0.021 0.027 0.034 0.046 0.057 0.076 0.089 0.111 0.85 1.36 1.80 2.06 2.45 2.74 3.19 3.64 4.31 4.96 5.64 0.004 0.047 0.069 0.092 0.111 — — — — — — 1.37 3.82 4.45 5.10 5.64 — — — — — — 0.07 0.22 0.43 0.65 0.81 0.89 — — — — — 7.65 15.58 26.39 37.94 46.65 52.50 — — — — — 0.06 0.55 0.78 0.89 — — — — — — — 16.62 42.34 48.31 52.50 — — — — — — — TABLE 2. Sorption and desorption isotherms of hydrogen chloride in nylon at 194.3 K Sorption Desorption 3 Pressure/kPa Solubility (10 m 1 /m 2 ) Pressure/kPa Solubility (103 m 1 /m 2 ) 0.13 1.77 4.19 11.84 26.19 51.66 71.08 98.89 121.75 484 718 789 915 1072 1217 1306 1453 1633 0 7.49 32.29 81.65 121.75 — — — — 610 1022 1160 1376 1633 — — — — T⫽293 K Sorption Desorption Sorption Desorption Pressure/kPa Solubility (103 m 1 /m 2 ) Pressure/kPa Solubility (103 m 1 /m 2 ) Pressure/kPa Solubility 1000 m1 /m2 Pressure/kPa Solubility (103 m 1 /m 2 ) 0 0 4.13 12.57 26.35 54.09 91.29 111.45 81.7 183.8 395.1 445.4 480.7 505.0 524.3 530.9 0 7.23 — — — — — — 289.2 400.1 — — — — — — 0 0 5.17 14.3 33.42 66.83 108.00 — 142.4 257.2 360.4 392.9 416.1 442.6 464.7 — 0.34 2.93 — — — — — — 307.9 347.1 — — — — — — Sorption isotherms of ammonia and hydrogen chloride at lower temperature exhibit hysteresis 共sorption curves are below desorption curves兲. It vanishes for the sorption of hydrogen chloride at 273 and 293 K. Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were made using a McBain type microbalance described in Ref. 1. Source and Purity of Materials: NH3: purity 99.9%, traces of water removed by melted sodium. HCl: liberated by dropping hydrochloric acid into sulfuric acid; water vapor removed by P2O5 trap, redistilled using dry CO2/acetone bath. Nylon 6,6: undrawn bright yarn contained 0.02% of TiO2. Estimated Error: No information given. References: 1 L. H. Ryerson and J. H. Honig, J. Amer. Chem. Soc. 75, 3925 共1953兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.33. Polyamides „Nylons…—Various Gases Components: 共1兲 Neon; Ne; 关7440-01-9兴 Argon; Ar; 关7440-37-1兴 Hydrogen; H2; 关1333-74-0兴 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyundecaneamide; Nylon 11; 关25035-04-5兴 共LV兲 Original Measurements: R. Ash, R. M. Barrer, and D. G. Palmer, Polymer 11, 421 共1970兲. Variables: T/K⫽293.2–333.2 p/kPa⫽6.65–33.25 Prepared by: Yu. P. Yampol’skii Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Polyamide 共Nylon 11兲; 关25035-04-5兴 共LV兲 Original Measurements: E. G. Davis and M. L. Rooney, Kolloid Z.-Z. Polym. 249, 1043 共1991兲. Variables: T/K: 298 p/kPa: 0–101.3 Prepared By: A. K. Bokarev Experimental Data Experimental Data Solubility isotherms obeyed Henry’s law; the solubility coefficients S/(cm3/cm3 atm) determined from their slopes are given below, as well as the enthalpies of solution ⌬H/共kcal/mol兲 T/K S 102 Ne 293.2 303.2 313.2 323.2 333.2 313.2 323.2 333.2 0.54 0.56 0.62 0.65 0.66 3.91 3.88 3.77 Ar ⌬H 1.0 ⫺0.4 Gas T/K S 102 H2 293.2 303.2 313.2 323.2 333.2 313.2 323.2 333.2 1.45 1.48 1.50 1.58 1.63 36.8 31.4 28.0 CO2 Auxiliary Information MethodÕApparatusÕProcedure After the equilibrium was attained the remaining gas was swept by mercury. The measurement of the pressure of gas desorbed was performed by means of McLeod type gauge. Corrections for loss of gas by desorption during flushing process were introduced. Source and Purity of Materials: Nylon 11 was obtained from Griflex Ltd. Gases 共British Oxygen Co兲 were spectrally pure. Estimated Error: ␦ T⫽⫾0.1 K. ␦ S/S⫽⫾0.02. ⌬H C * cm 共STP兲 cm 3 ⫺3 13.3 26.6 39.9 53.2 66.5 79.8 93.1 6.6 9.8 12.3 14.8 17.3 20.1 22.2 *Smoothed values taken from the graph by compiler. 0.5 Dual-mode sorption parameters for SO2 in PA at 298 K ⫺3.2 k D /cm3 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/共cm Hg兲⫺1 0.248 5.8 0.169 Auxiliary Information MethodÕApparatusÕProcedure A modified McBain balance technique described in Ref. 1 was used to measure the solubility coefficient of sulfur dioxide in Nylon 11. Source and Purity of Materials: PA 共Nylon 11兲: density 1.030 g/cm3; from Societe Organico 共France兲. T g ⫽319 K. Sulfur dioxide of 99.95% purity was used. Estimated Error: No estimates possible. References: 1 S. Prager and A. F. Long, J. Am. Chem. Soc. 73, 4072 共1951兲. 1399 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Gas p/kPa Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyimide Kapton H; 关25036-53-7兴 共LVI兲 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April. 1994 Critical Evaluation: Sorption of carbon dioxide in poly共4,4⬘-oxydiphenylene pyromellitimide兲 known under trademark Kapton H was studied in a number of works.1–6 The majority of researchers dealt with commercial samples of this material. Only Okamoto et al.5 investigated the specimens of this polymer prepared in the laboratory by imidization at different temperatures. The parameters of sorption isotherms obtained for this material differ from those measured for Kapton H. The table shows the selected dual mode sorption parameters for the system Kapton H–CO2. It is seen that smooth temperature dependence is observed for all three model parameters and for the apparent solubility coefficient S. Dual mode sorption parameters for the system Kapton H–CO2 kD ⬘ CH b ⬘b S⫽k D ⫺C H Ref. 308 323 323 353 353 383 383 0.594 0.630 0.650 0.436 0.40 0.28 0.292 23.5 13.3 12.8 8.5 8.9 6.1 5.7 0.300 0.394 0.42 0.239 0.23 0.16 0.153 7.6 5.9 6.0 2.5 2.4 1.3 1.2 3 5 2 5 2 2 5 Original Measurements: R. Y. Chern, W. J. Koros, B. Yui, H. B. Hopfenberger, and V. T. Stannett, J. Polym. Sci., Polym. Phys Ed. 22, 1061 共1984兲. Variables: T/K⫽333 p/MPa⫽0–2.0 共0–20 atm兲 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for carbon dioxide and methane in Kapton H at 333 K Gas Based on pressure CO2 CH4 Based on fugacity CO2 CH4 k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0.380⫾0.054 0.700⫾0.011 12.280⫾1.48 2.684⫾0.376 0.296⫾0.023 0.174⫾0.032 0.439⫾0.058 0.073⫾0.011 11.817⫾1.486 2.653⫾0.384 0.316⫾0.069 0.175⫾0.034 ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1 . Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H A larger scatter is observed for the affinity parameter b especially at lower temperatures. The enthalpies corresponding to van’t Hoff plots of k D , b, and S are as follows: ⌬H D ⫽⫺11.3 kJ/mol ⌬H H ⫽⫺11.9 kJ/mol ⌬H S ⫽⫺25.1 kJ/mol. The Langmuir capacity parameters decrease with temperature. It is noteworthy that temperature dependence is strongly nonlinear. so ⬘ vanishes. However, it is probably lower than the glass transition temperature of it is difficult to determine the temperature at which C H this polymer for which the values higher than 600 K2,3 and even 780 K 1 have been reported. References: 1 R. T. Chern, W. J. Koros, B. Yui, H. B. Hopfenberg, and V. T. Stannett, J. Polym. Sci., Plym. Phys. Ed. 22, 1061 共1984兲. 2 K. Tanaka, H. Kita, and K. Okamoto, Japan-US Polymer Symposium, 1985, p. 249. 3 T. Uragami, H. B. Hopfenberg, W. J. Koros, D. K. Yang, V. T. Stannett, and R. T. Chern, J. Polym. Sci., Part B: Polym. Phys. 24, 779 共1986兲. 4 K. C. O’Brien, W. J. Koros, and G. R. Husk, Polym. Eng. Sci. 27, 211 共1987兲. 5 K. Okamoto, K. Tanaka, O. Yokoshi, and H. Kita, J. Polym. Sci., Part B: Polym. Phys. 27, 643 共1989兲. 6 H. Hachisuka, Y. Tsujita, A. Takizawa, and T. Kinoshita, Polym. J. 21, 681 共1989兲. FIG. 78. Sorption isotherms of carbon dioxide in Kapton H at 333 K. Different symbols stand for different runs. PATERSON, YAMPOL’SKII, AND FOGG T/K Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polyimide Kapton H; 关25036-53-7兴 共LVI兲 1400 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.34. Polyimide Kapton H—Carbon Dioxide, Methane, Sulfur Dioxide Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyimide Kapton H; 关2536-53-7兴 共LVI兲 Original Measurements: K. Tanaka, H. Kita, and K. Okamoto, Japan–US Polymer Symposium, 1985, pp. 249–250. Variables: T/K⫽323– 383 p/MPa⫽0 – 2.0 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters* T/K k D /共cm3共STP兲/cm3 atm兲 ⬘ /共cm3共STP兲/cm3兲 CH b/共atm⫺1兲 323 353 383 0.65 0.4 0.28 12.8 8.9 6.1 0.42 0.23 0.16 Auxiliary Information FIG. 79. Sorption isotherms of methane in Kapton H at 333 K. Different symbols stand for different runs. Auxiliary Information MethodÕApparatusÕProcedure A pressure decay method of sorption measurement used was described in detail in Ref. 1. Each isotherm included several consecutive series of runs with stepwise pressure increase. The virgin films were degassed at 333 K for 120 h before measurement. Source and Purity of Materials: CO2: Coleman-grade 99.999%. CH4: instrument-grade 99.7%. Kapton H: E. I. DuPont Co.; no glass transition temperature revealed in DSC measurement up to 777 K. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. MethodÕApparatusÕProcedure Sorption was measured by the pressure decay method. The same isotherms were obtained for ‘‘as received’’ samples and the specimens preliminary exposed to 50 atm of carbon dioxide at 323 K for 24 h. Source and Purity of Materials: Polyimide Kapton H 共Du Pont Co兲 had glass transition temperature ⬎573 K. No other information given. Estimated Error: No information given. 1401 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES 共Sorption enthalpies: ⌬H D ⫽⫺14.4 kJ/mol. ⌬H H ⫽⫺18.9 kJ/mol.兲 *Taken from a graph by the compiler. Original Measurements: T. Uragami, H. B. Hopfenberg, W. J. Koros, D. K. Yang, V. T. Stannett, and R. T. Chern, J. Polym. Sci., Part B: Plym. Phys. 24, 779 共1986兲. Variables: T/K⫽308– 328 p/kPa⫽0 – 78 Prepared By: A. K. Bokarev Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polyimide Kapton H; 关25036-53-7兴 共LVI兲 Original Measurements: K. C. O’Brien, W. J. Koros, and G. R. Husk, Polym. Eng. Sci. 27, 211 共1987兲. Variables: T/K⫽308 p/MPa⫽0 – 1.1 Prepared By: Yu. P. Yampol’skii 1402 Experimental Data TABLE Experimental Data 1. Dual mode sorption parameters for carbon dioxide in Kapton Film at 308 and 318 K T/K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 308 318 0.461 0.389 18.19 13.29 0.287 0.275 TABLE 2. Equilibrium sorption isotherms of carbon dioxide in Kapton film 共The original data were represented graphically兲 T⫽308 K T⫽318 K T⫽328 K Pressure/kPa Sorption (V 1* 共STP兲/V 2* ) Pressure/kPa Sorption (V 1* 共STP兲/V 2* ) Pressure/kPa Sorption (V 1* 共STP兲/V 2* ) 2.61 3.75 5.68 7.50 10.01 11.60 13.98 17.51 22.28 28.42 35.82 44.91 51.62 57.76 64.59 72.78 76.98 0.20 0.26 0.39 0.55 0.70 0.83 0.98 1.24 1.58 1.99 2.46 2.98 3.34 3.72 4.13 4.56 4.75 3.18 4.89 7.39 10.01 13.53 17.06 21.61 27.07 35.15 42.20 47.66 58.24 66.65 72.80 77.46 — — 0.17 0.26 0.39 0.50 0.72 0.88 1.14 1.41 1.78 2.12 2.36 2.82 3.14 3.39 3.57 — — 3.53 4.78 6.03 7.40 9.44 11.38 14.45 17.63 22.87 28.33 35.61 44.37 56.20 63.14 70.77 76.34 — 0.12 0.18 0.20 0.26 0.34 0.40 0.52 0.65 0.83 1.02 1.27 1.55 1.94 2.16 2.41 2.57 — Auxiliary Information MethodÕApparatusÕProcedure A quartz spring balance and experimental procedure similar to that reported in Ref. 1 were used to measure the sorption of CO2 in Kapton. Source and Purity of Materials: CO2: Air Products and Chemical Inc., purity 99.999%. Polyimide Kapton: E. I. du Pont de Nemours & Co., film density 1.42 g/cm3, glass transition temperature in the range 620–720 K.2 Estimated Error: No information given. References: 1 C. H. M. Jaques and H. B. Hopfenberg, Polym. Eng. Sci. 14, 441 共1974兲. 2 W. J. Wrasidlo, Macromol. Sci. Phys. B6, 559 共1972兲. FIG. 80. Sorption isotherms in commercial Kapton H 共䊊兲 and synthesized samples of polyimide 共䊉兲 obtained by reaction of pyromellitic dianhydride and oxydianiline PMDA-ODA. Auxiliary Information MethodÕApparatusÕProcedure A method based on the principle of material balance for all gas introduced into the cell was employed.1,2 Source and Purity of Materials: Kapton H: density 1.430 g/cm3, M w ⫽39 200. PMDA-ODA: density 1.402 g/cm3. M w ⫽36 900; structure confirmed by IR spectroscopy. Estimated Error: No information given. References: 1 E. S. Sanders, Ph.D. dissertation, N. C. State University, 1983. 2 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyimide Kapton H; 关25036-53-7兴 共LVI兲 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Copoly共pyromellitic dianhydride-oxydianiline兲; PMDA-ODA 共polyimide Kapton H兲; 关25036-53-7兴 共LVI兲 Original Measurements: K. C. O’Brien, W. J. Koros, and G. R. Husk, J. Membr. Sci. 35, 217 共1988兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyimide 共PMDA-ODA兲 共Kapton H兲; 关25036-53-7兴 共LVI兲 Original Measurements: K. Okamoto, K. Tanaka, O. Yokoshi, and H. Kita, J. Polym. Sci., Part B: Polym. Phys. 27, 643 共1989兲. Variables: T/K⫽308 p/MPa⫽0.1– 1.4 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽323– 383 p/MPa⫽0 – 2.7 Prepared By: S. M. Shishatskii Experimental Data Dual mode sorption parameters for carbon dioxide in polyimide films Experimental Data Sorption isotherms of carbon dioxide and methane in PMDA-ODA at 308 K. 共The original data were represented graphically兲 Sample T/K k D /cm⫺3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 Imidization at 473 K 323 353 383 0.900 0.599 0.424 24.2 17.7 12.0 0.375 0.206 0.133 Imidization at 673 K 353 0.444 10.6 0.226 Kapton-H 323 353 383 0.630 0.436 0.292 13.3 8.5 5.7 0.394 0.239 0.153 CH4 CO2 Sorption (V 1* 共STP兲/V 2* ) Pressure/MPa Sorption (V 1* 共STP兲/V 2* ) 0.16 0.36 0.52 0.76 0.98 1.37 — 14.36 22.17 26.96 32.12 36.22 42.11 — 0.21 0.31 0.47 0.71 0.91 1.00 1.12 3.21 4.46 5.84 7.36 8.61 9.07 9.80 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were carried out using a single transducer apparatus described in Ref. 1. Source and Purity of Materials: PMDA-ODA: polymerization performed in dimethylacetamide at 288–293 K to form polyamic acid precursor according to standard procedure.2 The polyamic acid solution was wet cast on a glass substrate heated for 1 h at 353 K under Ar to remove the solvent and then imidized by a two-step cure under vacuum 共24 h at 483 K and 4 h at 553 K兲. The polymer studied did not reveal a glass transition temperature at temperatures up to 750 K. Density was 1.402 g/cm3. Estimated Error: Relative precision of solubilities: 5%. MethodÕApparatusÕProcedure Pressure decay method was used for sorption measurements. The cell employed was similar to the one described in Ref. 1. Source and Purity of Materials: Polyimide was obtained by condensation of pyromellitic acid dianhidride and oxydiphenylenediamine with subsequent thermal imidization at 473 and 673 K. These samples and commercial polyimide Kapton H 共Toray-DuPont Inc.兲 had the following densities: 1.405, 1.429, and 1.431 g/cm3, respectively. No information given on carbon dioxide purity. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed., 14, 1903 共1976兲. 1403 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 References: 1 S. E. Sanders, Ph.D. dissertation, NC State University, 1983. 2 C. E. Scroog, A. L. Endrey, S. V. Abravio, C. E. Berro, W. M. Edwards, and K. L. Olivier, J. Pol. Sci., Part A 3, 1373 共1965兲. Auxiliary Information IUPAC-NIST SOLUBILITY DATA SERIES Pressure/MPa Original Measurements: H. Hachisuka, Y. Tsujita, A. Takizawa, and T. Kinoshita, Polymer J. 21, 681 共1989兲. Variables: T/K⫽298 p/kPa⫽0 – 1.200 Prepared By: Yu. P. Yampol’skii Experimental Data TABLE 1. Dual mode sorption parameters as a function of imide content 共%兲 for CO2 in polyimide films. 共The original data were represented graphically. k D /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/cm Hg⫺1 3.62 34.76 40.61 51.28 57.93 100 0.0596 0.0810 0.0872 0.0956 0.0922 0.0720 2.14 72.84 273.54 211.76 175.26 34.44 0.0047 0.0061 0.0072 0.0073 0.0075 0.0084 TABLE 2. Sorption isotherms of CO2 in the films imidized for various periods at 423 K 共The original data were represented graphically兲 Pressure/kPa Film not imidized 49 97 199 301 Film imidized for 50 h 68 135 268 398 Film imidized for 100 h 134 295 399 Film imidized for 200 h 64 135 264 400 Film imized for 400 h 132 266 395 Sorption (V * 1 /共STP兲/V * 2) Pressure/kPa Sorption (V * 1 /共STP兲/V 2* ) Pressure/kPa Sorption (V * 1 /共STP兲/V * 2) 3.08 5.32 9.37 12.67 400 501 596 696 15.97 18.67 20.97 23.17 800 900 — — 25.54 27.33 — — 6.47 9.91 14.91 18.20 534 665 799 906 21.43 24.03 26.50 28.36 1052 1191 — — 30.45 32.60 — — 12.62 19.18 22.55 533 665 782 25.97 29.01 31.74 910 1056 1174 34.09 36.68 38.47 9.94 13.88 19.82 23.87 553 667 800 924 27.85 30.46 33.25 35.41 1044 1178 — — 37.44 39.54 — — 14.89 20.83 24.94 519 660 791 28.62 31.72 34.89 936 1048 — 37.48 39.46 — Source and Purity of Materials: CO2: purity 99.9%. Polyimide: prepared by imidization of the polyamide produced by the reaction of pyromellitic acid dianhydride with 4,4⬘ diaminodiphenyl ether in N-methylpyrrolidone solution. Imidization was carried out at 423 K for 50–400 h in vacuo. An additional sample with 100% imide content was also studied. For the thermally treated samples, the imide content lay in the range 35%–58%. T g of unimidized polymer and polyimide were equal to 428 and 683 K, respectively. Estimated Error: No information given. PATERSON, YAMPOL’SKII, AND FOGG % MethodÕApparatusÕProcedure Sorption weasurement was carried out by Cahn 2000 electromicro-balance. 1404 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Copoly共pyromellitic dianhydride-oxydianiline兲 PMDA-ODA 共polyimide Kapton H兲; 关25036-53-7兴 共LVI兲 Components: 共1兲 Sulfur dioxide; SH2; 关7446-09-5兴 共2兲 Polyimide Kapton; 关25036-53-7兴 共LVI兲 Original Measurements: W. J. Koros, C. J. Patton, R. M. Felder, and S. J. Fincher, J. Polym. Sci., Polym. Phys. Ed. 18, 1485 共1980兲. Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Polyimide Kapton H; 关25036-53-7兴 共LVI兲 Original Measurements: R. M. Felder, C. J. Patton, and W. J. Koros, J. Polym. Sci., Polym. Phys. Ed. 19, 1895 共1981兲. Variables: T/K: 298 p/kPa: 0–75 Prepared By: A. K. Bokarev Variables: T/K⫽298– 308 p/kPa⫽0 – 80 Prepared By: Yu. P. Yampol’skii Experimental Data Solubility of SO2 in Kapton at 298 K* p/atm C/cm3共STP兲 cm⫺3 0.1 18.1 0.2 24.2 0.3 28.1 0.4 32.3 Experimental Data Dual mode sorption parameters for sulfur dioxide in polymide Kapton H 0.5 35.6 0.6 39.3 0.7 42.8 0.8 46.0 * Smooth values taken from the graph by compiler. Dual mode sorption parameters of SO2 sorption in Kapton film at 298 K ⫺3 atm ⫺1 0.389 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 13.29 0.275 Auxiliary Information MethodÕApparatusÕProcedure The sorption apparatus and procedures used in the present sorption experiments was described earlier.1 k D /cm3共STP兲 cm3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 298 308 318 328 32.51 28.48 21.94 18.71 21.29 16.78 14.22 11.11 20.40 18.06 16.31 16.02 The following parameters of temperature dependence of k D and b are reported: k D ⫽k D 0 exp关 3.7共 kcal mol⫺1兲 /RT 兴 b⫽b 0 exp关 1.6共 kcal mol⫺1兲 /RT 兴 . Source and Purity of Materials: The polyimide Kapton 共E.I. du Pont de Nemours Co.兲 had density 1.42 g/cm3, and the glass transition temperature 600 K. The SO2 was obtained from Air Products and Chemical, Inc., at purity of 99.9%. Estimated Error: No information given. References: 1 C. H. M. Jaques and H. B. Hopfenberg, Polym. Eng. Sci. 14, 441 共1974兲. FIG. 81. Sorption isotherms of sulfur dioxide in polyimide Kapton H. Auxiliary Information MethodÕApparatusÕProcedure A quartz spring balance was used to measure the sorption. Source and Purity of Materials: Kapton H: DuPont Co, density 1.42 g/cm3. Estimated Error: No information given. 1405 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES k D /cm 共STP兲 cm 3 T/K Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyimide Upilex R; 关26615-45-2兴 共LVII兲 1406 Evaluator: Yu. P. Yampol’skii, A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, April, 1994 Critical Evaluation: Three investigations are available on sorption of CO2 in the polyimide obtained from 3.3⬘, 4,4⬘-biphenyltetracarboxydianhydride and 4.4⬘-oxydianiline known under the tradename Upilex R.1–3 The authors studied commercial samples of Upilex R, but in one case specimens synthesized and pretreated under different conditions were investigated as well.3 For the temperature range 308–383 K and at pressures up to 3 MPa, the sorption isotherms can be described by parameters shown in the table which are based on data reported in two papers1,3 by the same group. The results of Sada et al.2 are somewhat different, particularly at lower temperatures. Selected dual mode sorption parameters for the system Upilex R–CO2 T/K kD ⬘ CH b ⬘b S⫽k D ⫹C H Ref. 308 323 323 353 353 383 383 0.596 0.50 0.456 0.335 0.35 0.254 0.25 12.0 8.6 10.3 5.9 5.0 3.4 3.0 0.478 0.44 0.348 0.252 0.30 0.162 0.19 6.3 4.3 4.0 1.8 1.8 0.8 0.8 3 1 3 3 1 3 1 FIG. 83. Temperature dependence of the affinity parameter b/共atm⫺1兲. ⬘ /cm3共STP兲 cm⫺3; b/atm⫺1. Units: k D and S/cm3共STP兲 cm⫺3 atm⫺1; C H Figures 82–84 show the temperature dependences of S, b, and k D , respectively. FIG. 84. Temperature dependence of Henry’s law solubility coefficient k D /共cm3共STP兲 cm⫺3 atm⫺1兲. A least squares treatment of the temperature dependence of k D , b, and S resulted in the following values of enthalpies: ⌬H D ⫽⫺11.10 kJ/mol ⌬H H ⫽⫺13.13 kJ/mol ⌬H S ⫽⫺27.35 kJ/mol. ⫺3 FIG. 82. Temperature dependence of apparent solubility coefficient S/共cm 共STP兲 cm 3 ⫺1 atm 兲. ⬘ shows that it vanishes in the vicinity of 450 K or at The temperature dependence of Langmuir capacity adsorption parameter C H temperatures much lower than the glass transition temperature of this polymer. The dual mode sorption parameters can be found based on fugacity instead of pressure.2 The values calculated in two cases do not differ greater than by 10%, although the enthalpies ⌬H D and ⌬H H are greater when the parameters are found via fugacity. A study of the effects of pretreatment of the films indicated3 that the presence of the solvent led to the increase in the apparent solubility coefficient, while the annealing resulted in the opposite effect. References: 1 K. Tanaka, H. Kita, and K. Okamoto, Japan–US Polymer Symposium, 1985, p. 249. 2 E. Sada, H. Kumazawa, and P. Xu, J. Appl. Polym. Sci. 35, 1497 共1988兲. K. Okamoto, K. Tanaka, H. Kita, A. Nakamura, and Y. Kusuki, J. Polym. Sci., Part B: Polym. Phys. 27, 1221 共1989兲. 3 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 3.35. Polimide Upilex R—Carbon Dioxide Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyimide Upilex R; 关26615-45-2兴 共LVII兲 Original Measurements: K. Tanaka, H. Kita, and K. Okamoto. Japan–US Polymer Symposium, 1985, pp. 249–250. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyimide Upilex R; 关26615-45-2兴 共LVII兲 Original Measurements: E. Sada, H. Kumazawa, and P. Xu, J. Appl. Polym. Sci. 35, 1497 共1988兲. Variables: T/K⫽323– 383 p/MPa⫽0 – 2.0 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽303– 333 p/MPa⫽0 – 1.7 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters* Experimental Data Dual sorption parameters for carbon dioxide in Upilex polymide k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 T/K 323 353 383 0.50 0.35 0.25 8.6 5.0 3.0 0.44 0.30 0.19 Based on pressure 303 313 323 333 Based on fugacity 303 313 323 333 *Read by the compiler from the plot. Sorption enthalpies: ⌬H D ⫽⫺12.3 kJ/mol, ⌬H H ⫽⫺15.7 kJ/mol. Auxiliary Information MethodÕApparatusÕProcedure Sorption was measured by the pressure decay method. The same isotherms were obtained for ‘‘as received’’ samples and the specimens preliminary exposed to 50 atm of carbon dioxide at 323 K for 24 h. Source and Purity of Materials: Polyimide Upilex R 共Ube Industries兲 had the glass transition temperature 558 K. k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 1.24 1.04 0.817 0.692 7.39 5.67 4.27 3.34 1.70 1.23 0.865 0.635 1.35 1.12 0.875 0.736 6.93 5.28 3.95 3.09 1.91 1.35 0.954 0.683 Van’t Hoff parameterrs ⌬H D from k D (T) and ⌬H H from b(T) plots Estimated Error: No information given. Parameter Pressure Fugacity ⌬H D /kJ. mol⫺1 ⌬H H /kJ. mol⫺1 ⫺16.6 ⫺27.9 ⫺15.9 ⫺29.0 1407 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES T/K Original Measurements: K. Okamoto, K. Tanaka, H. Kita, A. Nakamura, and Y. Kusuki, J. Poly. Sci.: Part B: Polym. Phys. 27, 1221 共1989兲. K. Okamoto, K. Tanaka, K. Yokoshi, K. Hidetoshi, and A. Nakamura. Variables: T/K⫽308– 383 p/MPa⫽0 – 3.0 Prepared By: Yu. P. Yampol’skii 1408 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyimide from 3.3⬘, 4,4⬘-Biphenyltetracaboxylic dianhydride 共BPDA兲 and 4.4⬘-Oxydianiline 共ODA兲 共Upilex-R兲; 关26615-45-2兴 共LVII兲 Experimental Data Dual mode sorption parameterrs for CO2 in commercial and laboatory samples of BPDA-ODA polyimides T/K k D /cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm3 CH b/atm⫺1 Upilex-R 308 323 353 383 323 353 353 383 353 0.596 0.456 0.335 0.254 0.609 0.449 0.316 0.327 0.267 12.0 10.3 5.9 3.4 17.9 10.6 11.0 7.0 4.7 0.478 0.348 0.252 0.162 0.392 0.236 0.167 0.140 0.216 1 FIG. 85. Sorption isotherms of carbon dioxide in polyimide Upilex R. Auxiliary Information MethodÕApparatusÕProcedure Sorption was measured by pressure decay method. The apparatus was similar to that described in Ref. 1. Source and Purity of Materials: Polyimide Upilex R: Ube Industries; glass transition temperature 558 K. Estimated Error: No information given. References: W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. 1 2 Auxiliary Information MethodÕApparatusÕProcedure Apparatus and procedure of sorption measurement was similar to one described in Ref. 1 Source and Purity of Materials: Films of the polymer prepared from BPDA and ODA in p-chlorphenol were cast from the same solvent, dried 共373 K, 3 h兲, immersed in ethanol, dried once more at 443 K for 20 h 共sample 1兲. Sample 2 was prepared by annealing it at 543 K, 3 h. Commercial Upilex-R 共Ube Industries兲 had T g ⫽558 K, ⫽1.402 g/cc. Sample 1 had the same T g . Estimated Error: No information given. References: 1 W. J. Koros, and D. R. Paul J. Polym. Phys., Polym. Phys. Ed. 14, 1903 共1976兲. PATERSON, YAMPOL’SKII, AND FOGG Sample 3.36. Other Polyamides—Various Gases Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲Copoly共pyromellitic dianhydride-methylene dianiline兲; PMDA-MDA 共LVIII兲 Original Measurements: K. C. O’Brien, W. J. Koros, and G. R. Husk, J. Membr. Sci, 35, 217 共1988兲. Variables: T/K⫽308 p/MPa⫽0.2– 1.3 Prepared By: Yu. P. Yampol’skii Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Copoly共pyromellitic dianhydride-isopropylidene dianiline兲; PMDA-IPDA 共LIX兲 Variables: T/K⫽308 p/MPa⫽0.1– 1.7 Experimental Data Sorption of carbon dioxide and methane in PMDA-MDA at 308 K. 共The original data were represented graphically兲 Prepared By: Yu. P. Yampol’skii Experimental Data Sorption isotherms of carbon dioxide and methane in PMDA-IPDA at 308 K. 共The original data were represented graphically兲 CH4 CO2 CH4 CO2 Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.20 0.27 0.57 0.85 0.99 1.31 16.66 19.32 28.03 32.67 34.27 38.56 0.22 0.49 0.80 1.12 — — 3.48 5.84 8.24 10.08 — — Pressure/MPa Sorption (V * 1 (STP)/V * 2) Pressure/MPa Sorption (V * 1 (STP)/V * 2) 0.15 0.46 0.88 1.31 1.63 14.35 35.63 47.54 55.91 63.02 0.22 0.59 1.03 1.50 — 3.86 9.90 13.46 16.26 — Auxiliary Information Auxiliary Information Source and Purity of Materials: PMDA-MDA: polymerization performed in dimethylacetamide at 288–293 K to form polyamic acid precursor according to standard procedure.2 The polyamic acid solution was wet cast on a glass substrate heated for 1 h at 353 K under Ar to remove the solvent and then imidized by a two-step cure under vacuum 共24 h at 483 K and 4 h at 553 K兲. T g was not reached even though the polymer was heated to 750 K. Density was 1.352 g/cm3. MethodÕApparatusÕProcedure Sorption measurements were carried out using a single transducer apparatus described in Ref. 1. Source and Purity of Materials: PMDA-IPDA: polymerization performed in dimethylacetamide at 288–293 K to form polyamic acid precursor according to standard procedure.2 The polyamic acid solution was wet cast on a glass substrate heated for 1 h at 353 K under Ar to remove the solvent and then imidized by a two-step cure under vacuum 共24 h at 483 K and 4 h at 553 K兲. T g was not reached even through the polymer was heated to 750 K. Density was 1.285 g/cm3. Estimated Error: Relative precision of solubilities: ⫾5%. References 1 S. E. Sanders, Ph.D. dissertation, NC State University, 1983. 2 C. E. Scroog, A. L. Endrey, S. V. Abravio, C. E. Berro, W. M. Edwards, and K. L. Olivier, J. Pol. Sci., Part A 3, 1373 共1965兲. References: 1 S. E. Sanders, Ph.D. dissertation, NC State University, 1983. 2 C. E. Scroog, A. L. Endrey, S. V. Abravio, C. E. Berro, W. M. Edwards, and K. L. Olivier, J. Pol. Sci., Part A 3, 1373 共1965兲. 1409 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Estimated Error: Relative precision of solubilities: ⫾5%. IUPAC-NIST SOLUBILITY DATA SERIES Pressure/MPa MethodÕApparatusÕProcedure Sorption measurements were carried out using a single transducer apparatus described in Ref. 1. Original Measurements: K. C. O’Brien, W. J. Koros, and G. R. Husk, J. Membr. Sci. 35, 217 共1988兲. Original Measurements: T. H. Kim, W. J. Koros, G. R. Husk, and K. C. O’Brien, J. Appl. Polym. Sci. 34, 1767 共1987兲. Variables: T/K⫽308 p/MPa⫽0 – 2.1 Prepared By: Yu. P. Yampol’skii Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polyimides derived from hexafluoroisopropylidene dianhydrides and diamines 共see formulas兲 Original Measurements: M. R. Coleman and W. J. Koros, J. Membr. Sci. 50, 285 共1990兲. Variables: T/K⫽308 p/MPa⫽1.013 共10 atm兲 Prepared By: Yu. P. Yampol’skii Experimental Data Sorption isotherms of methane and nitrogen in PMDA-IPDA at 308 K. 共The original data were represented graphically兲 1410 Experimental Data Solubility coefficients S/cm3共STP兲/cm3 atm of gases in polyimides N2 CH4 Gases Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* STP)/V 2* ) 0.60 1.05 1.53 2.02 — — — — — 10.01 13.62 16.44 18.47 — — — — — 0.29 0.47 0.55 0.76 0.83 1.17 1.51 1.81 2.09 1.55 2.29 2.54 3.36 3.70 4.84 5.99 6.84 7.51 Polymer Auxiliary Information MethodÕApparatusÕProcedure The pressure decay method of measurement of sorption was described in Ref. 1. Source and Purity of Materials: PMDA-IPDA: prepared by reaction of pyromellitic dianhydride with isopropylidene diamine. No details on synthesis or properties of the polymer are given. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. 6FDA-ODA 6FDA-MDA 6FDA-IPDA 6FDA-6FpDA 6FDA-6FmDA O2 N2 CO2 CH4 1.03 0.82 0.90 0.99 0.61 0.54 0.46 0.50 0.67 0.35 4.89 3.96 4.24 4.72 2.89 1.32 1.18 1.20 1.44 0.81 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were made with a pressure decay cell described in Ref. 1 Source and Purity of Materials: Polyimides from Hoechst-Celanesc Co. characteristics: Polymer Tg K 6FDA-ODA 6FDA-MDA 6FDA-IPDA 6FDA-6FpDA 6FDA-6FmDA 577 577 583 593 527 had the following , g/cc 1.432 1.400 1.352 1.466 1.493 The gases had purity ⬎99.97%. Estimated Error: No information given. References: 1 W. J. Koros and D. R. Paul, J. Polym. Sci., Polym. Phys. Ed. 14, 1903 共1976兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Methane; CH4; 关74-82-8兴 共2兲 Copoly共pyromellitic dianhydride-isopropylidene dianiline兲; PMDA-IPDA 共LIX兲 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyimide Ultem; 关61128-24-3兴 共LXVIII兲 Original Measurements: K. Okamoto, K. Tanaka, O. Yokoshi, K. Hidetoshi, and A. Nakamura, Intern. Congress on Membranes ICOM-87 1987, 9-P15, pp. 542–543. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polyimide: product of biphenyltetracarboxylic dianhidride and sulfonodianiline; 共BPDA-SDA兲 Original Measurements: K. Okamoto, K. Tanaka, O. Yokoshi, K. Hidetoshi, and A. Nakamura, Intern. Congress on Membranes ICOM-87, 1987, 9-P15, pp. 542–543. Variables: T/K: 353 p/MPa: 0 – 3.0 Prepared By: Yu.P. Yampol’skii Variables: T/K: 353 p/MPa: 0 – 2.5 Prepared By: Yu. P. Yampol’skii Experimental Data Dual-mode sorption parameters for carbon dioxide Experimental Data Dual-mode sorption parameters for carbon dioxide k D ,/cm3共STP兲cm⫺3 atm⫺1 ⬘ ,/cm3共STP兲 cm⫺3 CH b/atm⫺1 k D ,/cm⫺3共STP兲 cm⫺3 atm⫺1 ⬘ ,/cm3共STP兲 cm⫺3 CH b/atm⫺1 0.527 6.1 0.286 0.647 19.8 0.279 Auxiliary Information Source and Purity of Materials: Commercial sample of Ultem-1000 共General Electric Co兲 had a density 1.289 g/cm3, glass transition temperature 488 K, and had an amorphous structure. Estimated Error: No information given. Auxiliary Information MethodÕApparatusÕProcedure Equilibrium sorption was measured by the pressure decay method using a dual-volume sorption cell. Source and Purity of Materials: Polyimide BS-1 had the following characteristics: density 1.417 g/cm3, glass transition temperature 623 K. Estimated Error: No information given. 1411 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES MethodÕApparatusÕProcedure Equilibrium sorption was measured by the pressure decay method using a dual-volume sorption cell. Original Measurements: T. A. Barbari, W. J. Koros, and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 26, 729 共1988兲. Variables: Prepared By: T/K⫽308 p/MPa⫽0–2.3 A. K. Bokarev Experimental Data TABLE 1. Dual-mode sorption parameters for various gases in polyetherimide at 308 K Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 CO2 CH4 N2 0.758 0.207 0.063 25.02 7.31 4.15 0.366 0.136 0.045 Components: 共1兲 Helium; He; 关7440-59-7兴 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共amide aminoacid兲 6FDA-TADPO; 关132634-94-7兴 共LXVII兲 Original Measurements: D. R. B. Walker and W. J. Koros, J. Membr. Sci. 55, 99 共1991兲. Variables: T/K⫽308 p/MPa⫽0.3–1.0 Prepared By: Yu. P. Yampol’skii Experimental Data Solubility coefficient S/cm3共STP兲/cm3 atm He N2 O2 CO2 CH4 0.058 0.33 0.56 3.05 0.8 CH4 MethodÕApparatusÕProcedure Pressure decay method and apparatus was used. N2 Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) Pressure/MPa Sorption (V 1* (STP)/V 2* ) 0.19 0.24 0.27 0.33 0.56 0.64 0.70 0.78 0.98 1.08 1.16 1.25 1.45 1.55 1.64 1.72 1.93 2.02 2.20 10.88 12.85 14.26 15.38 20.05 21.83 23.23 23.79 26.96 28.17 29.10 29.75 32.17 33.10 33.93 34.39 36.43 37.36 38.37 0.12 0.24 0.29 0.37 0.45 0.67 0.81 0.90 1.07 1.14 1.25 1.29 1.48 1.57 1.66 1.79 1.89 2.06 — 1.12 2.10 2.51 3.08 3.59 4.78 5.35 5.81 6.55 6.59 7.29 7.17 7.98 8.15 8.53 8.69 9.15 9.60 — 0.27 0.34 0.40 0.45 0.71 0.77 0.88 0.94 1.14 1.25 1.34 1.42 1.59 1.75 1.79 1.89 2.26 2.35 — 0.65 0.81 0.83 0.98 1.44 1.59 1.65 1.78 2.11 2.24 2.26 2.35 2.70 2.93 2.85 2.94 3.39 3.52 — Auxiliary Information MethodÕApparatusÕProcedure The sorption apparatus and procedures used in the present sorption experiments are the same as described earlier.1 Source and Purity of Materials: Gas: purity⬎99.99% 共chromatographic quality兲. PEI 共Ultem兲: General Electric Co., density 1.28 g/cm3, glass transition temperature 488 K. Estimated Error: No information given. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. Source and Purity of Materials: The polymer was synthesized according to Ref. 1. It had a density 1.413 g/cc. All the gases were Linde UHP 共purity more than 99.97%兲. Estimated Error: No information given. References: R. T. Foster and C. S. Marvel, J. Polym. Sci., A 3, 417 共1965兲. 1 PATERSON, YAMPOL’SKII, AND FOGG Auxiliary Information TABLE 2. Sorption isothems of various gases in polyetherimide at 308 K 共The original data were represented graphically兲 CO2 1412 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polyetherimide 共PEI兲; 关61128-24-3兴 共LXXI兲 3.38. Block Copolymers and Polymer Blends—Various Gases 3.37. Polypyrrolone—Various Gases Components: 共1兲 Helium; He; 关7440-59-7兴 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polypyrrolone; 关12634-94-7兴 Original Measurements: D. R. B. Walken and W. J. Koros, J. Membr. Sci. 55, 99 共1991兲. Variables: T/K⫽308 p/MPa⫽0.3– 1.0 Prepared By: Yu. P. Yampol’skii Original Measurements: M. Yoshikawa, T. Ezaki, K. Sanui, and N. Ogata, J. Appl. Polym. Sci. 35, 145 共1988兲. Variables: T/K⫽303 p/kPa⫽0 – 80 共0–0.8 atm兲 Prepared By: S. M. Shishatskii Experimental Data The solubility of gases in two statistical copolymers having a mole fraction of 4-vinylpyridine equal to 0.038 共copolymers I兲 and 0.098 共copolymer II兲 was studied. Experimental Data Solubility coefficient S/cm3共STP兲 cm3 atm He N2 O2 CO2 CH2 0.091 0.72⫾0.08 1.04 4.41 1.7 Source and Purity of Materials: The polymer was synthesized according to Ref. 1. It had a density 1.405 g/cc. All the gases were Linde UHP 共purity more than 99.97%兲. Estimated Error: No information given. TABLE 1. Dual mode sorption parameters and solubility coefficient, S, for various gases in the copolymers 共I兲 and 共II兲 at 303 K Gas S/cm3共STP兲 cm⫺3 atm⫺1 N2 共I兲 共II兲 共I兲 共II兲 共I兲 共II兲 O2 CO2 k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 — — — — 46.5 52.6 — — — — 10.2 7.5 — — — — 25.3 44.9 6.92 8.54 16.8 18.2 — — TABLE 2. Sorption isotherms of various gases in the copolymers 共I兲 and 共II兲 at 303 K 共The original data were represented graphically兲 References: R. T. Foster and C.S. Marvel, J. Polym. Sci., A. 3, 417 共1965兲. 1 CO2 N2 O2 Pressure/kPa Sorption (V * 1 (STP)/V * 2) Pressure/kPa Sorption (V * 1 (STP)/V * 2) Pressure/kPa Sorption (V * 1 (STP)/V * 2) 3.89 12.31 27.18 40.13 57.57 6.91 13.66 21.47 27.81 35.79 30.10 58.23 73.74 — — 2.18 4.69 5.31 — — 40.84 61.26 75.66 — — 6.68 9.79 12.79 — — 4.26 11.63 26.37 40.85 57.11 7.31 11.77 21.16 28.74 38.52 24.98 40.52 63.97 — — 2.17 3.12 5.27 — — 35.71 53.18 65.95 — — 6.55 9.95 11.94 — — 共I兲 1413 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 共II兲 IUPAC-NIST SOLUBILITY DATA SERIES Auxiliary Information MethodÕApparatusÕProcedure Pressure decay method and apparatus was used. Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共4-vinylpyridine-co-acrylonitrile兲; 关25232-41-1兴 MethodÕApparatusÕProcedure Solubility measurement was performed in a gravimetric sorption apparatus with a quartz spring. The films were cast from DMF solutions. Source and Purity of Materials: Poly共4-vinylpyridine-co-acrylonitrile兲: synthesized radical polymerization according to Ref. 1. Copolymer I: glass transition temp. 407 K. Copolymer II: glass transition temp. 377 K. by the Estimated Error: No information given. References: 1 M. Yoshikawa, S. Shudo, K. Sanui, and N. Ogata, J. Membr. Sci. 26, 51 共1986兲. Components: 共1兲 Nitrogen; N2; 关7727-37-9兴 Oxygen; O2; 关7782-44-7兴 共2兲 Copoly共vinylidene cyanide-vinyl acetate兲 共CVC-VA兲; 关9003-24-1兴 Original Measurements: H. Hachisuka, H. Kito, Y. Tsujita, A. Takizawa, and T. Kinoshita, J. Appl. Polym. Sci. 35, 1333 共1988兲. Variables: T/K⫽298 p/MPa⫽0.13– 1.3 Prepared By: Yu. P. Yampol’skii 1414 Experimental Data Dual mode sorption parameters for nitrogen and oxygen in CVC-VA memberances at 298 K for different times of annealing at 433 K Time of annealing N2 O2 ‘‘as cast’’ 5h 15 h ‘‘as cast’’ 5h 15 h 104 k D /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH 103 b/cm Hg⫺1 2.0 2.0 2.0 2.6 2.6 2.6 1.74 1.70 1.66 2.18 2.12 2.06 0.8 0.8 0.8 1.1 1.1 1.1 FIG. 86. Sorption isotherms of nitrogen and oxygen in CVC-VA at 298 K for different times of annealing at 433 K: 共a兲 as cast; 共b兲 5 h annealing; 共c兲 15 h annealing. Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were carried out by means of Cahn Electrobalance 2000 instrument. A correction for a buoyancy contribution was introduced. The films were cast from DMF. Source and Purity of Materials: Gases: purity⬎99.9%. Alternating coplymer of VC and VA: Mitsubishi Petrochemical Co., amorphous polymer, glass transition temp. 449 K, density of as cast film, and ones anneled for 5 and 15 h equal to 1.212, 1.217, and 1.220 g/cm, respectively 共at 433 K兲. Estimated Error: No information given. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Copoly共vinylidene cyanide-vinyl acetate兲 共CVC-VA兲; 关9003-24-1兴 Original Measurements: H. Hachisuka, Y. Tsujita, A. Takizawa, and T. Kinoshita, Polymer 29, 2050 共1988兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Random copolymers styrene/methyl methacrylate 共SMMA兲 Original Measurements: P. C. Raymond and D. R. Paul, J. Polym. Sci.: Part B: Polym. Phys. 28, 2079 共1990兲. Variables: T/K⫽298 p/MPa⫽0 – 1.33 Prepared By: Yu. P. Yampol’skii Variables: T/K⫽308 p/MPa⫽0–2.5 共0–25 atm兲 Weight % MMA⫽20.5–88.0 Prepared By: Yu. P. Yampol’skii Experimental Data The effects of annealing time at 433 K on dual mode sorption parameters for carbon dioxide in CVC-VA at 298 K 共taken from the plot by compiler兲 102 k D /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH 103 b/cm Hg⫺1 0 1 5 10 15 1.65 1.50 1.50 1.48 1.48 17.3 16.4 15.0 14.3 14.2 3.65 3.65 3.65 3.65 3.65 N Weight % MMA 1 2 3 20.5 58.5 88.0 1 2 3 20.5 58.5 88.0 k D /cm3共STP兲/cm3 atm ⬘ /cm3共STP兲/cm3 CH b/atm⫺1 3.06 2.03 1.72 0.085 0.156 0.152 Methane* 0.132 0.145 0.181 Carbon dioxide** 0.539 0.812 1.07 10.7 10.5 13.8 0.182 0.249 0.193 *Unconditioned film never exposed to CO2. **The isotherms obtained after exposing to CO2 at 25 atm for 24 h. Auxiliary Information MethodÕApparatusÕProcedure The equipment and procedure for sorption measurement were the same as in Ref. 1. Source and Purity of Materials: For the copolymers 1, 2, and 3 the glass transition temperatures were 371, 375, and 378 K, respectively, and the densities 1.075, 1.132, and 1.168 g/cc. Estimated Error: No information given. References: Y. Maeda and D. R. Paul, Polymer 26, 2055 共1985兲. 1 FIG. 87. Sorption isotherms of carbon dioxide in CVC–VA at 298 K for different times of annealing at 433 K: 共a兲 as cast; 共b兲 1 h; 共c兲 5 h; 共d兲 10 h; 共e兲 15 h. Auxiliary Information MethodÕApparatusÕProcedure Sorption was determined using gravimetric apparatus with Cahn Electrobalance 2000 instrument. A buoyancy correction was made. Source and Purity of Materials: Alternating copolymer VC-VA: amorphous polymer, intrinsic viscosity 4.9 dl/g, glass transition temperature of the films ‘‘as cast’’ 449 K. Estimated Error: No information given. 1415 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES Time of annealing/h Experimental Data Dual mode sorption parameters in SMMA coplymers Original Measurements: T. Nakagawa, M. Sekiguchi, K. Nagai, and A. Higuchi, Int. Congress on Membranes 共ICOM-90兲, Chicago, 1990, pp. 824– 826. Variables: T/K⫽303 p/kPa⫽0 – 100 Copolymer composition: 关 TMSP兴 ⫽90%; 关 PHP兴 ⫽10% Prepared By: Yu. P. Yampol’skii Variables: T/K⫽293.2 p/MPa⫽0–100 Prepared By: O. M. Ilinitch Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲/cm⫺3 CH b/atm⫺1 6.93 8.35 5.84 50.14 43.59 12.47 2.15 2.77 5.48 p/kPa C Gas p/kPa C Methane CH4 关74-82-8兴 28.0 34.7 50.0 66.6 86.6 96.0 0.6 0.4 0.7 1.2 1.4 1.5 Ethane C2H6 关74-84-0兴 Propane C 3H8 关74-98-6兴 3.3 6.3 9.6 13.3 18.7 24.0 29.3 29.3 33.3 34.4 40.0 46.7 53.3 61.3 2.8 3.6 4.3 5.1 5.8 6.6 7.3 4.9 5.5 7.9 8.4 9.4 10.2 11.2 2.7 5.3 8.0 10.7 13.3 17.3 21.3 25.3 0.9 1.6 2.2 2.6 2.9 3.4 3.8 4.4 Propene C3H6 关115-07-1兴 1.6 4.0 6.7 10.6 14.0 20.0 26.7 33.3 38.7 53.3 2.0 2.9 4.0 4.9 5.6 6.8 7.6 9.0 9.6 11.5 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were done by means of Cahn electrobalance, model 2000. Source and Purity of Materials: The copolymer and PPHP were synthesized in the presence of a catalyst TaCl5 –Ph3Bi–H2O. The synthesis of PTMSP was described in Ref. 1. References: 1 K. Takada, H. Mituta, T. Masuda, and T. Higashimura, J. Appl. Polym. Sci. 30, 1605 共1983兲. Auxiliary Information MethodÕApparatusÕProcedure The conventional McBain sorption spring balance was used. Source and Purity of Materials: The copolymer was prepared via oxidative copolycondensation of two monomers. The purity of product 99.9%, it had density 1.10 g/cm3 and T g ⫽754 K. All the gases had a purity ⬎99.9%. Estimated Error: ␦ T⫽⫾0.1 K; ␦ p⫽⫾0.2 kPa. ␦ C/C⫽0.1 共compiler兲. PATERSON, YAMPOL’SKII, AND FOGG PTMSP Compolymer PPHP Original Measurements: O. M. Ilinitch, G. L. Semin, M. V. Chertova, and K. I. Zamaraev, J. Membr. Sci. 66, 1 共1992兲. Experimental Data Solubility C/cm3共STP兲 cm⫺3 of hydrocarbonds in the copolymer Experimental Data Sorption isotherms for three propyne polymers were reported. Their parameters are given below Polymer Components: 共1兲 Hydrocarbons C1 –C3 共2兲 Statistical copolymer of 2,6-dimethyl-1,4-phenylene oxide 共97.5 mol %兲 and 2,6-diphenyl-1,4-phenylene oxide 共2.5 mol %兲 1416 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Copoly共trimethylsilylpropyne-phenylpropyne兲 Poly共trimethylsilylpropyne兲 共PTMSP兲; 关87842-32-8兴 Poly共1-phenyl-1-propyne兲 共PPHP兲 Components: 共1兲 Hydrocarbons C1 –C3 共2兲 Statistical copolymer of 2,6-dimethyl-1,4-phenylene oxide 共75 mol %兲 and 2,6-diphenyl-1,4-phenylene oxide 共25 mol %兲 Original Measurements: O. M. Ilinitch, G. L. Semin, M. V. Chertova, and K. I. Zamaraev, J. Membr. Sci. 66, 1 共1992兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Copolyimide Original Measurements: K. Okamoto, K. Tanaka, O. Yokoshi, K. Hidetoshi, and A. Nakamura, Intern. Congress on Membranes ICOM-87, 9-P15, pp. 542–543. Variables: Prepared By: T/K⫽293.2 p/MPa⫽0–100 O. M. Ilinitch Variables: T/K⫽353 p/MPa⫽0 – 2.5 Prepared By: Yu. P. Yampol’skii Experimental Data Solubility C/cm3共STP兲 cm⫺3 of hydrocarbons in the copolymer Gas Experimental Data Dual-mode sorption parameters for carbon dioxide C Gas p/kPa C 34.0 53.3 66.7 82.6 0.4 0.8 1.2 1.5 Propane C3H8 关74-98-6兴 Ethane C2H6 关74-84-0兴 7.3 14.0 21.3 26.9 34.4 1.1 1.4 2.1 2.5 3.6 5.1 10.0 14.0 20.0 24.0 29.3 34.4 40.0 46.6 53.3 61.3 3.1 4.4 5.1 5.9 6.6 7.2 7.8 8.4 9.4 10.2 11.2 Ethylene C2H4 关74-85-1兴 8.0 12.0 14.3 18.7 22.0 26.0 34.7 1.0 1.3 1.6 1.8 2.1 2.6 3.2 1.6 4.0 6.7 10.6 14.0 20.0 26.7 33.3 38.7 53.3 2.0 2.9 4.0 4.9 5.6 6.8 7.6 9.0 9.6 11.5 Methane CH4 关74-82-8兴 Propylene C3H6 关115-07-1兴 MethodÕApparatusÕProcedure The conventional McBain sorption spring balance was used. Cast Annealed k D /(cm3共STP兲/cm3 atm) ⬘ /(cm3共STP兲/cm3) CH b/atm⫺1 0.588 0.573 20.9 18.5 0.281 0.249 Auxiliary Information MethodÕApparatusÕProcedure Equilibrium sorption was measured by the pressure decay method using a dual-volume sorption cell. Source and Purity of Materials: The polymers films 共both cast and annealed at 603 K for 5 h兲 had the following characteristics: density 1.357 g/cm3, glass transition temperature 623 K. Cast and annealed films had amorphous structure. Estimated Error: No information given. Source and Purity of Materials: The copolymer was prepared via oxidative copolycondensation of two monomers. The purity of product 99.9%, it had density 1.10 g/cm3 and T g ⫽483 K. All the gases had a purity ⬎99.9%. Estimated Error: ␦ T⫽⫾0.1 K; ␦ p⫽⫾0.2 kPa. ␦ C/C⫽0.1 共compiler兲. 1417 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Auxiliary Information Sample IUPAC-NIST SOLUBILITY DATA SERIES p/kPa Original Measurements: V. V. Volkov, A. K. Bokarev, and S. G. Durgaryan, Vyoskomol. Soedin, Ser. B 26, 107 共1985兲. Variables: T/K⫽298 p/MPa⫽0–0.4 Prepared By: S. M. Shishatskii 1418 Experimental Data FIG. 89. Sorption isotherms of sulfur dioxide in silane-siloxane copolymers with mass % siloxane content of: 0% 共1兲, 4% 共2兲, 13% 共3兲, 22% 共4兲, 34% 共5兲, 38% 共6兲, 42% 共7兲, 62% 共8兲, 100% 共9兲. Auxiliary Information MethodÕApparatusÕProcedure Sorption was measured by means of a McBain balance using the technique described in Ref. 1. FIG. 88. Sorption 共open symbols兲 and desorption 共closed symbols兲 isotherms of sulfur dioxide in block-copolymers with mass % siloxane content of 13% 共circles兲 and 42% 共squares兲. Source and Purity of Materials: PVTMS: M n ⫽200 000. PDMS: M n ⫽150 000. Silane-siloxane block-copolymers of the A-B type: prepared by anionic polymerization; M n 共silane block兲⫽200 000, weight contents of siloxane block indicated in Fig. 89. Estimated Error: No information given. References: 1 V. V. Volkov, A. K. Bokarev, and S. G. Durgaryan, Vysokomol, Soedin., Ser. A. 26, 1294 共1984兲. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Sulfur dioxide; SO2; 关7446-09-5兴 共2兲 Poly共dimethylsiloxane兲 共PDMS兲; 关9016-00-6兴 共3兲 Poly共vinyltrimethyl silane兲 共PVTMS兲; 关25036-32-2兴 共XV兲 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Copolymer of ethylene-vinyl acetate 共CEVA兲; 关24937-78-8兴 共3兲 Chlorosulphonated polyethylene Hypalon-48 共CPE兲 Original Measurements: J. A. Barrie and W. D. Webb, Polymer 30, 327 共1989兲. Variables: T/K⫽303– 323 p/kPa⫽0 – 33.25 CEVA conc. in blends, wt. %: 0–100 Prepared By: Yu. P. Yampol’skii Experimental Data Solubility in miscible blends of CEVA and CPE obeys Henry’s law. Solubility coefficients S 102 /(cm3共STP兲/cm3 cm Hg) of CO2 in the blends Original Measurements: J. S. Chiou, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci. 30, 1137 共1985兲. Variables: T/K: 308 p/MPa: 0 – 2.0 Prepared By: A. K. Bokarev Experimental Data At 308 K sorption isotherms of simple gases in PMA/PECH blends are completely linear at pressures as high as 2 MPa, and sorption can be described by Henry’s law. Solubility coefficients k D •104 /(cm3共STP兲/cm3 cm Hg) Temperature K 303 313 323 T g /K /(g/cm3) 100 90 80 70 60 50 40 30 20 0 2.00 1.87 1.81 1.71 1.56 1.52 1.42 1.33 1.27 1.10 1.73 1.59 1.57 1.44 1.35 1.32 1.22 1.15 1.10 0.96 1.48 1.38 1.37 1.26 1.18 1.17 1.08 1.00 0.98 0.85 257 0.98 Gases PMA 75 PMA/25 PECH 50 PMA/50 PECH 25 PMA/75 PECH PECH He Ar N2 CH4 CO2 1.35 9.96 4.86 19.4 261.0 1.26 9.19 4.34 17.6 225.0 1.14 8.73 4.17 16.6 181.0 — 8.33 3.98 16.4 152.0 0.990 7.73 3.66 15.6 124.0 Auxiliary Information 293 1.27 Auxiliary Information Source and Purity of Materials: The PMA 共from Celanese Chemical Co.兲 had M w ⫽576 000; T g ⫽291 K; ⫽1.21 g/cm3. The PECH 共Hydrin 100兲 was obtained from B. F. Goodrich Co. T g ⫽251 K; ⫽1.37 g/cm3. Gases: no information. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. Estimated Error: No information given. 1419 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Source and Purity of Materials: CEVA containing 45 wt % of vinyl acetate with M w ⫽37 700 from Bayer Co and CPE 共Hypalon 48兲 from DuPont, UK obtained by sulphochlorination of PE having M n ⫽23 900 Cl content 44 wt % were studied. A small but not specified content of SO2Cl groups in CPE is possible. Both polymers were shown by x-ray diffraction to be amorphous. Some phase separation is reported for the blends with CEVA content lower than 50% 共DSC data兲. MethodÕApparatusÕProcedure The apparatus and experimental procedure used for sorption measuring have been described elsewhere.1 IUPAC-NIST SOLUBILITY DATA SERIES CEVA, wt % MethodÕApparatusÕProcedure Sorption measurements were performed using a vacuum electronic microbalance 共Sartorius Instruments兲. Components: 共1兲 Helium; He; 关7440-59-7兴 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共methyl acrylate兲 共PMA兲; 关9003-21-8兴 共V兲 共3兲 Poly共epichlorohydrin兲 共PECH兲; 关24969-06-0兴 Original Measurements: J. S. Chiou and D. R. Paul, J. Appl. Polym. Sci. 34, 1037 共1987兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 共3兲 Poly共vinylidene fluoride兲 (PVF2); 关24937-79-9兴 Original Measurements: J. S. Chiou, Y. Maeda, and D. R. Paul, J. Appl. Polym. Sci. 30, 4019 共1985兲. Variables: T/K⫽308 p/MPa⫽0.2– 2.6 (2 – 26 atm) Prepared By: S. M. Shishatskii Variables: T/K⫽308 p/MPa⫽0 – 2.53 共0–25 atm兲 Prepared By: Yu. P. Yampol’skii Experimental Data Experimental Data FIG. 91. Sorption isotherm of carbon dioxide in an amorphous blend containing 65% PMMA and 35% PVF2 at 308 K. Auxiliary Information Auxiliary Information Source and Purity of Materials: PMMA: Rohm and Haas Plexiglas V共811兲. M w ⫽105 400, M n ⫽52 400, density 1.188 g/cm3, glass transition temperature 379 K. CPSAN: Union Carbide RMD-4511. M w ⫽223 000, M n ⫽88 600, density 1.080 g/cm3, glass transition temperature 377 K. Estimated Error: No information given. MethodÕApparatusÕProcedure Sorption isotherm was obtained using the dual-transducer cell design based on the pressure decay principle. Source and Purity of Materials: Polymers: conditioned at highest pressure of carbon dioxide before measurement, completely amorphous and miscible blend, glass transition temperature 335 K. Estimated Error: No information given. PATERSON, YAMPOL’SKII, AND FOGG FIG. 90. Sorption of carbon dioxide was studied in homogeneous and phase separated blends PMMA/CPSAN 共50/50 by mass兲. The composition of CPSAN is 28 mass % of acrylonitrile. The parameters of dual mode sorption isotherm for carbon dioxide in the blends at ⬘ ⫽16.6 cm3共STP兲/cm3; b⫽0.183 atm⫺1. Sorption isotherm of carbon dioxide in homoge308 K are k D ⫽0.89 cm3共STP兲/cm3 atm; C H neous 共䊉兲 and phase-separated 共䊊兲 PMMA/CPSAN blends. MethodÕApparatusÕProcedure A pressure decay method was used but no details are given. The films cast from tetrahydrofuran had a morphology of homogeneous blends. Subsequent heating at 488 K resulted in phase separated blends. 1420 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 共3兲 Styrene/acrylonitrile copolymer 共CPSAN兲 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 共3兲 Poly共vinylidene fluoride兲 (PVF2); 关24937-79-9兴 Original Measurements: J. S. Chiou and D. R. Paul, J. Appl. Polym. Sci. 32, 2897 共1986兲. Variables: T/K⫽308 p/MPa⫽0 – 2.5 共0–25 atm兲 mass % PVF⫽0–100 Prepared By: Yu. P. Yampol’skii Experimental Data The sorption isotherms for some blends 共PVF2 content in the range 35–60 mass %兲 showed an unusual form and could not be ⬘ from the described by dual mode sorption model. A modified DMS model was proposed where for the Langmuir capacity parameter C H DMS model an equation was suggested: ⬘ ⫽CH0 ⬘ 共Tg⫺T兲/共Tg0⫺T兲, CH Sorption parameters for carbon dioxide in PMMA/PVF2 blends* PVF2 mass % Volume fraction of amorph phase ␣ 100 80 60 50 40 35 20 0 0.426 0.621 0.812 0.886 0.953 0.971 1.0 1.0 From isotherm slope From regression analysis kD kD /␣ kD ⬘ /␣ C H0 b 0.664 0.865 1.105 1.215 1.283 1.319 — — 1.559 1.394 1.362 1.371 1.346 1.358 — — — — 1.494 — 1.403 1.417 1.352 1.409 — — 7.26 — 8.15 10.9 16.3 25.6 — — 0.0859 — 0.101 0.126 0.103 0.0993 ⬘ , cm3共STP兲/cm3; b, atm⫺1. Units: ␣, dimensionless; k D , cm3共STP兲/cm3 atm; C H0 FIG. 93. Sorption isotherms of carbon dioxide in PMMA/PVF2 blends at 308 K for 35 and 50 mass % of PVF2. Auxiliary Information MethodÕApparatusÕProcedure No details of the experimental procedure are given. Apparently, sorption is measured by pressure decay method.1 Source and Purity of Materials: PMMA Rohm and Haas Co. 共Plexiglas V共811兲兲, fully amorphous, glass transition temp. 378 K. PVF2: Pennwalt Co. 共Kynar 460 N兲, crystallinity 60%, melting point 433 K. Blends: prepared as described in Ref. 2. Miscible blends were studied. References:3 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲 2 J. S. Chiou, J. W. Barlow, and D. R. Paul, J. Appl. Polym. Sci. 30, 2633 共1985兲. FIG. 92. Sorption isotherms of carbon dioxide in PMMA/PVF2 blends at 308 K 共mass % PVF2兲. 1421 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Estimated Error: No information given. IUPAC-NIST SOLUBILITY DATA SERIES ⬘ is initial Langmuir capacity parameter prior to any reduction in T g due to CO2 plastisization, T g0 is the glass transition where C H0 temperature for the pure polymer. T g is the glass transition temperature in the presence of sorbed gas, and T is the temperature of measurement, i.e., 308 K. Original Measurements: J. S. Chiou and D. R. Paul, J. Appl. Polym. Sci. 32, 4793 共1986兲. Variables: T/K⫽308 p/MPa⫽0 – 2.7 (0 – 27 atm) mass % PVF⫽0 – 100 Prepared By: Yu. P. Yampol’skii 1422 Experimental Data TABLE 1. Solubility coefficients of various gases in PVF2 at 308 K Gas S/cm 共STP兲 cm 3 ⫺3 ⫺1 atm Ar N2 CH4 0.0350 0.0206 0.0488 TABLE 2. Dual mode sorption parameters for various gases in PMMA at 308 K Gas k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 Ar N2 CH4 0.1150 0.0737 0.1820 1.450 0.814 3.620 0.0480 0.0301 0.0560 FIG. 94. Sorption isotherms of Ar, CH4, and N2 in PVF2 at 308 K. TABLE 3. Dual mode sorption parameters for argon in extruded PMMA/PVF2 blends at 308 K. PVF2 mass % k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 (k D / ␣ )/cm3共STP兲 cm⫺3 atm⫺1 100 90 80 60 40 20 0 0.0350 0.0480 0.0568 0.0742 0.0893 0.1040 0.1150 — — — — — 0.982 1.450 — — — — — 0.0345 0.0480 0.0779 0.0857 0.0849 0.0817 0.0893 0.1040 0.1150 ␣ is the crystallinity of PVF2 in the blend. FIG. 95. Sorption isotherms of Ar, CH4, and N2 in PMMA at 308 K. PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Argon; Ar; 关7440-37-1兴 Nitrogen; N2; 关7727-37-9兴 Carbon dioxide; CO2; 关124-38-9兴 Methane CH4; 关74-82-8兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 共3兲 Poly共vinylidene fluoride兲 (PVF2); 关24937-79-9兴 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Poly共methyl methacrylate兲 共PMMA兲; 关9011-14-7兴 共VI兲 共3兲 Bisphenol chloral polycarbonate 共BCPC兲; 关31546-39-1兴 共XXX兲 Original Measurements: P. C. Raymond and D. R. Paul, J. Polym. Sci.: Part B: Polym. Phys. 28, 2103 共1990兲. Variables: T/K⫽308 p/MPa⫽0 – 2.5 Prepared By: V. I. Bondar Experimental Data Dual mode sorption parameters for carbon dioxide and methane in polymers at 308 K PMMA Vol.% Auxiliary Information MethodÕApparatusÕProcedure The apparatus and procedure were the same as described in Ref. 1. Source and Purity of Materials: PMMA: Rohm and Haas 共Plexiglas V共811兲兲, glass transition temp. 378 K, completely amorphous. PVF2: Pennwalt 共Kynar 460N兲, crystallinity 60%, melting point 433 K. Blends: films prepared by extrusion. Miscible blends were studied. Carbon dioxide 共in conditioned polymers兲 0 28.0 53.9 77.8 100 Methane 共in unconditioned polymers兲 0 28.0 53.9 77.8 100 0.718 0.736 0.778 1.03 1.20 0.130 0.116 0.144 0.133 0.199 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 14.9 14.8 15.7 11.9 15.6 0.271 0.240 0.190 0.245 0.172 6.64 6.92 4.58 4.60 1.53 Estimated Error No information given. FIG. 97. Sorption isotherms of carbon dioxide in conditioned blends and homopolymers at 308 K. 1423 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 30, 2633 共1985兲. 0.088 0.069 0.077 0.061 0.153 IUPAC-NIST SOLUBILITY DATA SERIES FIG. 96. Sorption isotherms of argon in PMMA/PVF2 blends at 308 K. k D /cm3共STP兲 cm⫺3 atm⫺1 Original Measurements: H. G. Spencer and J. A. Yavorsky, J. Appl. Polym. Sci. 28, 2937 共1983兲. Variables: T/K⫽312– 370 p/kPa⫽0 – 40 PS mass content/%⫽25– 75 Prepared By: A. K. Bokarev 1424 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Propane; C3H8; 关74-98-6兴 共2兲 Polystyrene 共PS兲; 关9003-53-62兴 共IX兲 共3兲 Poly共vinylmethyl ether兲 共PVME兲; 关9003-09-2兴 Experimental Data In the pressure range indicated above solubility obeys Henry’s law. Temperature dependence for the solubility coefficient S of propane in PS/PVME blends is given by the equation: S⫽S0 exp共⫺⌬H/RT兲. TABLE 1. Mass content dependence for the solubility coefficient S of propane in PS/PVME blends at 353 K ⫺⌬H/共kJ/mol兲 ln(S0 /(cm3共STP兲/cm3 cm Hg)) ln(S/(cm3共STP兲/cm3 cm Hg)) 25 50 75 10 7 5 ⫺7.49 ⫺6.61 ⫺6.15 ⫺3.99 ⫺4.36 ⫺4.54 FIG. 98. Sorption isotherms of methane in unconditioned blends and homopolymers at 308 K. TABLE 2. Temperature dependence of the solubility coeficient S of propane in PS/PVME blends Auxiliary Information MethodÕApparatusÕProcedure A pressure decay method was used. Methane sorption was measured on samples that had not previously been exposed to CO2. For CO2 these measurements were preceded by conditioning the films at 25 atm of CO2 for 24 h. Source and Purity of Materials: BCPC: General Electric Co. PMMA: Rohm and Haas Co. PMMAmass % 0 25 50 75 100 T/K ln(S/(cm3共STP兲/cm3 cm Hg)) 328.3 333.7 346.4 350.4 358.7 364 ⫺3.82 ⫺3.73 ⫺3.79 ⫺4.08 ⫺4.17 ⫺4.06 324.9 337.2 361.3 370.9 ⫺4.19 ⫺4.29 ⫺4.48 ⫺4.46 313.6 323.8 333.2 353.5 ⫺4.35 ⫺4.49 ⫺4.35 ⫺4.59 PS 25 mass % T g /K density/g cm⫺3 437 413 401 386 379 1.392 1.336 1.285 1.235 1.188 PS 50 mass % Estimated Error: No information given. PS 75 mass % PATERSON, YAMPOL’SKII, AND FOGG PS content mass % Auxiliary Information MethodÕApparatusÕProcedure Sorption measurements were carried out in a low pressure, constant-volume cell previously described.1 Source and Purity of Materials: C3H8: Matheson, purity 99.99%. PS, PVME: Polysciences, Inc. PS: M w ⫽23 000; PVME: M w ⫽34 000. PS/% T g /K 25 50 75 253 275 303 /g, cm⫺3 — 1.052 1.060 Estimated Error: No information given. Components: 共1兲 Propane; C3H8 ; 关74-98-6兴 共2兲 Polystyrene 共PS兲; 关9003-53-62兴 共IX兲 共3兲 Poly共vinylmethyl ether兲 共PVME兲; 关9003-09-2兴 Original Measurements: J. A. Yavorsky, Ph.D. dissertation, 1984. Variables: T/K⫽278– 374 p/kPa⫽0 – 798 Prepared By: A. K. Bokarev Experimental Data The PS/PVME blends studied contained 90.0% and 75.0% by weight PS. M s ⫽0.90 and M s ⫽0.75, respectively. TABLE 1. Sorption isotherms of propane below 350 K in the copolymer blend for which M s ⫽0.90 共The original data were represented graphically兲 T⫽283 K T⫽303.5 K T⫽322 K Pressure/kPa Sorption *) (V 1* 共STP兲/V 23 Pressure/kPa Sorption *) (V 1* 共STP兲/V 23 Pressure/kPa Sorption (V 1* 共STP兲/V 23) 28.83 70.22 79.17 167.26 239.05 299.18 — 0.80 1.30 2.81 3.06 6.22 5.68 — 31.97 75.92 185.78 353.37 378.07 710.15 791.00 0.47 0.98 2.75 5.19 7.15 11.39 12.15 32.66 78.92 172.72 172.07 306.54 368.64 745.61 0.28 0.50 1.44 1.67 2.28 4.08 5.89 Sorption isotherms above 350 K show a linear relationship, and the solubility coefficient is independent of pressure. TABLE 2. Dual mode sorption parameters and solubility coefficient, S, for propane in the copolymer blend for which M s ⫽0.90 共pressure range 0–798 kPa兲 k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/cm Hg⫺1 S/cm3共STP兲 cm⫺3 cm Hg⫺1 283 303.5 322 353 364 369 2.29%⫾9% 1.15%⫾19% 0.86%⫾12% 0.90%⫾6% 0.82%⫾12% 1.11%⫾9% 10.9%⫾15% 10.8%⫾35% 11.4%⫾22% 4.5%⫾50% — — 0.50%⫾35% 1.30%⫾53% 0.70%⫾44% 0.15%⫾100% — — 2.84%⫾10% 2.55%⫾9% 1.66%⫾12% 0.97%⫾10% 0.82%⫾12% 1.11%⫾9% 1425 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 T/K IUPAC-NIST SOLUBILITY DATA SERIES References: 1 J. A. Yavorsky and H. G. Spencer, J. Appl. Polym. Sci. 25, 2109 共1980兲. T⫽278 K T⫽293 K T⫽308 K Pressure/kPa Sorption (V 1* 共STP兲/V 23) Pressure/kPa Sorption (V 1* 共STP兲/V 23) Pressure/kPa Sorption (V 1* 共STP兲/V 23) 14.2 31.83 62.01 — — — — — — — 1.07 2.24 5.20 — — — — — — — 6.45 10.30 22.19 26.45 46.51 57.04 — — — — 0.38 0.58 1.16 1.06 2.46 2.64 — — — — 6.04 6.86 10.47 13.37 15.44 16.86 18.81 22.72 31.42 55.68 0.13 0.24 0.42 0.41 0.29 0.50 0.59 0.94 1.06 2.21 TABLE 4. Dual mode sorption parameters and solubility coefficient, S, for propane in the copolymer blend for which M s ⫽0.75 共pressure range 0–66 kPa兲 T/K k D 102 / cm3共STP兲 cm⫺3 cm Hg⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/cm Hg⫺1 S/ cm3共STP兲 cm⫺3 cm Hg⫺1 278 293 308 323 323 333 343 353 364 374 6.40%⫾11% 4.00%⫾12% 3.50%⫾11% 2.40%⫾12% 2.40%⫾12% 3.06%⫾4% 2.49%⫾4% 1.99%⫾4% 1.89%⫾4% 1.65%⫾4% 3.2%⫾20% 2.2%⫾22% 2.1%⫾19% 1.4%⫾32% 1.4%⫾32% — — — — — 2.15%⫾50% 1.80%⫾44% 0.55%⫾40% 0.35%⫾55% 0.35%⫾55% — — — — — 13.29%⫾16% 7.99%⫾44% 6.79%⫾12% 4.33%⫾51% 4.33%⫾51% 3.06%⫾4% 2.49%⫾4% 1.99%⫾4% 1.89%⫾4% 1.65%⫾4% The isotherms when M s ⫽0.75 Q and M s ⫽0.75 QA were linear. TABLE 5. Solubility coefficient when M s ⫽0.75 Q T/K k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1 323 328 333 343 358 3.19%⫾8% 3.67%⫾4% 2.96%⫾4% 2.21%⫾4% 1.99%⫾4% TABLE 6. Solubility coefficient when M s ⫽0.75 QA T/K k D 102 /cm3共STP兲 cm⫺3 cm Hg⫺1 323 327 338 358 2.45%⫾4% 3.14%⫾4% 2.71%⫾4% 2.00%⫾4% MethodÕApparatusÕProcedure The equilibrium solubility of gases in the polymer was measured by a manometric technique. High pressure apparatus 共up to 930 kPa兲 and low pressure apparatus 共up to 100 kPa兲 with pressure transducers were employed. One sample with M s ⫽0.75 was quenched in cold vapor produced by placing a piece of metal in liquid nitrogen. The sample was cooled in this manner to below room temperature but well above the temperature of liquid nitrogen. This sample was coded as M s ⫽0.75 Q. Another sample for which M s ⫽0.75 was brought to 358 K and then cooled at an average rate of 0.05 K/min to 323 K. This sample was coded as M s ⫽0.75 QA. Source and Purity of Materials: C3H8 : Matheson Co., purity ⬎99.98%. PS: Polyscience, Inc., M w ⫽190 000. PVME: Polyscience, Inc., M w ⫽34 000. Estimated Error: No information given. PATERSON, YAMPOL’SKII, AND FOGG Sorption isotherms above 323 K are linear in the pressure range studied, and the solubility coefficients are independent of pressure. Auxiliary Information 1426 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 3. Sorption isotherms of propane below 323 K in the co-polymer blend for which M s ⫽0.75 共The original data were represented graphically兲 Components: 共1兲 Propane; C3H8; 关74-98-6兴 Miscible blend 共75/25% w/w兲 of 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 and 共3兲 Poly 共vinylmethyl ether兲 共PVME兲; 关9003-09-2兴 Original Measurements: J. A. Yavorsky and H. J. Spencer, J. Appl. Polym. Sci. 31, 501 共1986兲. Variables: T/K: 308–374 p/kPa: 0–80 Prepared By: A. K. Bokarev Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共3兲 Poly共vinylmethyl ether兲 共PVME兲; 关9003-09-2兴 共polymer blends兲 Original Measurements: H. Hachisuka, T. Sato, Y. Tsujita, A. Takizawa, and T. Kinoshita, Polym. J. 21, 417 共1989兲. Variables: T/K⫽298 p/MPa⫽0 – 1.33 Prepared By: Yu. P. Yampol’skii Experimental Data Soprtion parameters for the 75/25° 共w/w兲 PS/PVME blends Series C-1 SC-2 308 293 278 323 333 343 353 364 374 323 328 333 343 358 323 327 338 356 102 k D /cm3共STP兲 cm⫺3 ⬘ /cm Hg⫺1 CH 102 b/cm3共STP兲 cm⫺3 cm Hg⫺1 k* Composition total PS/PVME phase 3.5共⫾11%兲 4.0共⫾12%兲 6.4共⫾11%兲 2.4共⫾12%兲a 2.1共⫾19%兲 2.2共⫾22%兲 3.2共⫾20%兲 1.4共⫾32%兲 1.6共⫾40%兲 1.8共⫾44%兲 2.2共⫾50%兲 1.4共⫾55%兲 6.79共⫾12%兲 7.99共⫾13%兲 13.3共⫾16%兲 4.33共⫾51%兲b 3.06共⫾4%兲 2.49共⫾4%兲 1.99共⫾4%兲 1.89共⫾4%兲 1.65共⫾4%兲 3.19共⫾8%兲 3.67共⫾4%兲 2.96共⫾4%兲 2.21共⫾4%兲 1.99共⫾4%兲 2.45共⫾4%兲c 3.14共⫾4%兲 2.71共⫾4%兲 2.00共⫾4%兲 100/0 — 75/25 50/50 20/80 — — — 75/25 50/50 20/80 0/100 共83/17兲/共21/79兲 共73/27兲/共31/69兲 共74/26兲/共19/81兲 — Auxiliary Information MethodÕApparatusÕProcedure A dual volume–single transducer manometric system similar to that previously described1 was used. Source and Purity of Materials: PS and PVME 共Poly Sciences, Inc.兲 had M w 190 000 and 34 000, respectively. Two 75:25% PS/PVME blends were prepared and three thermal histories developed. Sample SC-1 was cooled slowly, a rate of 0.75 K/min, from 358 K to room temperature. Q was rapidly quenched from 358 K to room temperature. After investigating sample Q up to 358 K, it was very slowly cooled, a rate of 0.05 K/min, to 333 K. This sample is designated SC-2. Propane 共Matheson Co兲 99.98% purity. ⬘ /共cm3共STP兲/cm3兲 CH b 103 /共cm Hg兲⫺1 4.1 2.36 1.5 — — 1.45 — — 2.4 0.4 1.1 — 2.76 4.73 3.95 — 1.12 Single phase blends 1.41 2.01 2.62 Phase separated blends 1.49 2.05 2.93 4.00 Auxiliary Information MethodÕApparatusÕProcedure Sorption measurement was carried out using electromicrobalance Cahn 2000. The correction for buoyancy was introduced. Source and Purity of Materials: Type PS, % Single phase same same Phase separated 共75/25兲 Phase separated 共50/50兲 Phase separated 共20/80兲 75 50 20 83 21 73 31 74 19 PVME, % T g, K 25 50 80 17 79 27 69 26 81 315.0 262.9 248.6 321.2 249.2 301.2 253.2 308.6 248.0 CO2 purity ⬎99.99% Estimated Error: No information given. References: 1 H. J. Spencer and J. A. Yavorsky, J. Appl. Polym. Sci. 28, 2937 共1983兲. 1427 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 ⬘ b. k * ⫽k D ⫹C H a k * , after extended annealing in vacuum at 323 K. b k * , initial sorption isotherm. c k * , after annealing. k D 102 /cm3共STP兲/cm3 cm Hg IUPAC-NIST SOLUBILITY DATA SERIES Q T/K/ cm3共STP兲 cm⫺3 cm Hg⫺1 Experimental Data Dual mode sorption paramters for CO2 in PS/PVME blends Original Measurements: G. Morel and D. R. Paul, J. Membr. Sci. 10, 273 共1982兲. Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 Methane; CH4; 关74-82-8兴 共2兲 Polystyrene 共PS兲; 关9003-53-6兴 共IX兲 共3兲 Tetramethyl bisphenol A Polycarbonate 共TMPC兲 Original Measurements: N. Muruganandam and D. R. Paul, J. Polym. Sci., Part B: Polym. Phys. 25, 2315 共1987兲. Variables: T/K: 308 p/MPa: 0–2.3 Prepared By: A. K. Bokarev Variables: T/K⫽308 p/MPa⫽0 – 2.0 Prepared By: Yu. P. Yampol’skii Experimental Data Dual mode sorption parameters for CO2 in miscible blends PPO and PS* Experimental Data TABLE 1. Dual mode sorption parameters for carbon dioxide in TMPC/PS blends at 308 K k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0 10 25 50 75 90 100 0.550 0.488 0.482 0.494 0.589 0.683 0.754 9.28 12.22 14.72 20.56 22.78 25.00 29.00 0.133 0.126 0.124 0.155 0.165 0.175 0.198 TMPC mass % k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0 20 40 60 81 100 0.550 0.604 0.579 0.667 0.879 1.011 9.44 11.53 15.37 19.05 20.49 27.66 0.177 0.198 0.186 0.207 0.275 0.283 TABLE 2. Dual mode sorption parameters for methane in TMPC/PS blends at 308 K *Taken from the plot by compiler. Auxiliary Information Source and Purity of Materials: The PPO used was supplied by General Electric Co.; M n ⫽22 600; M w ⫽34 000. The PS used was a commercial product. Costen Polystyrene 550. Films containing different proportions of these polymers were cast from 10% trichloroethylene solutions on mercury surface. TMPC mass % k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0 20 40 60 81 100 0.109 0.252 0.192 0.230 0.237 0.244 6.99 3.85 6.80 8.90 12.72 15.34 0.068 0.126 0.094 0.090 0.086 0.100 References: 1 W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci 2, 165 共1977兲. FIG. 99. Sorption isotherms of carbon dioxide in TMPC/PS blends at 308 K. PATERSON, YAMPOL’SKII, AND FOGG % PPO in blends MethodÕApparatusÕProcedure The experimental equipment and procedures for sorption measurements have been described previously.1 1428 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Poly共phenylene oxide兲 共PPO兲; 关25134-01-4兴 and 共3兲 Polystyrene 共PS兲; 关9003-34-6兴 共IX兲 miscible blends Components: 共1兲 Carbon dioxide; CO2; 关124-38-9兴 共2兲 Polycarbonate 共PC兲; 关24936-68-3兴 共XXI兲 共3兲 Copolyester 共Kodar A-150兲 Original Measurements: P. Masi, D. R. Paul, and J. W. Barlow, J. Polym. Sci., Polym. Phys. Ed. 20, 15 共1982兲. Variables: T/K⫽308 p/MPa⫽0 – 2.1 Prepared By: A. K. Bokarev Experimental Data TABLE 1. Dual mode sorption parameters for CO2 in polycarbonate–copolyester blends at 308 K 共taken from the plot by the compiler兲 Auxiliary Information MethodÕApparatusÕProcedure The apparatus and procedure are described in Ref. 1. The films previously had been exposed to carbon dioxide at 20 atm for 24 h. Source and Purity of Materials: PS: Cosden Oil and Chemical Co., M n ⫽100 000, M w ⫽350 000, glass transition temp. 375 K. TMPC: Bayer AG, glass transition temp. 466 K. Blends: glass transition temperatures varied monotonously in the range of the values characteristic for pure components. Estimated Error: No information given. References: 1 W. J. Koros, A. H. Chan, and D. R. Paul, J. Membr. Sci. 2, 165 共1977兲. k D /cm3共STP兲 cm⫺3 atm⫺1 ⬘ /cm3共STP兲 cm⫺3 CH b/atm⫺1 0 25 50 75 100 0.644 0.613 0.613 0.655 0.686 9.4 13.1 13.8 18.0 19.2 0.29 0.23 0.28 0.23 0.26 1429 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES FIG. 100. Sorption isotherms of methane in TMPC/PS blends at 308 K. PC mass % Pressure/MPa Sorption (V 1* (STP)/V 23) Pressure/MPa Sorption (V 1* (STP)/V 23) Pressure/MPa Sorption (V 1* (STP)/V 23) 2.57 3.34 4.05 4.88 6.18 8.01 9.71 0.71 0.92 0.94 1.05 1.25 1.28 1.35 10.75 12.86 12.49 13.78 15.28 15.76 16.16 1.47 1.67 1.74 1.75 1.86 2.08 — 17.39 18.47 19.29 18.68 19.67 21.11 — 8.50 9.73 10.99 11.03 12.68 15.61 1.11 1.21 1.36 1.34 1.48 1.51 16.42 17.29 17.66 18.09 19.01 19.73 1.58 1.66 1.79 1.90 1.96 — 19.46 20.40 21.75 22.13 22.35 — 8.53 10.06 11.13 13.94 14.94 1.07 1.17 1.26 1.43 1.46 16.97 17.79 18.66 19.93 19.99 1.58 1.72 1.79 1.91 2.02 20.97 22.01 22.29 23.10 24.15 9.26 11.22 13.23 15.52 16.99 19.10 19.87 1.23 1.24 1.29 1.31 1.41 1.47 1.57 20.97 21.45 21.73 21.96 22.60 23.54 24.36 1.76 1.80 1.83 1.90 2.03 2.06 2.12 25.68 26.09 26.14 26.72 27.28 28.36 28.76 5.22 7.49 12.89 14.97 17.38 18.69 0.97 1.12 1.21 1.29 1.49 1.52 20.33 21.61 22.66 23.42 24.68 25.40 1.71 1.84 1.93 2.00 2.09 — 27.21 28.19 29.61 29.10 30.16 — MethodÕApparatusÕProcedure Sorption was measured using a pressure decay method described in Ref. 1. The specimens were exposed to CO2 at 20 atm for 1 day. Source and Purity of Materials: Copolyester 共Kodar A-150兲: Products, Inc. contained the units of isophthalic and terephthalic acid in a ratio 20/80; M n ⫽22 000, glass transition temperature 360 K. PC 共Bisphenol A Polycarbonate兲: Lexan 131-111 General Electric Co., M n ⫽13 300, M w ⫽34 200, glass transition temperature 421 K. The blends were produced by extrusion at 293 K 共above T m of the copolyester兲. Estimated Error: No information given. References: 1 W. J. Koros, D. R. Paul, and A. A. Rocha, J. Polym. Sci., Polym. Phys. Ed. 14, 687 共1976兲. PATERSON, YAMPOL’SKII, AND FOGG PC 0 mass % 0.09 0.13 0.17 0.21 0.31 0.43 0.59 PC 25 mass % 0.42 0.51 0.56 0.60 0.73 1.01 PC 50 mass % 0.32 0.42 0.49 0.73 0.84 PC 75 mass % 0.29 0.40 0.53 0.72 0.84 1.02 1.08 PC 100 mass % 0.11 0.18 0.44 0.54 0.74 0.80 Auxiliary Information 1430 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 TABLE 2. Sorption isotherms of carbon dioxide in polycarbonate–copolyester blends at 308 K IUPAC-NIST SOLUBILITY DATA SERIES 1431 4. Structure Formulas of Polymers J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1432 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES 1433 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1434 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES 1435 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1436 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES 1437 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1438 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES 1439 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1440 PATERSON, YAMPOL’SKII, AND FOGG J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES 1441 5. Polymer Index Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compiled tables. Bisphenol F polysulfone Bisphenol chloral polycarbonate Bisphenol norbornene polycarbonate Bisphenol Z polycarbonate Cellulose Cellulose acetate Copoly共dimethylphenylene oxide-diphenylphenylene oxide兲 Copolyester Kodar Copoly共ethylene vinylacetate兲 Copolyimide Copoly共styrene-acrylonitrile兲 Copoly共styrene-methyl methacrylate兲 Copoly共trimethylsilyl propyne-phenylpropyne兲 Copoly共vinylidene cyanide-vinyl acetate兲 Copoly共vinyltrimethylsilane-dimethylsiloxane兲 Copoly共4-vinylpyridine acrylonitrile兲 Dimethyl bisphenol A polysulfone Dimethyl bisphenol Z polysulfone Ethyl Cellulose 6FDA polyimides Hexafluoropolycarbonate Hexafluoropolysulfone Nitrocellulose Poly共p-acetoxystyrene兲 Polyacrylonitrile Polyamide Nylon 11 Polyamide Nylon 66 Poly共alkyl glutamate兲s Polyarylate Ardel 1382 1362, 1423–1424 1361, 1362 1362 1384 E1389–E1390, 1390–1392, 1393 1416, 1417 1371, 1429–1430 1419 1417 1420 1415 1416 1414, 1415 1418 1413–1414 1381 1383 1385–1389 1410, 1412 1359–1360 1382 1385 1307 1273 1399 1398 1395 1364–1366 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1442 PATERSON, YAMPOL’SKII, AND FOGG Poly共aryl-bis-hexafluoroisopropylidene etherketone兲 Poly共aryl-bis-isopropylidene etherketone兲 Poly共aryl-isopropylidenehexafluoro etherketone兲 Poly共benzyl aspartate兲 Poly共benzyl glutamate兲 Poly共butylene terephthalate兲 Poly共n-butyl methacrylate兲 Polycarbonate Polyepichlorhydrine Polyetherimide Polyethersulfone Polyethylene, sulfochlorinated Polyethylene terephthalate Poly共dimethylsiloxane兲 Poly共ethyl glutamate兲 Poly共ethyl methacrylate兲 Ployhydroxyether Polyimide aminoacid 6FDA-TADPO Polyimide BPDA-SDA Polyimide PMDA-IPDA Polyimide PMDA-MDA Polyimide Kapton 共PMDA-ODA兲 Polyimide Upilex Polyimide Ultem Poly共p-methoxystyrene兲 Poly共methyl acrylate兲 Poly共␥-methyl-L-glutamate兲 Poly共methyl methacrylate兲 Poly共4-methylpentene-1兲 Poly共octyl glutamate兲 Poly共phenolphthaleine phthalate兲 Poly共phenylene oxide兲 Poly共phenylene oxide兲 brominated Poly共phenylene oxide兲 carboxylated Poly共phenyl propyne兲 Polypyrrolone Polystyrene Poly共tetrabromophenolphthalein terephthalate兲 Polysulfone Poly共trimethylsilyl propyne兲 Poly共trimethylsilyl propyne兲 brominated Poly共vinyl acetate兲 Poly共vinyl benzoate兲 Poly共vinyl butyral兲 Poly共vinyl chloride兲 Poly共vinyl cyclohexanecarboxylate兲 Poly共vinylidene fluoride兲 Poly共vinylmethyl ether兲 Poly共vinyltrimethyl silane兲 Tetrabromohexafluoro polycarbonate Tetrabromo polycarbonate Tetrachloro polycarbonate Tetramethyl bisphenol A polysulfone Tetramethyl bisphenol A polycarbonate Tetramethylhexafluoro polycarbonate Tetramethyl polycarbonate 4,4⬘ -Dichlorodiphenyl sulfone Dioctyl sebacate Mineral oil N-phenyl-2-naphthylamine Tricresyl phosphate J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1364 1363 1363 1397 1396, 1397 1339 1289 E1340, 1340–1348, E1348, 1349–1350, E1351, 1351–1352, 1353–1357, 1429–1430 1419 1412 1383–1384 1419 E1330, 1331–1339 1418 1395 E1283–E1284, 1284–1289 1367–1368 1412 1411 1409–1410 1409 E1400, 1400–1405 E1406, 1407–1408 1411 1306 1419 1393–1394 E1274, 1274–1283, 1421–1424 E1265, 1265–1267 1396 1368–1370 E1323, 1323–1329, 1428 1326, 1327 1328–1329 1416 1413 E1290, E1291, E1292, E1293, E1294, 1294–1306, 1423–1430 1370 E1371–E1372, E1373, 1373–1381 E1318, 1318–1322, 1416 1322 1271–1273 1309–1311 1312 E1267, 1268–1271 1307–1308 1420–1423 1313, 1424–1427 E1313–E1314, 1314–1317, 1418 1361 1355–1357, 1359 1355–1357 1381 1428–1429 1360 1355–1358 Plasticizers and additives 1376–1378 1325–1326 1299 1376–1378 1270, 1299, 1325–1326, 1376–1378 IUPAC-NIST SOLUBILITY DATA SERIES 1443 6. Gas Index Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compilation tables. Ammonia Argon n-Butane Carbon dioxide Chlorine Chlorodifluoro methane Chlorofluoromethane Dichlorodifluoromethane Chloromethane 2, 2-Dimethylpropane 共Neopentane兲 Ethane Ethene 共Ethylene兲 Ethyne 共Acetylene兲 Helium Hydrogen Hydrogen chloride Krypton Methane 2-Methylpropane 共Isobutane兲 Neon Nitrogen Nitrous oxide Oxygen Propadiene 共Allene兲 Propane Propene 共Propylene兲 Propyne 共Methylacetylene兲 Sulfur dioxide Trichlorofluoromethane Xenon 1385, 1398 1269, 1275, 1285–1286, 1288–1289, E1290, 1295–1296, 1309, 1314, 1320–1321, 1323, 1331, 1337–1338, 1354, 1371, 1375, 1383–1384, 1385, 1399, 1419, 1422–1423 1268, 1289, 1304, E1313–E1314, 1315, 1385, 1386–1389 E1265, 1265–1266, 1266, E1267, 1268, 1269, 1270, 1272, 1273, E1274, 1274–1277, 1278–1279, 1280–1282, 1282, 1283, E1283, 1284, 1285–1286, 1286–1287, 1273, E1291, 1294–1296, 1297–1298, 1299, 1300–1301, 1302, 1306–1308, 1309, 1310–1311, 1312, 1314, 1317, E1318, 1318, 1319, 1320, 1320–1321, 1322, E1323, 1323–1324, 1327–1328, E1330, 1331–1334, 1335–1336, 1337–1338, 1338–1339, E1340, 1340, 1341, 1342–1344, 1344–1345, 1346, 1346–1347, 1351, 1355–1357, 1358, 1359, 1359–1360, 1361–1363, 1364–1365, 1366, 1367–1368, 1368–1370, E1371–E1372, 1373–1374, 1375, 1376–1378, 1380–1384, 1385–1386, E1389, 1390–1391, 1391–1392, 1393, 1396–1397, E1400, 1400–1401, 1402–1404, E1406, 1407–1408, 1408–1409, 1410–1412, 1413–1414, 1415, 1417, 1419–1421, 1422–1423, 1423–1424, 1427–1430 1271 1305–1306, E1294, 1304 1304 1304 1273, 1304 1386–1387 1273, 1289, E1313–E1314, 1315–1316, 1320, 1327, 1337–1338, 1370, 1373–1374, 1385, 1388–1389, 1416–1417 1273, 1277–1282, E1313–E1314, 1315–1316, 1327, 1417 1294, E1313–E1314, 1315, 1316 1265–1266, 1271, 1275, 1295, 1296, 1314, 1337–1338, 1354, 1359, 1361, 1385, 1412–1413, 1419 1265–1266, 1270, 1271, 1272, 1294, 1314, 1336, 1339 1398 1275, 1296, 1320–1321 E1265, 1265–1267, E1267, 1269, 1270, E1292, 1295–1296, 1301–1302, 1305–1306, E1313, 1314, 1318, 1320–1321, E1323, 1323–1324, 1327–1328, 1337–1338, 1338–1339, 1348, E1351, 1351–1352, 1354, 1355–1357, 1359, 1360–1363, 1364–1365, 1366, 1367–1368, 1370, 1371, E1373, 1373–1374, 1375, 1378, 1380, 1381–1382, 1383, 1391–1392, 1400–1401, 1402, 1403, 1409–1410, 1412, 1419, 1422–1423, 1423–1424, 1428 E1293, 1304, 1319, 1386–1387 1270, 1271, 1275, 1399 1265–1266, E1267, 1268, 1269, 1275, 1285–1286, 1290, 1294–1296, 1309, 1314, 1318, 1320, 1323, 1331, 1337–1338, 1338–1339, 1351, 1354–1357, 1359, 1361, 1364–1365, 1367–1368, 1371, 1375, 1378, 1380, 1381, 1382–1384, 1385, 1410, 1412–1414, 1419, 1422–1423 1280–1282, 1317, 1320–1321 1314, 1318, 1319, 1331, 1337–1339, 1359, 1361, 1385, 1410, 1412–1414 E1313–E1314, 1315, 1316 1288, E1293, 1302–1306, 1313, E1313–E1314, 1315–1316, 1317, 1321, 1322, 1327, E1352, 1353, 1385, 1388–1389, 1416–1417, 1424–1427 E1313–E1314, 1315–1316, 1327, 1416–1417 E1313–E1314, 1315, 1316 1273, 1316–1317, E1348, 1349–1350, 1366, 1384–1385, 1399, 1405 1304 1296, 1315, 1317, 1319, 1320–1321, 1324, 1393, 1395 7. Registry Number Index Page numbers preceded by E refer to evaluation text whereas those not preceded by E refer to compiled tables. 74-82-8 Methane 74-84-0 Ethane 74-85-1 74-86-2 74-87-3 74-98-6 Ethene 共Ethylene兲 Ethyne 共Acetylene兲 Chloromethane Propane 74-99-7 75-28-5 Propyne 共Methylacetylene兲 2-Methylpropane 共Isobutane兲 E1265, 1265–1267, E1267, 1269, 1270, E1292, 1295–1296, 1301–1302, 1305–1306, E1313, 1314, 1318, 1320–1321, E1323, 1323–1324, 1327–1328, 1337–1338, 1338–1339, 1348, E1351, 1351–1352, 1354, 1355–1357, 1359, 1360–1363, 1364–1365, 1366, 1367–1368, 1370, 1371, E1373, 1373–1374, 1375, 1378, 1380, 1381–1382, 1383, 1391–1392, 1400–1401, 1402, 1403, 1409–1410, 1412, 1419, 1422–1423, 1423–1424, 1428 1273, 1289, E1313–E1314, 1315–1316, 1320, 1327, 1337–1338, 1370, 1373–1374, 1385, 1388–1389, 1416–1417 1273, 1277–1282, E1313–E1314, 1315–1316, 1327, 1417 1294, E1313–E1314, 1315, 1316 1273, 1304 1288, E1293, 1302–1306, 1313, E1313–E1314, 1315–1316, 1317, 1321, 1322, 1327, E1352, 1353, 1385, 1388–1389, 1416–1417, 1424–1427 E1313–E1314, 1315, 1316 E1293, 1304, 1319, 1386–1387 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1444 PATERSON, YAMPOL’SKII, AND FOGG 75-45-6 75-69-4 75-71-8 106-97-8 115-07-1 124-38-9 Chlorodifluoromethane Trichlorofluoromethane Dichlorodifluoromethane n-Butane Propene 共Propylene兲 Carbon dioxide 135-88-6 463-49-0 463-82-1 593-70-4 1330-78-5 1333-74-0 2432-87-3 7439-90-9 7440-01-9 7440-37-1 N-phenyl-2-naphthyamine Propadiene 共Allene兲 2,2-Dimethylpropane 共Neopentane兲 Chlorofluoromethane Tricresyl phosphate Hydrogen Dioctyl sebacate Krypton Neon Argon 7440-59-7 Helium 7440-63-3 7446-09-5 7647-01-0 7664-41-7 7727-37-9 Xenon Sulfur dioxide Hydrogen chloride Ammonia Nitrogen 7782-44-7 7782-50-5 9002-86-2 9003-09-2 9003-20-7 9003-21-8 9003-24-1 9003-42-3 9003-53-6 9003-63-8 9004-34-6 9004-35-7 9004-57-3 9004-70-0 9011-14-7 9016-00-6 10024-97-2 12634-94-7 24936-44-5 24936-68-3 Oxygen Chlorine Poly共vinyl chloride兲 Poly共vinylmethyl ether兲 Poly共vinyl acetate兲 Poly共methyl acrylate兲 Copoly共vinylidene cyanide-vinyl acetate兲 Poly共ethyl methacrylate兲 Polystyrene Poly共n-butyl methacrylate兲 Cellulose Cellulose acetate Ethyl cellulose Nitrocellulose Poly共methyl methacrylate兲 Poly共dimethylsiloxane兲 Nitrous oxide Polypyrrolone Poly共p-methoxystyrene兲 Polycarbonate 24937-78-8 24937-79-9 24938-86-1 24969-06-0 24979-78-0 24991-32-0 25014-27-1 25014-41-9 Copoly共ethylene vinylacetate兲 Poly共vinylidene fluoride兲 Poly共phenolphthalein phthalate兲 Poly共epichlorohydrin兲 Poly共p-acetoxystyrene兲 Poly共vinyl benzoate兲 Poly共benzyl glutamate兲 Polyacrylonitrile J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1305–1306, E1294, 1294, 1304 1304 1304 1268, 1289, 1304, E1313–E1314, 1315, 1385, 1386–1389 E1313–E1314, 1315–1316, 1327, 1416–1417 E1265, 1265–1266, E1267, 1268, 1269, 1270, 1272, 1273, E1274, 1274–1277, 1278–1279, 1280–1282, 1283, E1283, 1284, 1285–1286, 1286–1287, 1273, E1291, 1294–1296, 1297–1298, 1299, 1300–1301, 1301, 1302, 1306–1308, 1309, 1310–1311, 1312, 1314, 1317, E1318, 1318, 1319, 1320, 1320–1321, 1322, E1323, 1323–1324, 1327–1328, E1330, 1331–1334, 1335–1336, 1337–1338, 1338–1339, E1340, 1340, 1341, 1342–1344, 1344–1345, 1346–1347, 1351, 1355–1357, 1358, 1359–1360, 1361–1363, 1364–1365, 1366, 1367–1368, 1368–1370, E1371–E1372, 1373–1374, 1375, 1376–1378, 1380–1384, 1385–1386, E1389, 1390–1391, 1391–1392, 1393, 1396–1397, E1400, 1400–1401, 1402–1404, E1406, 1407–1408, 1408–1409, 1410–1412, 1413–1414, 1415, 1417, 1419–1421, 1422–1423, 1423–1424, 1427–1430 1376–1378 E1313–E1314, 1315, 1316 1386–1387 1304 1270, 1299, 1325–1326, 1376–1378 1265–1266, 1270, 1271, 1272, 1294, 1314, 1336, 1399 1325–1326 1275, 1296, 1320–1321 1270, 1271, 1274, 1399 1269, 1275, 1285–1286, 1288–1289, E1290, 1295–1296, 1309, 1314, 1320–1321, 1323, 1331, 1337–1338, 1354, 1371, 1375, 1383–1384, 1385, 1399, 1419, 1422–1423 1265–1266, 1271, 1275, 1295, 1296, 1314, 1337–1338, 1354, 1359, 1361, 1385, 1412–1413, 1419 1296, 1315, 1317, 1319, 1320–1321, 1324, 1393, 1395 1273, 1316–1317, E1348, 1349–1350, 1366, 1384–1385, 1399, 1405 1398 1385, 1398 1265–1266, E1267, 1268, 1269, 1275, 1285–1286, 1290, 1294–1296, 1309, 1314, 1318, 1320, 1323, 1331, 1337–1338, 1338–1339, 1351, 1354–1357, 1359, 1361, 1364–1365, 1367–1368, 1368–1370, 1371, 1375, 1378, 1380, 1381, 1382–1384, 1385, 1410, 1412–1414, 1419, 1422–1423 1314, 1318, 1319, 1331, 1337–1339, 1359, 1361, 1385, 1410, 1412–1414 1271 E1267, 1268–1271 1313, 1424–1427 1271–1273 1419 1414, 1415 E1283–E1284, 1284–1289 E1290, E1291, E1292, E1293, E1294, 1294–1306, 1424–1430 1289 1384 E1389–E1390, 1390–1392, 1393 1385–1389 1385 E1274, 1274–1283, 1421–1424 1418 1280–1282, 1317, 1320–1321 1413 1306 E1340, 1340–1348, E1348, 1349–1350, E1351, 1351–1352, E1352, 1353–1357, 1429–1430 1419 1420–1423 1368–1370 1419 1307 1309–1311 1396–1397 1273 IUPAC-NIST SOLUBILITY DATA SERIES 25036-32-2 25036-53-7 25038-59-9 25068-26-2 25135-51-7 25135-52-8 25232-41-1 25639-68-3 25667-42-9 26402-79-9 26615-45-2 26913-25-7 28774-93-8 29316-32-3 31546-39-1 31694-05-0 31694-07-2 32034-67-7 32131-17-2 32291-26-2 38797-88-5 38980-51-7 58978-16-8 61128-24-3 61128-24-3 87842-32-8 122165-94-0 122165-95-1 122165-97-3 125431-72-3 126430-95-3 132634-94-7 134140-27-5 Poly共vinyltrimethyl silane兲 Polyimide Kapton H共PMDA-ODA兲 Polyethylene terephthalate Poly共4-methylpentene-1兲 Polysulfone Bisphenol Z polycarbonate Copoly共4-vinylpyridine acrylonitrile兲 Polyarylate Polyethersulfone Polyhydroxyether Polyimide Upilex Tetrachloropolycarbonate Tetrabromopolycarbonate Poly共vinyl cyclohexane carboxylate兲 Bisphenol chloral polycarbonate Bisphenol F polysulfone Hexafluoropolysulfone Tetramethyl bisphenol A polysulfone Polyamide Nylon 66 Hexafluoropolycarbonate Tetramethylpolycarbonate 4,4⬘-Dichlorodiphenyl sulfone Dimethyl bisphenol A polysulfone Polyimide Ultem Polyetherimide Poly共trimethylsilyl propyne兲 Poly共aryl-bis-isoprolylidene ether ketone兲 Poly共aryl-isopropylidenehexafluoro ether ketone兲 Poly共aryl-bis-hexafluoroisopropylidene ether ketone兲 Tetramethylhexafluoropolycarbonate Tetrabromohexafluoropolycarbonate Polyimide aminoacid 6FDA-TADPO Dimethyl bisphenol Z polysulfone The following have no CA Registry number Bisphenol norborene polycarbonate Copoly共dimethyphenylene oxide-diphenylphenylene oxide兲 Copolyester Kodar Copolyimide Copoly共styrene-acrylonitrile兲 Copoly共stryene-methyl methacrylate兲 Copoly共trimethylsilyl propyne-phenylpropyne兲 Copoly共vinyltrimethylsilane-dimethylsiloxane兲 6FDA polyimides Polyamide Nylon 11 Poly共alkyl glutamate兲s Poly共benzyl aspartate兲 Poly共butylene terephthalate兲 Polyethylene, sulfochlorinated Poly共ethyl glutamate兲 Polyimide BPDA-SDA Polyimide PMDA-IPDA Polyimide PMDA-MDA Poly共gamma-methyl-L-glutamate兲 Poly共octyl glutamate兲 Poly共phenylene oxide兲 Poly共phenylene oxide兲 brominated Poly共phenylene oxide兲 carboxylated Poly共phenyl propyne兲 Poly共tetrabromophenolphthalein terephthalate兲 Poly共trimethylsilyl propyne兲 brominated Poly共vinyl butyral兲 Tetramethyl bisphenol A polycarbonate Mineral oil 1445 E1313–E1314, 1314–1317, 1418 E1400, 1400–1405 E1330, 1331–1339 E1265, 1265–1267 E1371–E1372, E1373, 1373–1381 1362 1413–1414 1364–1366 1383–1384 1367–1368 E1406, 1407–1408 1355–1357 1355–1357, 1359 1307–1308 1362, 1423–1424 1382 1382 1381 1398 1359–1360 1355–1358 1376–1378 1381 1411 1412 E1318, 1318–1322, 1416 1363 1363 1364 1360 1361 1412 1383 1361, 1362 1416, 1417 1371, 1429–1430 1417 1420 1415 1416 1418 1410, 1412 1399 1395 1397 1339 1419 1395 1411 1409–1410 1409 1393–1394 1396 E1323, 1323–1329, 1428 1326, 1327 1328–1329 1416 1370 1322 1312 1428–1429 1299 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1446 PATERSON, YAMPOL’SKII, AND FOGG 8. AUTHOR INDEX Page numbers preceded by E refer to evaluation texts whereas those not preceded by E refer to compiled tables. Alcalay H.H. Arai Y. Asakawa S. Ash R. E1330, 1338–1339 E1293, 1304 1319, 1324, E1323 1399 Bamba Y. Ballard R.L. Barbari T.A. Barlow J. Barrer R.M. Barrie J.A. Berens A.R. Bokarev A.K. Bondar V.I. Bourban D. E1291, E1292, 1301, E1340, 1348, E1351 E1267, 1270 E1351, 1351, 1367–1368, 1378, 1412 1371, 1419, 1429–1430 1270, 1386–1387, 1399 E1292, E1293, E1294, 1305–1306, E1330, 1337–1338, E1352, 1353, 1386–1387, 1419 E1267, 1268 E1313, 1316, E1318, 1320–1321, 1418 E1318, 1320 1288–1289 Campanile G. Carfagna C. Cassidy P.E. Casur E. Chan A.H. Chan D.D. Chandler R. Chern R.T. Chertova M.V. Chiou J.S. Coleman M.R. E1291, 1300–1301 E1291, 1300–1301 1363, 1364 1388–1389 E1340, 1342–1344, E1351, 1354, 1386 E1330, 1333 1366 E1323, 1321, 1326, 1327–1328, 1366, 1368–1370, 1371, E1400, 1400–1401, 1402 E1323, 1327, 1416, 1417 E1283, 1285–1286, E1291, 1299, 1376, 1419–1421 1410 Davies E.G. Davydova M.B. De Meringo A.H. Draisbach H.-C. Durgaryan S.G. Durrill P.L. E1348, 1349, 1349, 1399 E1313, 1316 E1389, 1390–1391 1336 E1313, 1314–1315, 1316, 1317, 1418 E1274, 1274, E1290, E1291, E1294, 1295 Eaton G.M. Eilenberg J.A. El-Hibri M.J. Erb A.J. Ezaki T. 1384 E1340, 1341 E1267, 1269 E1371–E1372, E1373, 1375 1413–1414 Fechter J.M.H. Felder R.M. Fincher S.J. Fleming G.K. Frabetti A.J. Frangoulis C.S. Fried J.R. Frimpong S. Fujii M. E1283, 1275 1405 1405 E1340, 1344, 1346–1347, E1351, 1352, 1357, 1358, 1360 E1330, 1338–1339 E1292 E1267, 1270 E1348, 1350 E1330, 1332 Gerrens H. Gladkova N.K. Goradia U.B. Grieskey R.G. E1290 E1313, 1316 1288 E1274, 1274, E1294, 1295 Hachisuka H. Hamano H. Harnish D.F. Hellums M.W. Hidetoshi K. Higashimura T. Higuchi A. Hirose T. E1300, 1404, 1414, 1418 1396 E1293, E1259, 1304 1359, 1360 1411, 1417 1319 E1318, 1322 E1283, 1286–1287, 1397–1308, 1309, 1310, 1310–1311, 1312, E1330, 1334, 1335–1336, 1344–1345, 1373–1374 E1274, 1273, 1275, 1277, 1278–1279, E1293, 1303, 1321, E1323, 1326, 1327–1328, E1330, 1332, 1366, E1400, 1400–1401, 1402 Hopfenberg H.B. J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 IUPAC-NIST SOLUBILITY DATA SERIES 1447 Hsieh P.Y. Huvard G.S. Husk G.R. Huyett M.J. 1385 1273 1359, 1361, E1400, 1402, 1403, 1410 E1292, 1297 Ichiraku Y. Ilinitch O.M. Iwai Y. E1318, 1318 E1323, 1327, 1416, 1417 E1293, 1304 Jeschke D. Jia L. 1336 E1323, 1326, 1327–1328 Kaliuzhnyi N.E. Kamiya Y. Khotimskii V.S. Kim T.H. Kinoshita T. Kita H. Kodama H. Koros W.J. Krukonis V.J. Kukharskii Yu.M. Kulkarni S.S. Kumazawa H. Kurata M. Kusuki Y. Laukhauf W.L.S. Liau I.S. Litvinova E.G. Liu D.D. Lundberg J.L. Maeda Y. Mallinder Masi P. Masuda T. Masuoka H. Mauze G.R. McCoy N.R. McHattie J.S. McHugh M.A. Meares P. Michaels A.S. Mizoguchi K. Mohr J.M. Mooney E.J. Morel G. Morikawa H. Munday K. Muruganandham N. Nagai K. Naito Y. Nakagawa T. Nakamura A. Nakamura K. Nakanishi K. Nametkin N.S. Nemoto N. Newitt D.M. Nicodemo L. Nicolais L. Nishigaki M. Norton F.J. E1313, 1315, 1317, E1318, 1320–1321 E1283, 1286–1287, 1288–1289, 1307–1308, 1309, 1310–1311, 1312, E1330, 1334, 1335–1336, 1344–1345, 1373–1374 E1318, 1320–1321 1410 E1400, 1404, 1414, 1415, 1427 E1400, 1401, 1403, E1406, 1407, 1408, 1414 1397 1273, E1274, 1275–1277, 1278–1279, 1280–1282, E1283, 1284, 1293, 1303, E1323, 1324, 1329, E1330, 1331–1332, E1340, 1341, 1344, 1346–1347, E1351, 1351, 1352, 1354–1357, 1359–1360, 1360–1362, 1364–1365, 1367–1368, E1371–1372, E1373, 1378, 1380–1383, 1386, E1400, 1400–1401, 1402, 1403, 1405, 1409–1410, 1412, 1413 1282 E1318, 1320 E1389, 1391–1392 E1291, E1292, 1301, E1340, 1348, E1351, E1371–E1372, E1373, 1379, 1380, E1389, 1393, E1406, 1407–1408 1296, 1319 E1406, 1408 E1348, 1350, 1366 E1274, 1282 1317, E1318, 1320–1321 1273 E1292, 1297 E1291, 1299, 1325–1326, E1371–E1372, 1375, 1376–1378, 1420, 1421 1270 1371, 1429–1430 1319 1272 1289 E1293, 1303 1361–1362, E1371–E1372, E1373, 1380–1383 E1274, 1282 1271 E1290, E1291, E1292, 1295–1296, E1330, 1337–1338 E1283, 1286–1287, 1288–1289, 1307–1308, 1309, 1310–1311, 1312, E1330, 1334, 1335–1336, 1373–1374 1363, 1364 E1292 1323, 1428 1271 E1292, E1293, E1294, 1305–1306, E1352, 1353 1306, 1307, E1340, 1355–1356, 1429–1430 E1313, 1322 E1283, 1286–1287, 1288–1289, 1309, 1310–1311, 1330, 1334 E1318, 1318, 1319, 1322, E1323, 1324, 1416 1272, 1408, 1411, 1417 1272, E1406 1319 E1313, 1314–1315, 1317 1296 E1290, E1291, 1294 E1291, 1300–1301 E1291, 1300–1301 E1371–E1372, E1373, 1379 1340 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1448 PATERSON, YAMPOL’SKII, AND FOGG Novitskii E.G. E1313, 1314, 1315 O’Brien K.C. Odani H. Ogata N. Ohzono M. Okamoto K. Okonishnikov G.B. Oohachi Y. Parker B.E. Patton C.J. Paul D.R. E1400, 1402–1403, 1409–1410 1296, 1319 1413–1414 E1293, 1304 E1400, 1401, 1403, E1406, 1407, 1408, 1411, 1417 E1274, 1275 1396 Paulaitis M.E. Peterson L.E. Plank C.A. Plate N.A. Pope D.S. Prausnitz J.M. Provan C.N. Puleo A.C. E1267, 1270 1405 E1265, 1266, E1267, 1269, E1279, E1283, 1285–1286, E1291, E1202, 1297–1298, 1299, 1302, 1306, 1307, E1323, 1323, 1325–1326, E1330, 1331–1332, E1340, 1341, 1342, E1351, 1351, 1354–1357, 1359, 1361–1363, 1364–1365, 1367–1368, 1371, E1371–E1372, E1373, 1375, 1376–1378, 1380–1383, 1386, 1412, 1415, 1419–1421, 1422, 1423–1424, 1427–1430 E1274, 1283, E1291, 1299, E1340, 1346 1398 E1348, 1350, 1366 E1313, 1317, E1317 E1351, 1352, 1358, 1360 1273 1370 E1265, 1266, 1306, 1307 Radosz M. Ranade G.R. Raymond P.C. Reyerson L.H. Rionda J.A. Rocha A. Rogers C.E. Rooney M.L. 1282 1366 E1283, E1291, E1292, 1302, 1415, 1423–1424 1398 E1292 1341 E1292 E1348, 1349, 1399 Sada E. Saitoh Y. Sakata K. Sanders E.S. Sasaki M. Sato T. Schulz G.V. Sefcik M.D. Sekiguchi M. Semin G.L. Sheu F.P. Shimoda S. Shimomura H. Skripov V.P. Sladek K.J. Slater J. Smith G.N. Smith T.G. Spencer H.G. Springer J. Stannett V.T. Stern S.A. Stewart M.E. Stiel I. Story B.J. Stuart H.A. Sumimoto T. E1291, E1292, 1301, E1340, 1348, E1351, E1371–E1372, E1373, 1379, 1380, E1389, E1406, 1406, 1407–1408 1319, E1323, 1324 E1291, E1292, E1340, E1348, E1351 E1274, 1277, 1278–1279, 1280–1282, 1383–1384 1272 1427 E1290 E1330, 1333 E1318, 1322 E1323, 1327, 1416, 1417 1326, 1366, 1368–1370 E1323, 1327–1328 1319 E1274, 1275 1331 1386–1387 E1274, 1276, E1283, 1284 1388–1389 1288, 1302, 1313, E1352, 1353, 1427 1339 1273, E1274, 1276, 1277, E1283, 1284, 1326, 1332, 1366, E1400, 1400–1401, 1402 1272, 1289, E1318, 1318, E1389, 1390–1391, 1391–1392 E1293, 1303 E1293, E1294, 1304 E1323, 1324, 1329 1336 1394 Taira K. Takishima S. Takizawa A. Tam P.M. Tanaka K. Terada K. Thuy L. J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1296 1272, E1400 1393, 1394, 1395–1397, 1414, 1415, 1427 E1290, E1291, E1292, 1295–1296 E1400, 1401, 1403, E1406, 1407, 1408, 1411, 1417 1310, 1312, E1330, E1330, 1335–1336, 1373–1374 1339 IUPAC-NIST SOLUBILITY DATA SERIES Tigina O.N. Toi K. Tsujita Y. Tullos G.L. E1265, 1265–1266, E1330, E1291, 1323, E1330, 1393, 1394, 1395–1397, E1400, 1404, 1414, 1415, 1363, Uragami T. Vakil U.M. Vieth W.R. Vivatpanachart S. Volkov V.V. 1333 1331 1427 1364 E1400, 1402 1289 E1290–E1292, 1295–1296, E1330, 1337–1339, E1340, 1341 1397 E1313–E1314, 1314–1315, 1316–1317, E1318, 1320–1321, 1418 Wachi S. Walker D.R.B. Wang S.-T. Waragai K. Weale K.E. Webb W.D. Wilk B.M. Williams M.J.L. Wissinger R.G. Witchey-Lakshmanan L.C. Wonders A.J. Wong P.K. Wong P.S.-L. Xu P. 1449 1271 1413 1393 1324 1294 1419 E1292, 1297 E1292, E1293, E1294, 1305–1306, E1352, 1353 E1274, 1283, E1291, 1299, E1340, 1346 1321 E1340, 1342 1266, E1323 1270 1412, E1291, E1292, 1301, 1348, E1351, E1389, 1319, E1323, E1290, E1291, E1371–E1372, E1373, 1379, 1380, E1389–E1390, 1393, E1406, 1407–1408 Yakushiji H. Yampolskii Yu. P. Yang D.K. Yavorsky J.A. Yokoshi O. Yoshida T. Yoshikawa M. Yoshio Y. Yuen H.K. Yui B. E1291, E1292, 1301, E1340, 1348, E1351 E1313, 1315, 1316, 1317, E1318, 1320–1321 E1400, 1402 E1293, 1302, 1303, 1313, E1352, 1353, 1424–1427 E1400, 1403, 1411, 1417 1393, 1395, 1395–1396 1413–1414 E1389, 1393 E1330, 1333 E1400, 1400–1401 Zamaraev K.I. Zhou S. E1323, 1327, 1416, 1417 1272 9. Solubility Data Series* Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume 1 2 3 4 5/6 7 8 9 10 11 12 13 14 15 16/17 18 19 20 21 Volume Volume Volume Volume Volume Volume 22 23 24 25 26 27/28 H.L. Clever, Helium and Neon 共1979兲 H.L. Clever, Krypton, Xenon and Radon 共1979兲 M. Salomon, Silver Azide, Cyanide, Cyanamides, Cyanate, Selenocyanate and Thiocyanate 共1979兲 H.L. Clever, Argon 共1980兲 C.L. Young, Hydrogen and Deuterium 共1981兲 R. Battino, Oxygen and Ozone 共1981兲 C.L. Young, Oxides of Nitrogen 共1981兲 W. Hayduk, Ethane 共1982兲 R. Battino, Nitrogen and Air 共1982兲 B. Scrosati and C.A. Vincent, Alkali Metal, Alkaline Earth Metal and Ammonium Halides, Amide Solvents 共1980兲 C.L. Young, Sulfur Dioxide, Chlorine, Fluorine and Chlorine Oxides 共1983兲 S. Siekierski, T. Mioduski, and M. Salomon, Scandium, Yitrium, Lanthanum and Lanthanide Nitrates 共1983兲 H. Miyamoto, M. Salomon, and H.L. Clever, Alkaline Earth Metal Halates 共1983兲 A.F.M. Barton, Alcohols with Water 共1984兲 E. Tomlinson and A. Regosch, Antibiotics: 1, -Lactam Antibiotics 共1985兲 O. Popovych, Tetraphenylborates 共1981兲 C.L. Young, Cumulative Index: Volumes 1–18 共1985兲 A.L. Horvath and F.W. Getzen, Halogenated Benzenes, Toluenes and Phenols with Water 共1985兲 C.L. Young and P.G.T. Fogg, Ammonia, Amines, Phosphine, Arsine, Stibine, Silane, Germane and Stannane in Organic Solvents 共1985兲 T. Mioduski and M. Salomon, Scandium, Ytrium, Lanthanum and Lanthanide Halides in Non-aqueous Solvents 共1985兲 T.P. Dirkse, Copper, Silver, Gold and Zinc, Cadmium, Mercury Oxides and Hydroxides 共1986兲 W. Hadyuk, Propane, Butane and 2-Methylpropane 共1986兲 C. Hirayama, Z. Galus, and C. Guminski, Metals in Mercury 共1986兲 M.R. Masson, H.D. Lutz, and B. Engelen, Sulfites, Selenites and Tellurites 共1986兲 H.L. Clever and C.L. Young, Methane 共1987兲 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999 1450 PATERSON, YAMPOL’SKII, AND FOGG Volume Volume Volume Volume Volume Volume Volume Volume 29 30 31 32 33 34 35 36 Volume Volume Volume Volume 37 38 39 40 Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume Volume 41 42 43 44 45/46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 Volume Volume Volume Volume Volume Volume Volume Volume Volume 62 63 64 65 66 67 68 69 70 H.L. Clever, Mercury in Liquids, Compressed Gases, Molten Salts and Other Elements 共1987兲 H. Miyamoto and M. Salomon, Alkali Metal Halates, Ammonium Iodate and Iodic Acid 共1987兲 J. Eysseltova and T.P. Dirkse, Alkali Metal Orthophosphates 共1988兲 P.G.T. Fogg and C.L. Young, Hydrogen Sulfide, Deuterium Sulfide and Hydrogen Selenite 共1988兲 P. Franzosini, Molten Alkali Metal Alkanoates 共1988兲 A.N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part I: Non-cyclic Substituents 共1988兲 A.N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part II: 5-membered Heterocyclic Substituents 共1988兲 A.N. Paruta and R. Piekos, 4-Aminobenzenesulfonamides. Part III: 6-membered Heterocyclic Substituents and Miscellaneous Systems 共1988兲 D.G. Shaw, Hydrocarbons with Water and Seawater. Part I: Hydrocarbons C5 to C7 共1989兲 D.G. Shaw, Hydrocarbons with Water and Seawater. Part II: Hydrocarbons C8 to C36 共1989兲 C.L. Young, Cumulative Index: Volumes 20–38 共1989兲 J. Hala, Halides, Oxyhalides and Salts of Halogen Complexes of Titanium, Zirconium, Hafnium, Vanadium, Niobium and Tantalum 共1989兲 C.-Y. Chan, I.N. Lepeshkov, and K.H. Khoo, Alkaline Earth Metal Perchlorates 共1989兲 P.G.T. Fogg and W. Gerrard, Hydrogen Halides in Non-aqueous Solvents 共1990兲 R.W. Cargill, Carbon Monoxide 共1990兲 H. Miyamoto, E.M. Woolley, and M. Salomon, Copper and Silver Halates 共1990兲 R.P.T. Tomkins and N.P. Bansal, Gases in Molten Salts 共1991兲 R. Cohen-Adad and J.W. Lorimer, Alkali Metal and Ammonium Halides in Water and Heavy Water (Binary Systems) 共1991兲 F. Getzen, G. Hefter, and A. Maczynski, Esters with Water. Part I. Esters 2-C to 6- C 共1992兲 F. Getzen, G. Hefter, and A. Maczynski, Esters with Water: Part II: Esters 7-C to 32-C 共1992兲 P.G.T. Fogg, Carbon Dioxide in Non-aqueous Solvents at Pressures Less Than 200 kPa 共1992兲 J.G. Osteryoung, M.M. Schneider, C. Guminski, and Z. Galus, Intermetallic Compounds in Mercury 共1992兲 I. Lambert and H.L. Clever, Alkaline Earth Hydroxides in Water and Aqueous Solutions 共1992兲 C.L. Young, Cumulative Index: Volumes 40–52 共1993兲 W.E. Acree, Jr., Polycyclic Aromatic Hydrocarbons in Pure and Binary Solvents 共1994兲 S. Siekierski and S.L. Phillips, Actinide Nitrates 共1994兲 D. Shaw, A. Skrzecz, J.W. Lorimer, and A. Maczynski, Alcohols with Hydrocarbons 共1994兲 W. Hadyuk, Ethene 共1994兲 W.E. Acree, Jr., Polycyclic Aromatic Hydrocarbons: Binary Non-aqueous Systems, Part I: Solvents A–E 共1995兲 W.E. Acree, Jr., Polycryclic Aromatic Hydrocarbons: Binary Non-aqueous Systems, Part II: Solvents F–Z 共1995兲 A.L. Horvath and F.W. Getzen, Halogenated Methanes with Water 共1995兲 C.-Y. Chan, K.H. Khoo, E.S. Gryzlova, and M.-T. Saugier-Cohen Adad, Alkali Metal and Ammonium Perchlorates, Part I: Lithium and Sodium Perchlorates 共1996兲 P. Scharlin, Carbon Dioxide in Water and Aqueous Electrolyte Solutions 共1996兲 H.U. Borgstedt and C. Guminski, Metals in Liquid Alkali Metals, Part I: Be to Os 共1996兲 H.U. Borgstedt and C. Guminski, Metals in Liquid Alkali Metals, Part II: Co to Bi 共1996兲 J.J. Fritz and E. Königsberger, Copper(I) Halides and Psuedohalides 共1996兲 J. Eysseltova and T. P. Dirkse, Ammonium Phosphates 共1998兲 A. L. Horvath, F. W. Getzen, and Z. Maczynska, Halogenated Ethanes and Ethenes With Water 共1999兲 A. L. Horvath and F. W. Getzen, Halogenated Aliphatic Compounds C3 –C14 With Water 共1999兲 A. Skrzecz, D. Shaw, and A. Maczynski, Ternary Alcohol–Hydrocarbon–Water Systems 共1999兲 R. Paterson, Y. Yampol’skii, P. G. T. Fogg, A. Bokarev, V. Bondar, O. Ilinich, and S. Shishatskii, Solubility of Gases in Glassy Polymers 共1999兲 *Updated information on new volumes and on obtaining reprints of previously published volumes are available at the web site 具http://www/unileoben.ac.at/ ⬃eschedor/welcome.html典 J. Phys. Chem. Ref. Data, Vol. 28, No. 5, 1999
© Copyright 2026 Paperzz