Rules for integrands involving inverse secants and cosecants 1. à u Ha + b ArcSec@c xDLn â x 1. à Ha + b ArcSec@c xDLn â x 1: à ArcSec@c xD â x Reference: G&R 2.821.2, CRC 445, A&S 4.4.62 Reference: G&R 2.821.1, CRC 446, A&S 4.4.61 Derivation: Integration by parts Rule: à ArcSec@c xD â x x ArcSec@c xD - Program code: Int@ArcSec@c_.*x_D,x_SymbolD := x*ArcSec@c*xD - 1c*Int@1Hx*Sqrt@1-1Hc^2*x^2LDL,xD ; FreeQ@c,xD Int@ArcCsc@c_.*x_D,x_SymbolD := x*ArcCsc@c*xD + 1c*Int@1Hx*Sqrt@1-1Hc^2*x^2LDL,xD ; FreeQ@c,xD 1 c á 1 âx x 1- 1 c2 x2 Rules for integrands involving inverse secants and cosecants 2 2: à Ha + b ArcSec@c xDLn â x Derivation: Integration by substitution Basis: 1 1 c Sec@ArcSec@c xDD Tan@ArcSec@c xDD ¶x ArcSec@c xD Rule: Program code: n à Ha + b ArcSec@c xDL â x 1 c SubstBà Ha + b xLn Sec@xD Tan@xD â x, x, ArcSec@c xDF Int@Ha_.+b_.*ArcSec@c_.*x_DL^n_,x_SymbolD := 1c*Subst@Int@Ha+b*xL^n*Sec@xD*Tan@xD,xD,x,ArcSec@c*xDD ; FreeQ@8a,b,c,n<,xD Int@Ha_.+b_.*ArcCsc@c_.*x_DL^n_,x_SymbolD := -1c*Subst@Int@Ha+b*xL^n*Csc@xD*Cot@xD,xD,x,ArcCsc@c*xDD ; FreeQ@8a,b,c,n<,xD Rules for integrands involving inverse secants and cosecants 3 2. à xm Ha + b ArcSec@c xDLn â x 1. à xm Ha + b ArcSec@c xDL â x 1: à a + b ArcSec@c xD âx x Derivation: Integration by substitution Basis: ArcSec@zD ArcCosA 1z E FA E 1 Basis: x x - SubstA F@xD , x Rule: x, 1 E x ¶x 1 x a + b ArcCosA c x E 1 Program code: á a + b ArcSec@c xD x âx á IntAHa_.+b_.*ArcSec@c_.*x_DLx_,x_SymbolE := -Subst@Int@Ha+b*ArcCos@xcDLx,xD,x,1xD ; FreeQ@8a,b,c<,xD IntAHa_.+b_.*ArcCsc@c_.*x_DLx_,x_SymbolE := -Subst@Int@Ha+b*ArcSin@xcDLx,xD,x,1xD ; FreeQ@8a,b,c<,xD x a + b ArcCosA c E x â x - SubstBá x 1 â x, x, x F Rules for integrands involving inverse secants and cosecants 4 2: à xm Ha + b ArcSec@c xDL â x when m ¹ - 1 Reference: CRC 474 Reference: CRC 477 Derivation: Integration by parts Rule: If m ¹ - 1, then m à x Ha + b ArcSec@c xDL â x xm+1 Ha + b ArcSec@c xDL m+1 b - c Hm + 1L á xm-1 âx 1- 1 c2 x2 Program code: Int@x_^m_.*Ha_.+b_.*ArcSec@c_.*x_DL,x_SymbolD := x^Hm+1L*Ha+b*ArcSec@c*xDLHm+1L bHc*Hm+1LL*Int@x^Hm-1LSqrt@1-1Hc^2*x^2LD,xD ; FreeQ@8a,b,c,m<,xD && NonzeroQ@m+1D Int@x_^m_.*Ha_.+b_.*ArcCsc@c_.*x_DL,x_SymbolD := x^Hm+1L*Ha+b*ArcCsc@c*xDLHm+1L + bHc*Hm+1LL*Int@x^Hm-1LSqrt@1-1Hc^2*x^2LD,xD ; FreeQ@8a,b,c,m<,xD && NonzeroQ@m+1D 2: à xm Ha + b ArcSec@c xDLn â x when m Î Z Derivation: Integration by substitution Basis: If m Î Z, then xm 1 cm+1 Sec@ArcSec@c xDDm+1 Tan@ArcSec@c xDD ¶x ArcSec@c xD Rule: If m Î Z, then Program code: m n à x Ha + b ArcSec@c xDL â x 1 cm+1 SubstBà Ha + b xLn Sec@xDm+1 Tan@xD â x, x, ArcSec@c xDF Int@x_^m_.*Ha_.+b_.*ArcSec@c_.*x_DL^n_,x_SymbolD := 1c^Hm+1L*Subst@Int@Ha+b*xL^n*Sec@xD^Hm+1L*Tan@xD,xD,x,ArcSec@c*xDD ; FreeQ@8a,b,c,n<,xD && IntegerQ@mD Rules for integrands involving inverse secants and cosecants 5 Int@x_^m_.*Ha_.+b_.*ArcCsc@c_.*x_DL^n_,x_SymbolD := -1c^Hm+1L*Subst@Int@Ha+b*xL^n*Csc@xD^Hm+1L*Cot@xD,xD,x,ArcCsc@c*xDD ; FreeQ@8a,b,c,n<,xD && IntegerQ@mD X: à xm Ha + b ArcSec@c xDLn â x Rule: Program code: m n m n à x Ha + b ArcSec@c xDL â x à x Ha + b ArcSec@c xDL â x Int@x_^m_.*Ha_.+b_.*ArcSec@c_.*x_DL^n_.,x_SymbolD := Defer@IntD@x^m*Ha+b*ArcSec@c*xDL^n,xD ; FreeQ@8a,b,c,m,n<,xD Int@x_^m_.*Ha_.+b_.*ArcCsc@c_.*x_DL^n_.,x_SymbolD := Defer@IntD@x^m*Ha+b*ArcCsc@c*xDL^n,xD ; FreeQ@8a,b,c,m,n<,xD Rules for integrands involving inverse secants and cosecants 6 3. à Id + e x2 M Ha + b ArcSec@c xDLn â x p 1: à Id + e x2 M Ha + b ArcSec@c xDL â x when p Î Z+ ë p + p 1 2 Î Z- Derivation: Integration by parts and piecewise constant extraction Basis: ¶x Ha + b ArcSec@c xDL Basis: ¶x x bc c2 x2 c2 x2 -1 0 c2 x2 Note: If p Î Z+ ë p + Rule: If p Î Z+ ë p + 1 2 1 2 Î Z- , then Ù Id + e x2 Mp â x is expressible as an algebraic function not involving logarithms, inverse trig or inverse hyperbolic functions. Î Z- , let u = Ù Id + e x2 Mp â x, then 2 à Id + e x M Ha + b ArcSec@c xDL â x u Ha + b ArcSec@c xDL - b c à p u c2 x2 c2 x2 - 1 Program code: â x u Ha + b ArcSec@uDL - bcx c2 x2 Int@Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcSec@c_.*x_DL,x_SymbolD := With@8u=IntHide@Hd+e*x^2L^p,xD<, Dist@Ha+b*ArcSec@c*xDL,u,xD - b*c*xSqrt@c^2*x^2D*Int@SimplifyIntegrand@uHx*Sqrt@c^2*x^2-1DL,xD,xDD ; FreeQ@8a,b,c,d,e<,xD && HPositiveIntegerQ@pD ÈÈ NegativeIntegerQ@p+12DL Int@Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcCsc@c_.*x_DL,x_SymbolD := With@8u=IntHide@Hd+e*x^2L^p,xD<, Dist@Ha+b*ArcCsc@c*xDL,u,xD + b*c*xSqrt@c^2*x^2D*Int@SimplifyIntegrand@uHx*Sqrt@c^2*x^2-1DL,xD,xDD ; FreeQ@8a,b,c,d,e<,xD && HPositiveIntegerQ@pD ÈÈ NegativeIntegerQ@p+12DL 2: à Id + e x2 M Ha + b ArcSec@c xDLn â x when p Î Z p Derivation: Integration by substitution Basis: ArcSec@zD ArcCosA 1z E Basis: FA 1x E - SubstA Rule: If p Î Z, then F@xD , x2 x, 1 E x ¶x 1 x 2 n à Id + e x M Ha + b ArcSec@c xDL â x à p 1 -2 p d e+ x p 1 a + b ArcCosB x2 cx F n âx à u âx x c2 x2 - 1 Rules for integrands involving inverse secants and cosecants 7 Ie + d x2 M Ia + b ArcCosA c EM p Program code: - SubstBá x x2 Hp+1L Int@Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcSec@c_.*x_DL^n_.,x_SymbolD := -Subst@Int@He+d*x^2L^p*Ha+b*ArcCos@xcDL^nx^H2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && IntegerQ@pD Int@Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcCsc@c_.*x_DL^n_.,x_SymbolD := -Subst@Int@He+d*x^2L^p*Ha+b*ArcSin@xcDL^nx^H2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && IntegerQ@pD n 1 â x, x, x F Rules for integrands involving inverse secants and cosecants 8 3. à Id + e x2 M Ha + b ArcSec@c xDLn â x when c2 d + e 0 í p + p 1 2 ÎZ 1: à Id + e x2 M Ha + b ArcSec@c xDLn â x when c2 d + e 0 í p + p 1 2 Derivation: Piecewise constant extraction and integration by substitution d+e x2 Basis: ¶x x e+ 0 d x2 Basis: ArcSec@zD ArcCosA 1z E Basis: FA 1x E - SubstA F@xD , x2 Basis: If e > 0 ß d < 0, then Rule: If c2 d + e 0 í p + 1 E x x, d+e x2 e+ 1 2 ¶x 1 x x2 d x2 Î Z í e > 0 í d < 0, then 2 n á Id + e x M Ha + b ArcSec@c xDL â x d + e x2 p x2 x Program code: ÎZ í e>0 í d<0 x e+ d x2 à 1 d e+ 1 a + b ArcCosB Ie + d x2 M Ia + b ArcCosA c EM x x2 Hp+1L p x2 x p SubstBá -2 p cx n 1 â x, x, x F Int@Hd_.+e_.*x_^2L^p_*Ha_.+b_.*ArcSec@c_.*x_DL^n_.,x_SymbolD := -Sqrt@x^2Dx*Subst@Int@He+d*x^2L^p*Ha+b*ArcCos@xcDL^nx^H2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && ZeroQ@c^2*d+eD && IntegerQ@p+12D && PositiveQ@eD && Negative@dD Int@Hd_.+e_.*x_^2L^p_*Ha_.+b_.*ArcCsc@c_.*x_DL^n_.,x_SymbolD := -Sqrt@x^2Dx*Subst@Int@He+d*x^2L^p*Ha+b*ArcSin@xcDL^nx^H2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && ZeroQ@c^2*d+eD && IntegerQ@p+12D && PositiveQ@eD && Negative@dD F n âx Rules for integrands involving inverse secants and cosecants 9 2: à Id + e x2 M Ha + b ArcSec@c xDLn â x when c2 d + e 0 í p + p 1 2 Derivation: Piecewise constant extraction and integration by substitution d+e x2 Basis: ¶x x e+ Î Z í Ø He > 0 ì d < 0L 0 d x2 Basis: ArcSec@zD ArcCosA 1z E Basis: FA 1x E - SubstA F@xD , x2 Rule: If c2 d + e 0 í p + 1 2 x, 1 E x ¶x 1 x Î Z í Ø He > 0 ß d < 0L, then 2 n á Id + e x M Ha + b ArcSec@c xDL â x d + e x2 p d + e x2 x e+ d x2 x e+ d x2 à 1 -2 p x x2 x x2 Hp+1L 1 a + b ArcCosB cx Ie + d x2 M Ia + b ArcCosA c EM p SubstBá p d e+ n 1 â x, x, x F n âx F Program code: Int@Hd_.+e_.*x_^2L^p_*Ha_.+b_.*ArcSec@c_.*x_DL^n_.,x_SymbolD := -Sqrt@d+e*x^2DHx*Sqrt@e+dx^2DL*Subst@Int@He+d*x^2L^p*Ha+b*ArcCos@xcDL^nx^H2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && ZeroQ@c^2*d+eD && IntegerQ@p+12D && Not@PositiveQ@eD && Negative@dDD Int@Hd_.+e_.*x_^2L^p_*Ha_.+b_.*ArcCsc@c_.*x_DL^n_.,x_SymbolD := -Sqrt@d+e*x^2DHx*Sqrt@e+dx^2DL*Subst@Int@He+d*x^2L^p*Ha+b*ArcSin@xcDL^nx^H2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && ZeroQ@c^2*d+eD && IntegerQ@p+12D && Not@PositiveQ@eD && Negative@dDD Rules for integrands involving inverse secants and cosecants 10 X: à Id + e x2 M Ha + b ArcSec@c xDLn â x p Rule: 2 n 2 n à Id + e x M Ha + b ArcSec@c xDL â x à Id + e x M Ha + b ArcSec@c xDL â x p Program code: Int@Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcSec@c_.*x_DL^n_.,x_SymbolD := Defer@IntD@Hd+e*x^2L^p*Ha+b*ArcSec@c*xDL^n,xD ; FreeQ@8a,b,c,d,e,n,p<,xD Int@Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcCsc@c_.*x_DL^n_.,x_SymbolD := Defer@IntD@Hd+e*x^2L^p*Ha+b*ArcCsc@c*xDL^n,xD ; FreeQ@8a,b,c,d,e,n,p<,xD p Rules for integrands involving inverse secants and cosecants 11 4. à xm Id + e x2 M Ha + b ArcSec@c xDLn â x p 1. à xm Id + e x2 M Ha + b ArcSec@c xDL â x when p Jp Î Z+ í Ø J m-1 2 Î Z- í m + 2 p + 3 > 0NN ë J m+1 2 Î Z+ í Ø Hp Î Z- ì m + 2 p + 3 > 0LN ë J Î Z- í m+2 p+1 2 1: à x Id + e x2 M Ha + b ArcSec@c xDL â x when p ¹ - 1 p Ï Z- N m-1 2 Derivation: Integration by parts and piecewise constant extraction Basis: x Id + e x2 M ¶x p Hd+e x2 Lp+1 2 e Hp+1L Basis: ¶x Ha + b ArcSec@c xDL Basis: ¶x x bc c2 x2 c2 x2 -1 0 c2 x2 Rule: If p ¹ - 1, then 2 á x Id + e x M Ha + b ArcSec@c xDL â x p Id + e x2 M p+1 Program code: Id + e x2 M p+1 2 e Hp + 1L Ha + b ArcSec@c xDL 2 e Hp + 1L Ha + b ArcSec@c xDL - bcx 2 e Hp + 1L c2 x2 bc - 2 e Hp + 1L á Int@x_*Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcSec@c_.*x_DL,x_SymbolD := Hd+e*x^2L^Hp+1L*Ha+b*ArcSec@c*xDLH2*e*Hp+1LL b*c*xH2*e*Hp+1L*Sqrt@c^2*x^2DL*Int@Hd+e*x^2L^Hp+1LHx*Sqrt@c^2*x^2-1DL,xD ; FreeQ@8a,b,c,d,e,p<,xD && NonzeroQ@p+1D Int@x_*Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcCsc@c_.*x_DL,x_SymbolD := Hd+e*x^2L^Hp+1L*Ha+b*ArcCsc@c*xDLH2*e*Hp+1LL + b*c*xH2*e*Hp+1L*Sqrt@c^2*x^2DL*Int@Hd+e*x^2L^Hp+1LHx*Sqrt@c^2*x^2-1DL,xD ; FreeQ@8a,b,c,d,e,p<,xD && NonzeroQ@p+1D p+1 á Id + e x2 M x Id + e x2 M c2 x2 p+1 c2 x2 - 1 âx c2 x2 - 1 âx Rules for integrands involving inverse secants and cosecants 12 2: à xm Id + e x2 M Ha + b ArcSec@c xDL â x when p Jp Î Z+ í Ø J m-1 2 Î Z- í m + 2 p + 3 > 0NN ë J m+1 2 Î Z+ í Ø Hp Î Z- ì m + 2 p + 3 > 0LN ë J m+2 p+1 Derivation: Integration by parts and piecewise constant extraction Basis: ¶x Ha + b ArcSec@c xDL Basis: ¶x x 2 Î Z- í m-1 2 Ï Z- N bc c2 x2 c2 x2 -1 0 c2 x2 Note: If Jp Î Z+ í Ø J m-1 Î Z- í m + 2 p + 3 > 0NN ë J m+1 Î Z+ í Ø Hp Î Z- ì m + 2 p + 3 > 0LN ë J 2 2 m+2 p+1 2 Î Z- í m-1 2 Ï Z- N, then Ù xm Id + e x2 Mp â x is expressible as an algebraic function not involving logarithms, inverse trig or inverse hyperbolic functions. Rule: If Jp Î Z+ í Ø J m-1 Î Z- í m + 2 p + 3 > 0NN ë J m+1 Î Z+ í Ø Hp Î Z- ì m + 2 p + 3 > 0LN ë J 2 2 u = Ù xm Id + e x2 M â x, then p m 2 à x Id + e x M Ha + b ArcSec@c xDL â x u Ha + b ArcSec@c xDL - b c à u p Program code: c2 x2 c2 x2 - 1 m+2 p+1 2 Î Z- í â x u Ha + b ArcSec@uDL - m-1 2 bcx c2 x2 Int@x_^m_.*Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcSec@c_.*x_DL,x_SymbolD := With@8u=IntHide@x^m*Hd+e*x^2L^p,xD<, Dist@Ha+b*ArcSec@c*xDL,u,xD - b*c*xSqrt@c^2*x^2D*Int@SimplifyIntegrand@uHx*Sqrt@c^2*x^2-1DL,xD,xDD ; FreeQ@8a,b,c,d,e,m,p<,xD && H PositiveIntegerQ@pD && Not@NegativeIntegerQ@Hm-1L2D && m+2*p+3>0D ÈÈ PositiveIntegerQ@Hm+1L2D && Not@NegativeIntegerQ@pD && m+2*p+3>0D ÈÈ NegativeIntegerQ@Hm+2*p+1L2D && Not@NegativeIntegerQ@Hm-1L2DD L Int@x_^m_.*Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcCsc@c_.*x_DL,x_SymbolD := With@8u=IntHide@x^m*Hd+e*x^2L^p,xD<, Dist@Ha+b*ArcCsc@c*xDL,u,xD + b*c*xSqrt@c^2*x^2D*Int@SimplifyIntegrand@uHx*Sqrt@c^2*x^2-1DL,xD,xDD ; FreeQ@8a,b,c,d,e,m,p<,xD && H PositiveIntegerQ@pD && Not@NegativeIntegerQ@Hm-1L2D && m+2*p+3>0D ÈÈ PositiveIntegerQ@Hm+1L2D && Not@NegativeIntegerQ@pD && m+2*p+3>0D ÈÈ NegativeIntegerQ@Hm+2*p+1L2D && Not@NegativeIntegerQ@Hm-1L2DD L Ï Z- N, let à u âx x c2 x2 - 1 Rules for integrands involving inverse secants and cosecants 13 2: à xm Id + e x2 M Ha + b ArcSec@c xDLn â x when Hm p pL Î Z Derivation: Integration by substitution Basis: ArcSec@zD ArcCosA 1z E Basis: FA 1x E - SubstA Rule: If Hm pL Î Z, then F@xD , x2 x, 1 E x ¶x 1 x m 2 n à x Id + e x M Ha + b ArcSec@c xDL â x à p 1 -m-2 p Program code: Int@x_^m_.*Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcSec@c_.*x_DL^n_.,x_SymbolD := -Subst@Int@He+d*x^2L^p*Ha+b*ArcCos@xcDL^nx^Hm+2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && IntegersQ@m,pD Int@x_^m_.*Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcCsc@c_.*x_DL^n_.,x_SymbolD := -Subst@Int@He+d*x^2L^p*Ha+b*ArcSin@xcDL^nx^Hm+2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && IntegersQ@m,pD 1 a + b ArcCosB Ie + d x2 M Ia + b ArcCosA c EM xm+2 Hp+1L p x2 x p - SubstBá d e+ x cx n 1 â x, x, x F F n âx Rules for integrands involving inverse secants and cosecants 14 3. à xm Id + e x2 M Ha + b ArcSec@c xDLn â x when c2 d + e 0 í m Î Z í p + p 1 2 ÎZ 1: à xm Id + e x2 M Ha + b ArcSec@c xDLn â x when c2 d + e 0 í m Î Z í p + p Derivation: Piecewise constant extraction and integration by substitution d+e x2 Basis: ¶x x e+ ÎZ í e>0 í d<0 0 d x2 Basis: ArcSec@zD ArcCosA 1z E Basis: FA 1x E - SubstA F@xD , x2 Basis: If e > 0 ß d < 0, then 1 E x x, d+e x2 e+ ¶x 1 x x2 d x2 Rule: If c2 d + e 0 í m Î Z í p + 1 2 Î Z í e > 0 í d < 0, then m 2 n á x Id + e x M Ha + b ArcSec@c xDL â x p x2 x Program code: 1 2 d + e x2 x e+ d x2 à 1 d e+ Ie + d x2 M Ia + b ArcCosA c EM x xm+2 Hp+1L p 1 a + b ArcCosB x2 x p SubstBá -m-2 p cx n 1 â x, x, x F n âx F Int@x_^m_.*Hd_.+e_.*x_^2L^p_*Ha_.+b_.*ArcSec@c_.*x_DL^n_.,x_SymbolD := -Sqrt@x^2Dx*Subst@Int@He+d*x^2L^p*Ha+b*ArcCos@xcDL^nx^Hm+2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && ZeroQ@c^2*d+eD && IntegerQ@mD && IntegerQ@p+12D && PositiveQ@eD && Negative@dD Int@x_^m_.*Hd_.+e_.*x_^2L^p_*Ha_.+b_.*ArcCsc@c_.*x_DL^n_.,x_SymbolD := -Sqrt@x^2Dx*Subst@Int@He+d*x^2L^p*Ha+b*ArcSin@xcDL^nx^Hm+2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && ZeroQ@c^2*d+eD && IntegerQ@mD && IntegerQ@p+12D && PositiveQ@eD && Negative@dD Rules for integrands involving inverse secants and cosecants 15 2: à xm Id + e x2 M Ha + b ArcSec@c xDLn â x when c2 d + e 0 í m Î Z í p + p 1 2 Derivation: Piecewise constant extraction and integration by substitution d+e x2 Basis: ¶x x e+ Î Z í Ø He > 0 ì d < 0L 0 d x2 Basis: ArcSec@zD ArcCosA 1z E Basis: FA 1x E - SubstA F@xD , x2 x, 1 E x ¶x Rule: If c2 d + e 0 í m Î Z í p + 1 2 1 x Î Z í Ø He > 0 ß d < 0L, then m 2 n á x Id + e x M Ha + b ArcSec@c xDL â x p d + e x2 x e+ d x2 d + e x2 x e+ d x2 à 1 -m-2 p 1 a + b ArcCosB Ie + d x2 M Ia + b ArcCosA c EM x xm+2 Hp+1L p x2 x p SubstBá d e+ cx n 1 â x, x, x F n âx F Program code: Int@x_^m_.*Hd_.+e_.*x_^2L^p_*Ha_.+b_.*ArcSec@c_.*x_DL^n_.,x_SymbolD := -Sqrt@d+e*x^2DHx*Sqrt@e+dx^2DL*Subst@Int@He+d*x^2L^p*Ha+b*ArcCos@xcDL^nx^Hm+2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && ZeroQ@c^2*d+eD && IntegerQ@mD && IntegerQ@p+12D && Not@PositiveQ@eD && Negative@dDD Int@x_^m_.*Hd_.+e_.*x_^2L^p_*Ha_.+b_.*ArcCsc@c_.*x_DL^n_.,x_SymbolD := -Sqrt@d+e*x^2DHx*Sqrt@e+dx^2DL*Subst@Int@He+d*x^2L^p*Ha+b*ArcSin@xcDL^nx^Hm+2*Hp+1LL,xD,x,1xD ; FreeQ@8a,b,c,d,e,n<,xD && ZeroQ@c^2*d+eD && IntegerQ@mD && IntegerQ@p+12D && Not@PositiveQ@eD && Negative@dDD Rules for integrands involving inverse secants and cosecants 16 X: à xm Id + e x2 M Ha + b ArcSec@c xDLn â x p Rule: m 2 n m 2 n à x Id + e x M Ha + b ArcSec@c xDL â x à x Id + e x M Ha + b ArcSec@c xDL â x p Program code: p Int@x_^m_.*Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcSec@c_.*x_DL^n_.,x_SymbolD := Defer@IntD@x^m*Hd+e*x^2L^p*Ha+b*ArcSec@c*xDL^n,xD ; FreeQ@8a,b,c,d,e,m,n,p<,xD Int@x_^m_.*Hd_.+e_.*x_^2L^p_.*Ha_.+b_.*ArcCsc@c_.*x_DL^n_.,x_SymbolD := Defer@IntD@x^m*Hd+e*x^2L^p*Ha+b*ArcCsc@c*xDL^n,xD ; FreeQ@8a,b,c,d,e,m,n,p<,xD 2. à u ArcSec@a + b xDn â x 1. à ArcSec@a + b xDn â x 1: à ArcSec@a + b xD â x Reference: G&R 2.821.2, CRC 445, A&S 4.4.62 Reference: G&R 2.821.1, CRC 446, A&S 4.4.61 Derivation: Integration by parts Rule: à ArcSec@a + b xD â x Program code: Int@ArcSec@a_+b_.*x_D,x_SymbolD := Ha+b*xL*ArcSec@a+b*xDb Int@1HHa+b*xL*Sqrt@1-1Ha+b*xL^2DL,xD ; FreeQ@8a,b<,xD Ha + b xL ArcSec@a + b xD b -á 1 âx Ha + b xL 1- 1 Ha+b xL2 Rules for integrands involving inverse secants and cosecants 17 Int@ArcCsc@a_+b_.*x_D,x_SymbolD := Ha+b*xL*ArcCsc@a+b*xDb + Int@1HHa+b*xL*Sqrt@1-1Ha+b*xL^2DL,xD ; FreeQ@8a,b<,xD 2: à ArcSec@a + b xDn â x Derivation: Integration by substitution Basis: ArcSec@a + b xDn 1 b ArcSec@a + b xDn Sec@ArcSec@a + b xDD Tan@ArcSec@a + b xDD ¶x ArcSec@a + b xD Rule: n à ArcSec@a + b xD â x Program code: 1 b SubstBà xn Sec@xD Tan@xD â x, x, ArcSec@a + b xDF Int@ArcSec@a_+b_.*x_D^n_,x_SymbolD := 1b*Subst@Int@x^n*Sec@xD*Tan@xD,xD,x,ArcSec@a+b*xDD ; FreeQ@8a,b,n<,xD Int@ArcCsc@a_+b_.*x_D^n_,x_SymbolD := -1b*Subst@Int@x^n*Csc@xD*Cot@xD,xD,x,ArcCsc@a+b*xDD ; FreeQ@8a,b,n<,xD 2. à xm ArcSec@a + b xDn â x 1. à xm ArcSec@a + b xD â x Rule: 1: à ArcSec@a + b xD âx x ArcSec@a + b xD LogB1 - J1 - 1 - a2 N ãä ArcSec@a+b xD a á ArcSec@a + b xD âx x F + ArcSec@a + b xD LogB1 - J1 + 1 - a2 N ãä ArcSec@a+b xD a + F - ArcSec@a + b xD LogA1 + ã2 ä ArcSec@a+b xD E - Rules for integrands involving inverse secants and cosecants ä PolyLogB2, J1 - 18 1 - a2 N ãä ArcSec@a+b xD a à F - ä PolyLogB2, ArcCsc@a + b xD x ArcCsc@a + b xD LogB1 - ArcCsc@a + b xD LogB1 - ä PolyLogB2, ä J1 - ä J1 + 1 - a2 N ã-ä ArcCsc@a+b xD a Program code: J1 + 1 - a2 N ãä ArcSec@a+b xD a F+ 1 2 ä PolyLogA2, - ã2 ä ArcSec@a+b xD E â x ä ArcCsc@a + b xD2 + ä J1 - 1 - a2 N ã-ä ArcCsc@a+b xD 1 - a2 N ã-ä ArcCsc@a+b xD a F + ä PolyLogB2, ä J1 + a F+ F - ArcCsc@a + b xD LogA1 - ã2 ä ArcCsc@a+b xD E + IntAArcSec@a_+b_.*x_Dx_,x_SymbolE := ArcSec@a+b*xD*Log@1-H1-Sqrt@1-a^2DL*E^HI*ArcSec@a+b*xDLaD + ArcSec@a+b*xD*Log@1-H1+Sqrt@1-a^2DL*E^HI*ArcSec@a+b*xDLaD ArcSec@a+b*xD*Log@1+E^H2*I*ArcSec@a+b*xDLD I*PolyLog@2,H1-Sqrt@1-a^2DL*E^HI*ArcSec@a+b*xDLaD I*PolyLog@2,H1+Sqrt@1-a^2DL*E^HI*ArcSec@a+b*xDLaD + 12*I*PolyLog@2,-E^H2*I*ArcSec@a+b*xDLD ; FreeQ@8a,b<,xD IntAArcCsc@a_+b_.*x_Dx_,x_SymbolE := I*ArcCsc@a+b*xD^2 + ArcCsc@a+b*xD*Log@1-I*H1-Sqrt@1-a^2DLHE^HI*ArcCsc@a+b*xDL*aLD + ArcCsc@a+b*xD*Log@1-I*H1+Sqrt@1-a^2DLHE^HI*ArcCsc@a+b*xDL*aLD ArcCsc@a+b*xD*Log@1-E^H2*I*ArcCsc@a+b*xDLD + I*PolyLog@2,I*H1-Sqrt@1-a^2DLHE^HI*ArcCsc@a+b*xDL*aLD + I*PolyLog@2,I*H1+Sqrt@1-a^2DLHE^HI*ArcCsc@a+b*xDL*aLD + 12*I*PolyLog@2,E^H2*I*ArcCsc@a+b*xDLD ; FreeQ@8a,b<,xD 1 - a2 N ã-ä ArcCsc@a+b xD a F+ 1 2 ä PolyLogA2, ã2 ä ArcCsc@a+b xD E Rules for integrands involving inverse secants and cosecants 19 2: à xm ArcSec@a + b xD â x when m ¹ - 1 Derivation: Integration by parts and substitution Basis: xm - ¶x H-aLm+1 -bm+1 xm+1 bm+1 Hm+1L Basis: If m Î Z, then Rule: If m Î Z+ , then HH-aLm+1 -bm+1 xm+1 L Ha+b xL2 1 fA a+b Ex m à x ArcSec@a + b xD â x - J- a a+b x N m+1 bJ -J11 a+b x N a a+b x m+1 N 1 fA a+b E ¶x x 1 a+b x IH- aLm+1 - bm+1 xm+1 M ArcSec@a + b xD - bm+1 Hm + 1L 1 + bm Hm + 1L IH- aLm+1 - bm+1 xm+1 M ArcSec@a + b xD bm+1 Program code: m+1 Hm + 1L 1 bm+1 á IH- aLm+1 - bm+1 xm+1 M Ha + b xL2 Hm + 1L SubstBà 1- âx 1 Ha+b xL2 H- a xLm+1 - H1 - a xLm+1 xm+1 Int@x_^m_.*ArcSec@a_+b_.*x_D,x_SymbolD := -HH-aL^Hm+1L-b^Hm+1L*x^Hm+1LL*ArcSec@a+b*xDHb^Hm+1L*Hm+1LL 1Hb^Hm+1L*Hm+1LL*Subst@Int@HHH-aL*xL^Hm+1L-H1-a*xL^Hm+1LLHx^Hm+1L*Sqrt@1-x^2DL,xD,x,1Ha+b*xLD ; FreeQ@8a,b,m<,xD && IntegerQ@mD && NonzeroQ@m+1D Int@x_^m_.*ArcCsc@a_+b_.*x_D,x_SymbolD := -HH-aL^Hm+1L-b^Hm+1L*x^Hm+1LL*ArcCsc@a+b*xDHb^Hm+1L*Hm+1LL + 1Hb^Hm+1L*Hm+1LL*Subst@Int@HHH-aL*xL^Hm+1L-H1-a*xL^Hm+1LLHx^Hm+1L*Sqrt@1-x^2DL,xD,x,1Ha+b*xLD ; FreeQ@8a,b,m<,xD && IntegerQ@mD && NonzeroQ@m+1D 1 - x2 1 â x, x, a+bx F Rules for integrands involving inverse secants and cosecants 20 2: à xm ArcSec@a + b xDn â x when m Î Z+ Derivation: Integration by substitution Basis: If m Î Z, then xm ArcSec@a + b xDn 1 bm+1 Rule: If m Î Z+ , then ArcSec@a + b xDn H- a + Sec@ArcSec@a + b xDDLm Sec@ArcSec@a + b xDD Tan@ArcSec@a + b xDD ¶x ArcSec@a + b xD m n à x ArcSec@a + b xD â x Program code: 1 bm+1 SubstBà xn H- a + Sec@xDLm Sec@xD Tan@xD â x, x, ArcSec@a + b xDF Int@x_^m_.*ArcSec@a_+b_.*x_D^n_,x_SymbolD := 1b^Hm+1L*Subst@Int@x^n*H-a+Sec@xDL^m*Sec@xD*Tan@xD,xD,x,ArcSec@a+b*xDD ; FreeQ@8a,b,n<,xD && PositiveIntegerQ@mD Int@x_^m_.*ArcCsc@a_+b_.*x_D^n_,x_SymbolD := -1b^Hm+1L*Subst@Int@x^n*H-a+Csc@xDL^m*Csc@xD*Cot@xD,xD,x,ArcCsc@a+b*xDD ; FreeQ@8a,b,n<,xD && PositiveIntegerQ@mD 3: à u ArcSecB c a + b xn F âx m Derivation: Algebraic simplification Basis: ArcSec@zD ArcCosA 1z E Rule: Program code: à u ArcSecB m a b xn m F â x à u ArcCosB + F âx a + b xn c c c IntAu_.*ArcSecAc_.Ha_.+b_.*x_^n_.LE^m_.,x_SymbolE := Int@u*ArcCos@ac+b*x^ncD^m,xD ; FreeQ@8a,b,c,n,m<,xD IntAu_.*ArcCscAc_.Ha_.+b_.*x_^n_.LE^m_.,x_SymbolE := Int@u*ArcSin@ac+b*x^ncD^m,xD ; FreeQ@8a,b,c,n,m<,xD Rules for integrands involving inverse secants and cosecants 21 4: à u fc ArcSec@a+b xD â x n Derivation: Integration by substitution Basis: F@x, ArcSec@a + b xDD 1 b SubstAFA- ab + Sec@xD , b xE Sec@xD Tan@xD, x, ArcSec@a + b xDE ¶x ArcSec@a + b xD Rule: If n Î Z+ , then àuf c ArcSec@a+b xDn Program code: 1 âx b SubstBà SubstBu, x, - a Sec@xD + b b F fc x Sec@xD Tan@xD â x, x, ArcSec@a + b xDF n Int@u_.*f_^Hc_.*ArcSec@a_.+b_.*x_D^n_.L,x_SymbolD := 1b*Subst@Int@ReplaceAll@u,x®-ab+Sec@xDbD*f^Hc*x^nL*Sec@xD*Tan@xD,xD,x,ArcSec@a+b*xDD ; FreeQ@8a,b,c,f<,xD && PositiveIntegerQ@nD Int@u_.*f_^Hc_.*ArcCsc@a_.+b_.*x_D^n_.L,x_SymbolD := -1b*Subst@Int@ReplaceAll@u,x®-ab+Csc@xDbD*f^Hc*x^nL*Csc@xD*Cot@xD,xD,x,ArcCsc@a+b*xDD ; FreeQ@8a,b,c,f<,xD && PositiveIntegerQ@nD Rules for integrands involving inverse secants and cosecants 22 5. à v Ha + b ArcSec@uDL â x when u is free of inverse functions 1: à ArcSec@uD â x when u is free of inverse functions Derivation: Integration by parts and piecewise constant extraction Basis: ¶x ArcSec@f@xDD ¶x f@xD f@xD2 Basis: ¶x f@xD f@xD2 -1 0 f@xD2 Rule: If u is free of inverse functions, then à ArcSec@uD â x x ArcSec@uD - à Program code: x ¶x u u â x x ArcSec@uD - u2 u2 - 1 u2 à x ¶x u âx u u2 - 1 Int@ArcSec@u_D,x_SymbolD := x*ArcSec@uD uSqrt@u^2D*Int@SimplifyIntegrand@x*D@u,xDHu*Sqrt@u^2-1DL,xD,xD ; InverseFunctionFreeQ@u,xD && Not@FunctionOfExponentialQ@u,xDD Int@ArcCsc@u_D,x_SymbolD := x*ArcCsc@uD + uSqrt@u^2D*Int@SimplifyIntegrand@x*D@u,xDHu*Sqrt@u^2-1DL,xD,xD ; InverseFunctionFreeQ@u,xD && Not@FunctionOfExponentialQ@u,xDD 2: à Hc + d xLm Ha + b ArcSec@uDL â x when m ¹ - 1 ì u is free of inverse functions Derivation: Integration by parts and piecewise constant extraction Basis: ¶x Ha + b ArcSec@f@xDDL Basis: ¶x f@xD b ¶x f@xD f@xD2 f@xD2 -1 0 f@xD2 Rule: If m ¹ - 1 ì u is free of inverse functions, then m à Hc + d xL Ha + b ArcSec@uDL â x Hc + d xLm+1 Ha + b ArcSec@uDL d Hm + 1L b - d Hm + 1L à Hc + d xLm+1 ¶x u u2 u2 - 1 âx Rules for integrands involving inverse secants and cosecants 23 Hc + d xLm+1 Ha + b ArcSec@uDL d Hm + 1L Program code: bu - d Hm + 1L u2 à Hc + d xLm+1 ¶x u u âx u2 - 1 Int@Hc_.+d_.*x_L^m_.*Ha_.+b_.*ArcSec@u_DL,x_SymbolD := Hc+d*xL^Hm+1L*Ha+b*ArcSec@uDLHd*Hm+1LL b*uHd*Hm+1L*Sqrt@u^2DL*Int@SimplifyIntegrand@Hc+d*xL^Hm+1L*D@u,xDHu*Sqrt@u^2-1DL,xD,xD ; FreeQ@8a,b,c,d,m<,xD && NonzeroQ@m+1D && InverseFunctionFreeQ@u,xD && Not@FunctionOfQ@Hc+d*xL^Hm+1L,u,xDD && Not@FunctionOfExponentialQ Int@Hc_.+d_.*x_L^m_.*Ha_.+b_.*ArcCsc@u_DL,x_SymbolD := Hc+d*xL^Hm+1L*Ha+b*ArcCsc@uDLHd*Hm+1LL + b*uHd*Hm+1L*Sqrt@u^2DL*Int@SimplifyIntegrand@Hc+d*xL^Hm+1L*D@u,xDHu*Sqrt@u^2-1DL,xD,xD ; FreeQ@8a,b,c,d,m<,xD && NonzeroQ@m+1D && InverseFunctionFreeQ@u,xD && Not@FunctionOfQ@Hc+d*xL^Hm+1L,u,xDD && Not@FunctionOfExponentialQ 3: à v Ha + b ArcSec@uDL â x when u and à v â x are free of inverse functions Derivation: Integration by parts and piecewise constant extraction Basis: ¶x Ha + b ArcSec@f@xDDL Basis: ¶x f@xD b ¶x f@xD f@xD2 f@xD2 -1 0 f@xD2 Rule: If u is free of inverse functions, let w Ù v âx, if w is free of inverse functions, then à v Ha + b ArcSec@uDL â x w Ha + b ArcSec@uDL - b à Program code: w ¶x u u2 u2 - 1 â x w Ha + b ArcSec@uDL - bu u2 Int@v_*Ha_.+b_.*ArcSec@u_DL,x_SymbolD := With@8w=IntHide@v,xD<, Dist@Ha+b*ArcSec@uDL,w,xD - b*uSqrt@u^2D*Int@SimplifyIntegrand@w*D@u,xDHu*Sqrt@u^2-1DL,xD,xD ; InverseFunctionFreeQ@w,xDD ; FreeQ@8a,b<,xD && InverseFunctionFreeQ@u,xD && Not@MatchQ@v, Hc_.+d_.*xL^m_. ; FreeQ@8c,d,m<,xDDD à w ¶x u âx u u2 - 1 Rules for integrands involving inverse secants and cosecants Int@v_*Ha_.+b_.*ArcCsc@u_DL,x_SymbolD := With@8w=IntHide@v,xD<, Dist@Ha+b*ArcCsc@uDL,w,xD + b*uSqrt@u^2D*Int@SimplifyIntegrand@w*D@u,xDHu*Sqrt@u^2-1DL,xD,xD ; InverseFunctionFreeQ@w,xDD ; FreeQ@8a,b<,xD && InverseFunctionFreeQ@u,xD && Not@MatchQ@v, Hc_.+d_.*xL^m_. ; FreeQ@8c,d,m<,xDDD 24
© Copyright 2025 Paperzz