Example : 25 x dx ∫ ( x - 2 ) (4 x2 + 9 ) Use partial fractions to calculate the integral Solution : 25 x A + = x-2 ( x - 2 ) (4 x2 + 9 ) Bx+C 4 x2 + 9 (x-2) 3 pt Multiply both sides with ( x - 2 ) and put x = 2; yield A = 2 4 pt Evaluate the integrand at x = 0 ; 0 = -A / 2 + C / 9 , yields C = 9 4 pt 25 x A + = 2 x-2 ( x - 2 ) (4 x + 9 ) Bx+C 4 x2 + 9 (x) Multiply both sides with ( x ) and take limit as x goes to ∞ ; that yields 0 = A + B / 4 ; which gives B = -8 Assoc. Prof. Dr. Ali Çınar MEF University, Faculty of Engineering, Department of Mechanical Engineering 4 pt ∫ 25 x dx = 2 ( x - 2 ) (4 x + 9 ) 2 + x-2 ∫ -8 x + 9 4x2+9 dx = 2 ln | x -2 | - ln ( 4 x 2 + 9 ) + ( 3 / 2 ) tan -1 ( 2 x / 3 ) + C 3 pt 2 pt 3 pt 2 pt = ln [ ( x - 2 ) 2 / ( 4 x 2 + 9 ) + ( 3 / 2 ) tan -1 ( 2 x / 3 ) + C Assoc. Prof. Dr. Ali Çınar MEF University, Faculty of Engineering, Department of Mechanical Engineering Use u = x 2 substitution and integration by parts to calculate the integral 1/√2 ∫ 2 x sin -1 3 pt Let u = x 2 ; du = 2 x dx ; x=0,u=0,x=1/√2,u=1/2 2 ( x ) dx 0 3 pt 1/2 = ∫ sin -1 u du = u sin -1 u - 0 3 pt ∫ u du √1-u2 3 pt 3 pt 1/2 = u sin -1 u + √ 1 - u 2 3 pt 0 3 pt 3 pt 1 pt = ( 1 / 2 ) ( π / 6 ) + √ 3 / 2 - 1 = π / 12 + √ 3 / 2 - 1 Alternative Solution : sin -1 ( x 2 ) = u ; x 2 = sin u ; x = 0 , u = 0 , x = 1 / √ 2 , u = π / 6 ; 2 x dx = cos u du 1/√2 ∫ 2 x sin -1 ( x 2 ) dx = 0 1/√2 ∫ π/6 ∫ u cos u du = u sin u - ∫ sin u du = u sin u + cos u 0 2 x sin -1 ( x 2 ) dx = π / 12 + √ 3 / 2 - 1 0 Assoc. Prof. Dr. Ali Çınar MEF University, Faculty of Engineering, Department of Mechanical Engineering π/6 0 1/√2 Alternative Solution : ∫2x 1/√2 sin -1 ( x 2 ) dx = 0 Recall : d sin -1 u = du x 2 sin -1 2 (x )- ∫ 0 x2 sin -1 ( x 2 ) = 0 1 √1-u2 1/√2 ∫ 2 x dx 2 x dx √1-x4 du dx 1√2 = x 2 sin -1 ( x 2 ) + √ 1 - x 4 0 since , sin -1 ( 1 / 2 ) = π / 6 1/√2 ∫ 2 x sin -1 ( x 2 ) dx = π / 12 + √ 3 / 2 - 1 0 Assoc. Prof. Dr. Ali Çınar MEF University, Faculty of Engineering, Department of Mechanical Engineering 2a ) Find the derivative of the function y = 2 x sin -1 ( 2 x ) + √ 1 - 4 x 2 Solution : y´= 2 sin -1 (2x)+ 4 pt 2x(2) √1-4x2 + -8x 2√1-4x2 4 pt 4 pt y´= 2 sin -1 ( 2 x ) 3 pt 2b ) Fin the derivative of the function y = cosh -1 ( sec x ) = cosh - 1 u Solution : let u = sec x , du / dx = tan x sec x dy/ dx = [ 1 / √ ( u 2 - 1 ) ] du / dx ; 2 pt u 2 -1 = sec 2 x - 1 = tan 2 x 4pt dy/ dx = ( tan x sec x ) / tan x = sec x 2 pt 4 pt 3 pt Assoc. Prof. Dr. Ali Çınar MEF University, Faculty of Engineering, Department of Mechanical Engineering 2 ∫ 2c . Use u = sec -1 x substitution to evaluate the integral 2/ √ 3 cos ( sec -1 x ) dx x√ x2-1) u = sec -1 x ; x = sec u = 1 / cos u cos u = 1 / x ; x = 2 / √ 3 , u = π / 6 ; x = 2 , u = π / 3 du = dx / [ x √ ( x 2 -1 ) 2 ∫ 2/ √ 3 cos ( sec -1 x ) dx x√ x2-1) 4 pt 3 pt π/3 = ∫ cos u du = sin u π/6 3 pt 4 pt π/3 π/6 4 pt = ( √ 3 -1 ) / 2 2 pt Assoc. Prof. Dr. Ali Çınar MEF University, Faculty of Engineering, Department of Mechanical Engineering
© Copyright 2026 Paperzz