CHEMICAL IMPACT Electronic Ink he printed page has been a primary means of communication for over 3000 years, and researchers at the Massachusetts Institute of Technology (MIT) believe they have discovered why. It seems that the brain responds positively to fixed images on a sheet of paper, particularly those areas of the brain that store and process “spatial maps.” In comparison, information displayed on computer screens or TV screens seems to lack some of the visual signals that stimulate the learning centers of the brain to retain knowledge. While modern technology provides us with many other media by which we can communicate, the appeal of written words on a piece of paper remains. Surprisingly, the technology of printing has changed very little since the invention of the printing press—that is, until now. In the past several years Joseph M. Jacobson and his students at MIT have developed a prototype of a self-printing T page. The key to this self-printing “paper” is microencapsulation technology—the same technology that is used in “carbonless” carbon paper and “scratch-and-sniff” cologne and perfume advertisements in magazines. Jacobson’s system involves the use of millions of transparent fluid-filled capsules containing microscopic particles. These particles are colored and positively charged on one side and white and negatively charged on the other. When an electric field is selectively applied to the capsules, the white side of the microparticles can be oriented upward or the colored side can be caused to flip up. Appropriate application of an electric field can orient the particles in such a way as to produce words, and once the words have been created, virtually no more energy is needed to keep the particles in place. An image can be maintained on a page with consumption of only 50 millionths of an amp of power! The entire display is about 200 mm thick (2.5 times that of paper) and is so flexible and durable that it can be curled around a pencil and can operate at temperatures from 4 to 158°F. Presently, print resolution is not as good as a modern laser printer, but reduction of the microencapsulated particles from 50 to 40 mm should produce print that rivals the quality of the laser printer. The first commercial applications of this technology are expected to appear in retail stores across the country in the form of electronic signs that can be updated instantly from a central location. The present technology is a long way from being able to create electronic books, but this is the eventual goal of Jacobson’s research team. It seems very likely that this electronic ink technology will contribute greatly to the evolution of the printed page over the next century. Signs like this one created by E Ink are the first to use electronic ink, which can be updated from a computer inside the store or from a remote location.
© Copyright 2026 Paperzz