Catalytic Modification of Arenes John F. Hartwig Department of Chemistry University of California, Berkeley Approaches to Catalytic Modification of Arenes By C-H Bond Functionalization? R' By Cross-Coupling Reactions R' X R X R R O R XR' X NC X X R R O X Br R R R' R R R'RN R X R R X RO R N R' R O R1 R'' Transition Metal Boryl Complexes LnM B R R Potential Properties: •Lewis Acidic at BR2 •M-B pi-bonding •Strong σ-Donation from BR2 These properties lead to selective functionalization of arenes and alkanes: OR R H + H B OR catalytic LnM-B(OR)2 OR + H2 R B OR Transition Metal Boryl Complexes LnM B R R Potential Properties: •Lewis Acidic at BR2 •M-B pi-bonding •Strong σ-Donation from BR2 Topics 1. Discovery of C-H borylation of aliphatic C-H Bonds 2. A platform for practical aromatic C-H bond functionalization 3. Use of the mechanistic data to develop new functionalizations 4. Some new C-C coupling reactions Initial Observations of C-H Bond Functionalization with Metal-Boryl Complexes O Fe B hν O OC OC Bcat + CpFe(CO)2H 100% [CpFe(CO)2]2 + H2 Hartwig, Waltz, He, Muhoro J. Am. Chem. Soc. 1995, 117, 11357. Me OC OC W B O O CO Me hν, 20 min Bcat* + Cp*W(CO)3H 85%, one isomer Waltz, K.M.; Hartwig, J.F. Science, 1997, 227, 211. For formation of two isomers of tolylboronate ester as trace side product from borylation of toluene solvent when forming [Ir(arene)(Bcat)3], see Nguyen, P.; Blom, H. P.; Westcott, S. A.; Taylor, N. J.; Marder, T. B. J. Am. Chem. Soc. 1993, 115, 9329. Catalytic Functionalization of Primary C-H Bonds Cp* Cp* pinBBpin Rh !4- - C6Me6 (unreactive) pinB pinB O O B B O O pinBBpin= Rh catalytic intermediate for C-H bond cleavage? R n + B2pin2 R = H, O O 2.5%[Cp*Rh(C6Me6)] or 2.5%[Cp*RhCl2]2 R 150 °C nBu O Bpin + HBpin n 70-88% O R N F R Chen, Schlecht, Semple, Hartwig Science 2000, 287, 1995-8. Lawrence, Takahashi, Bae, Hartwig J. Am. Chem. Soc, 2004, 126, 15334-15335. For an the borylation of benzene catalyzed by Cp*Ir(PMe3)(Ph)(H) with three turnovers see, Iverson, C. N.; Smith, M. R., III J. Am. Chem. Soc. 1999, 121, 7696. Catalytic Functionalization of Arene C-H Bonds Cp* Cp* pinBBpin Rh !4- - C6Me6 (unreactive) pinB pinB Rh pinBBpin= O O B B O O catalytic intermediate for C-H bond cleavage? 0.5%[Cp*Rh(C6Me6)] + B2pin2 150 °C 2 Bpin + H2 82%, 328 turnovers Chen, Schlecht, Semple, Hartwig Science 2000, 287, 1995-8. Lawrence, Takahashi, Bae, Hartwig J. Am. Chem. Soc, 2004, 126, 15334-15335. For an the borylation of benzene catalyzed by Cp*Ir(PMe3)(Ph)(H) with three turnovers see, Iverson, C. N.; Smith, M. R., III J. Am. Chem. Soc. 1999, 121, 7696. Mechanism of the Rh-Catalyzed Alkane Functionalization •Isolated and observed in the catalytic system •Kinetically and chemically competent Cp* pinB Rh X H Bpin B2pin2 HBpin X=H, Bpin H Cp* Cp* Rh Rh X pinB X Trapped by phosphine during mechanistic studies Cp* RBpin pinB Rh X R H R-H Evidence for this catalytic cycle Cook,bond Hapke, Incarvito, Fan, Webster, Hall J. Am.of Chem. 2005, 127, 2538-2552. HowHartwig, is the C-H cleaved and what is the origin highSoc. terminal regioselectivity? Practical Arene Borylation Catalysts B2pin2 + 1/2[IrCl(COD)]2/bpy (3 mol%) H Ar (neat) 80 °C N 2 Ar Bpin + H2 N bpy Ishiyama, Takagi, Ishida, Miyaura, Anastasi, Hartwig JACS 2002, 124, 390. Practical Arene Borylation Catalysts 1/2[IrCl(COD)]2/bpy 1/2[IrCl(COD)]2/bpy (3 mol%) (3 mol%) B2pin2 + H Ar Ar Bpin + HBpin Ar Bpin + H2 80 °C 80 °C (neat) H Ar N [PhBpin] [B2pin2] N bpy 8 min -1 3.5 10 Concentration mol L-1 3 10-1 Origins of the induction period: 2.5 10-1 2 10 -1 1) Reduction of COD to COE -1 1.5 10 1 10 -1 2) Generation of HBpin from B2pin2 5 10-2 0 10 0 0 100 3 1 10 2 103 3 103 t (s) Ishiyama, Takagi, Ishida, Miyaura, Anastasi, Hartwig JACS 2002, 124, 390. Practical Arene Borylation Catalysts Cl 1/2[IrCl(COD)]2/dtbpy (5 mol%) Cl cyclohexane 25 °C B2pin2 + 2 Ar Bpin + H2 With 0.003 mol % Ir 24,800 turnovers B2pin2 + Ar-H + 20% HBpin Origins of the induction period: 1) Reduction of COD to COE B2pin2 + Ar-H 2) Generation of HBpin from B2pin2 Ishiyama, Takagi, Ishida, Miyaura, Anastasi, Hartwig JACS 2002, 124, 390. Highly Active Arene Borylation Catalysts 1/2[Ir(OMe)(COD)]2/dtbpy (3 mol%) B2pin2 + 2 H Ar 2 Ar Bpin + H2 hexane 1.0 equiv/B room temperature Conversion of B2pin2 and HBpin N N dtbpy Ishiyama, Takagi, Ishida, Miyaura, Anastasi, Hartwig JACS 2002, 124, 390. Ishiyama, Takagi, Hartwig, Miyaura Angew. Chem. Int. Ed. 2002, 41 , 3056. Boller, Murphy, Hapke, Ishiyama, Miyaura, Hartwig, JACS 2005, 127, 14263. see also with Ir-bisphosphine complexes as catalyst: Cho, J. Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R. Science 2002, 295, 305-308. Highly Active Arene Borylation Catalysts 1/2[Ir(OMe)(COD)]2/dtbpy (3 mol%) B2pin2 + 2 H Ar 2 Ar Bpin + H2 hexane 1.0 equiv/B room temperature pinB Cl pinB 82% Cl 53% Cl Cl 84% Cl CF3 pinB I 84% O pinB 83% CF3 91% Br Br pinB CN 83% N H 88% CF3 pinB pinB pinB pinB 82% S 81% Cl Cl pinB pinB 81% OMe Cl pinB CN 80% CO2Me Ishiyama, Takagi, Hartwig, Miyaura Angew. Chem. Int. Ed. 2002, 41 , 3056. Meta-Halogenation of Arenes H Ar + 1/2 B2pin2 1) 1/2[Ir(OMe)(COD)]2/dtbpy (0.1 mol%) THF, 80 oC,then removal of volatiles Ar Br + 1/2 H2 2) CuBr2, MeOH/H2O (1:1), 80 oC, 4-6 h MeO Me MeO Br Br F3C Me 65% 85% MeO Cl 77% O 75% Br Me 65% F3C 62% 65% Br Br Br F3C Br MeO 77% Br Br MeO Br Cl Me H3C NC Me N 72% Me N Me N 6 mol% Ir 61% Murphy, J.M.; Liao, X, Hartwig, J.F. J. Am. Chem. Soc. 2007, 129, 15434-15435. Meta-Halogenation of Arenes H Ar + 1/2 B2pin2 1) 1/2[Ir(OMe)(COD)]2/dtbpy (0.1 mol%) THF, 80 oC,then removal of volatiles Ar Cl + 1/2 H2 2) CuCl2, MeOH/H2O (1:1), 80 oC, 4-6 h MeO Me MeO Cl Cl F3C Me 61% Cl Me MeO Me Cl MeO O 63% Cl 79% Cl MeO Cl 54% Me O 65% MeO Cl 77% Me Et2N NC TIPSO 56% 81% 61% Cl Cl Cl PivO Cl Me N 72% Me Me N 6 mol% Ir 46% Murphy, J.M.; Liao, X, Hartwig, J.F. J. Am. Chem. Soc. 2007, 129, 15434-15435. Meta-Amination of Arenes 1) 1/2 B2pin2 1/2[Ir(OMe)(COD)]2/dtbpy (0.1 mol%) THF, 80 oC,then removal of volatiles H Ar Ar NHR 2) 2 equiv H2NR, 1 equiv KF, 10 mol % Cu(OAc)2.H2O, MS 4 A, CH3CN, O2, 80 °C H N H3CO OCH3 Cl H3CO OCH3 OCH3 64% H N Cl 56% H N H N OCH3 OEt OEt H N Cl OCH3 57% OEt OEt 57% C8H17 O 47% H N H3CO CH3 OEt OEt 66% Tzschucke, C. C.; Murphy, J. M.; Hartwig, J. F. Org. Lett. 2007, 9, 761-764 Meta-Cyanation of Arenes 1) 1/2 B2pin2, 1/2[Ir(OMe)(COD)]2/dtbpy (0.1 mol%) THF, 80 ºC, the removal of volatiles Ar–CN H–Ar 2) 1.5 equiv Cu(NO3)2•3H2O, 3 equiv Zn(CN)2, 1 equiv CsF MeOH/H2O (5:1), 90 ºC Me Me Me Cl Me CO2Me OMe Me MeO OMOM Me CN CN CN CN CN 61% 65% 59% 53% 51% NH2 Br I Me OMe Cl N Me Cl N CN CN CN CN 58% 57% 46% 58% Liskey, C.W.; Liao, X.; Hartwig, J.F. J. Am. Chem. Soc. 2010, 132, 11389-11391 Cl NC N N H N Me Etravirine (HIV) Br O Me CN A General meta-Functionalization of 1,3, and 1,2,3-Substituted Arenes R1 R1 B(OH)2 R2 BF3K R2 R3 R1 R3 R2 dtbpy-Ir cat B2pin2 HOAr Cu(II) OAr R1 CF3 (Phen)CuCF3 R2 R2 ArB(OH)2 R3 CuX2 Bpin R3 R3 R2 R3 X=Cl, Br R1 KHF2 X R2 KIO4 H+ R3 R1 R1 Zn(CN)2/ Cu(NO3)2 Cu(OAc)2 HNRR' R1 R1 NRR' CN R2 R3 R2 R3 For fluorination, see Furuya and Ritter Org. Lett. 2009, 11, 2860. [Ir(COD)X]/dtbpy Catalyst in Total Synthesis H by borylation of HN Me3Si Et O Cl F3C HO by borylation of CF3 N Boc Bpin O H2N N N H Rhazinicine O NBoc2 O SM-130686 Beck, E. M.; Hatley, R.; Gaunt, M. J. Angew. Chem. Int. Ed. 2008, 47, 3004-3007. Tomita, D.; Yamatsugu, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 6946-7. Me Me by borylation of N N NH H N N Complanadine A Fischer and Sarpong, JACS 2010, 5926 H NBoc H Benzylic stereocenter set by asymmetric !-arylation by borylation/ OMe HO halogenation of OMe OH H O H Me NEt2•HCl H OMe Liao, X.; Stanley, L. M.; (-)-Taiwaniaquinol B J. F. JACS and Taiwaniaquinone D Hartwig, 2011, 133, 2088. Intermediate in the Functionalization of Arenes by Bpy-Ir CH3 O Ir 2 Ishiyama, Takagi, Ishida, Miyaura, Anastasi, Hartwig, JACS 2002, 124, 390. Boller, Murphy, Hapke, Ishiyama, Miyaura, Hartwig JACS 2005, 127, 14263 1) HBpin, COE 2) dtbpy 40 oC 30 min N N Ir Bpin 95 % Bpin Bpin Ir-N1=2.177 Å, IrN2=2.221 Å, IrB1=2.055 Å IrB2=2.057 Å, IrB3=2.027 Å, IrC1=2.308 Å IrC2=2.318 Å Intermediate in the Functionalization of Arenes by Bpy-Ir CH3 Ir 2 Ishiyama, Takagi, Ishida, Miyaura, Anastasi, Hartwig, JACS 2002, 124, 390. Boller, Murphy, Hapke, Ishiyama, Miyaura, Hartwig JACS 2005, 127, 14263 40 oC 1) HBpin, COE 30 min 2) dtbpy N N Bpin 95 % Bpin Ir Bpin Recall that HBpin eliminated this induction period: [PhBpin] [B2pin2] -1 3.5 10 3 10-1 Concentration mol L-1 O Origins of the induction period: 2.5 10-1 2 10 -1 1) Reduction of COD to COE -1 1.5 10 1 10 2) Generation of HBpin from B2pin2 -1 5 10-2 0 10 0 0 100 3 1 10 2 103 t (s) 3 103 Mechanism for Arene Borylation by Ir(III) Complexes oxidative addition or sigma bond metathesis Bpin But N N But Bpin -alkene N Bpin +alkene Bpin N Ir Ir Bpin Turnoverlimiting Bpin Bpin HBPin N Ir N pinB H Bpin B2pin2 Ishiyama, Takagi, Ishida, Miyaura, Anastasi, Hartwig, JACS 2002, 124, 390 Boller, Murphy, Hapke, Ishiyama, Miyaura, Hartwig JACS 2005, 127, 14263. Electronic Effects on C-H Borylation Effect of pinacolate or catecholate on the electron density at Ir N Bpin Ir Bpin N Bpin N Bcat Ir Bcat N Bcat C6D6 RT 5 min C6D6 50 °C 120 min Bpin O B 3 d5 O >90% Bpin Bcat 3 O R B d5 65% O Bcat Ishiyama, Takagi, Ishida, Miyaura, Anastasi, Hartwig, JACS 2002, 124, 390. Boller, Murphy, Hapke, Ishiyama, Miyaura, Hartwig JACS 2005, 127, 14263 Liskey, C.W.; Wei, C.S.; Pahls, D.R.; Hartwig, J.F. Chem. Commun., 2009, 5603 web theme issue: 'Selective Catalysis for Organic Synthesisʼ Electronic Effects on C-H Borylation N Bpin Ir Bpin N Bpin C6D6 RT 5 min 3 d5 Effect of pinacolate or catecholate on the electron density at Ir O C Bpin N Bpin Ir Bpin N Bpin >90% ∂COE = 3.92 N Bcat Ir Bcat N Bcat ∂COE = 4.77 µCO=1987 cm-1 C6D6 50 °C 120 min Bcat 3 d5 65% O C N Bcat Ir N Bcat Bcat µCO=2017 cm-1 Ishiyama, Takagi, Ishida, Miyaura, Anastasi, Hartwig, JACS 2002, 124, 390. Boller, Murphy, Hapke, Ishiyama, Miyaura, Hartwig JACS 2005, 127, 14263 Liskey, C.W.; Wei, C.S.; Pahls, D.R.; Hartwig, J.F. Chem. Commun., 2009, 5603 web theme issue: 'Selective Catalysis for Organic Synthesisʼ Electronic Effects on C-H Borylation N Bpin Ir Bpin N Bpin C6D6 RT 5 min 3 d5 Effect of pinacolate or catecholate on the electron density at Ir O C Bpin N Bpin Ir Bpin N Bpin >90% ∂COE = 3.92 N Bcat Ir Bcat N Bcat ∂COE = 4.77 µCO=1987 cm-1 C6D6 50 °C 120 min Bcat 3 d5 65% O C N Bcat Ir N Bcat Bcat µCO=2017 cm-1 Therefore, although the C-H cleavage can occur by σ-bond metathesis... •This C-H bond cleavage is favored for more electron-rich Ir centers. •Strong σ-donation by the boryl group is important for C-H bond cleavage. Developing More Active Catalysts Electronic properties of ligands used for Ir-catalyzed arene boryation: ν(CO) Values for L2M(CO)m complexes: L2 ν(CO) for L2Ni(CO)2 reference for L2Mo(CO)4 2 PPh3 2000 1940 a,b,c highest ν = 2023 2 PMe3 1990 1926 c 2019 bpy 1978 1904 a,c 2017 phen 1977-1980 1897-1915 a,c - 4,4ʼ-Me2py 1973 1893 d 2014 1875-1993 predicted - 3,4,7,8-Me4-phen 1967-1970 a Plankey, B. J.; Rund, J. V. Inorg. Chem. 1979, 18, 957. b. Meriwether, L. S.; Fiene, M. L. J. Am. Chem. Soc. 1959, 81, 4200. b Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956. c Christensen, P. A.; Hamnett, A.; Higgins, S. J.; Timney, J. A. J. Electroanal. Chem. 1995, 395, 195. d Sieler, J.; Than, N.-N.; Benedix, R.; Dinjus, E.; Walther, D. Z. Anorg. Allg. Chem. 1985, 522, 131. Among this series, tetramethylphenanthroline is the most donating... and the one to generate a catalyst for alkane borylation. Developing More Active Catalysts The arene borylation catalyst does not functionalize aliphatic C-H bonds + B2pin2 5 mol % [Ir(COD)OMe]2 10 mol % dtbpy neat, 24 h 150 °C Bpin <5% But the catalysts containing substituted phenanthrolines do... + B2pin2 5 mol % [Ir(COD)OMe]2 10 mol % substituted-phen neat, 24 h 120 °C Carl Liskey, unpublished Bpin 70-85% Intramolecular Silylation of Aromatic C-H Bonds O [Ir]/phen (1.0 mol %), Me Et Et norbornene Si H THF, 80 °C O Et2SiH2, [Ir(cod)OMe]2 Me (0.05 mol %), THF, rt Me F MeO O Si Et2 58% >20:1 selectivity O Si Et2 88% >20:1 selectivity Me O Si Et2 F3C O Si Et2 O Si Et2 73% 1:1 selectivity 55% >20:1 selectivity Regioselectivity appears to be controlled by steric effects. Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 17092. Intramolecular Silylation of Aromatic C-H Bonds R Me O Si Et2 O Si Et2 R=Et, 63% R=Pr, 65% X O Si Et2 R=H, X=I, 86% R=Me, X=Br, 75% O Si Et2 O SiEt2 70% R Me S Me 71% 61% Me Me Me2N RO O Si Et2 R=TBS, 86% R=Piv, 83% O Si Et2 82% Regioselectivity appears to be controlled by steric effects. ...and functional group tolerance looks high. Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 17092. Transformations of the Siloles from Directed Silylation Cross coupling and oxidation can be conducted on the oxasiloles OH Me 3-iodopyridine, R Pd(OAc)2, dcpe, 2 M aq. NaOH, dioxane, 65 °C N Me OAc 1) KHCO3, H2O2, THF/MeOH, rt TBSO Me O Si 2) Ac O, Et N, 2 3 Et2 CH2Cl2, rt OAc 70% 72% Orthogonal Coupling of Halogen-Containing Oxasiloles OH Me Br O Si Et2 1) Ar-B(OH)2, K2CO3, Pd(PCy3)2Cl2 Me Me 2) Ar-I, NaOH, Pd(OAc)2, dcpe OMe Me 56% overall Simmons, E. M.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 17092. Why C-H Activation with Boron Reagents? •Strong B-C bond makes the C-H bond functionalization favored thermodynamically + XBpin Bpin + XH 21 kcal/mol exothermic for B2pin2 2-4 kcal/mol exothermic for HBpin •Participation of the p-orbital and the strong σ-donation by an “anionic” boryl ligand leads to a low barrier for C-H bond cleavage Cp* pinB pinB Rh Cp* RH pinB pinB Cp* R Rh H pinB pinB Rh R H •Reversal of bond polarity leads to rapid formation of B-C bonds by metathesis or reductive elimination Ph (bpy)(pinB)2(H)Ir ΔG‡=3-4 kcal/mol Bpin PhBpin R-Bpin Electronic Effect on C-C Reductive Elimination Ph2 P Ar Pd R P Ph2 PPh3 C6D6 Ar-R + LnPd(0) Taft parameter σ* krel(110 °C) R= Me 0.00 >600 0.22 >250 CH2Ph 31 CH2C(O)Ar 0.60 0.92 1.7 CH2CF3 1.30 1 CH2CN 2.60 no rxn CF3 no rxn CH(CO2Me)2 Culkin, D.A.; Hartwig, J.F. J. Am. Chem. Soc. 2001, 123, 5816-5817. Culkin, D.A.; Hartwig, J.F. J. Am. Chem. Soc. 2002, 124; 9330-9331. Culkin, D.A., Hartwig, J.F. Organometallics, 2004, 23, 3398-3416. Reductive Elimination of Trifluoroarenes MeO Pri Pr Me O CF3 Pd P Ar Cy2 i Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Ar-CF3 Buchwald, S. L. Science 2010, 328, 1679. For Xantphos-Pd see: Grushin, V. V.; Marshall, W. J. J. Am. Chem. Soc. 2006, 128, 12644. tBu Ar N Pri N tBu N Cu CF3 ArI Pd OTf F Ar-CF3 CF3 Ball, N. D.; Kampf, J. W.; Sanford, M. S. J. Am. Chem. Soc. 2010, 132, 2878. Ar-CF3 N Dubinina, G. G.; Furutachi, H.; Vicic, D. A. J. Am. Chem. Soc. 2008, 130, 8600. Can reductive elimination of trifluoroarenes occur with an inexpensive metal, ligand and reagent? Synthesis and Reactivity of (phen)CuCF3 1) phen (1.0 equiv.) benzene or Et2O, rt CuOtBu 2) TMSCF3 (1.0 equiv.) rt, O/N N N Cu CF3 90% red solid If an aryl-Cu(III) intermediate is generated, reductive elimination should be faster than from palladium(II). ArI N N Cu CF3 CF3 N Cu N I Ar Ar-CF3 + N N Cu Cu(III) I Reductive elimination from Cu(III) occurs with a low barrier: Tye, J. W.; Weng, Z.; Johns, A. M.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 9971. Zhang, S.-L.; Liu, L.; Fu, Y.; Guo, Q.-X. Organometallics 2007, 26, 4546. Tye, Jesse W.; Weng, Z.; Giri, R.; Hartwig, John F. Angew. Chem. Int. Ed. 2010, 49, 2185. Synthesis and Reactivity of (phen)CuCF3 CuOtBu 1) phen (1.0 equiv.) benzene or Et2O, rt N 2) TMSCF3 (1.0 equiv.) rt, O/N N Cu CF3 90% red solid In the lab... ArI (10 equiv.) N N Cu CF3 Ar-CF3 DMF (0.050 M) rt, 19 h (Ar = 4-nBuC6H4-) 77% + N N Cu I 68% What is the stability of (phen)Cu-CF3 and what is the scope of its reactions with ArX? Hiroyuki Morimoto Stability of (phen)CuCF3 CuOtBu 1) phen (1.0 equiv.) benzene or Et2O, rt 2) TMSCF3 (1.0 equiv.) rt, O/N Stability: N N Cu 90% CF3 red solid Available from Aldrich (agreement with Catylix) conditions solid state in solution (0.05 M in DMF) under N2 stable at rt > 1 month stable at rt for 1 day decomposed at 50 °C in air decomposed < 1 day not examined Hiroyuki Morimoto Trifluoromethylation with (phen)CuCF3 N N + Ar-I Ar CF3 DMF (0.050 M), rt, 18 h Cu CF3 CF3 CF3 nBu 88% CF3 Me2N MeO >95% CF3 86% CF3 75% O 92% CF3 92% 92% OMe CF3 CF3 CF3 CF3 CF3 Me OMe Cl Me OMe 90% 89% 87% CF3 O2N 92% Me 88% 88% NC O 87% CF3 Br CF3 H HO CF3 96% CF3 N 92% Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem. Int. Ed. 2011, 50, 3793. Scope of the Reactions of (phen)CuCF3 Reactions with 1:1 ArI to copper (phen)Cu-CF3 Ar-I Ar-CF3 DMF, rt–50 °C, 18 h CF3 MeO CF3 Ph BnO 96% CF3 89% 92% CF3 Br OMOM 97% OMOM CF3 O 89% CF3 Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem. Int. Ed. 2011, 50, 3793. Scope of the Reactions of (phen)CuCF3 Reactions with 1:1 ArI to copper Ar-I (phen)Cu-CF3 DMF, rt–50 °C, 18 h 94% Cl CF3 CF3 CO2Et 69% Cl OHC CF3 Me EtO2C 85% CF3 CF3 CF3 AcHN Ar-CF3 Me O 93% OMe O F3C F3C N Boc N 92% 68% 99% N BOM N O 78% BOM Trifluoromethylthymidine Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem. Int. Ed. 2011, 50, 3793. Scope of the Reactions of (phen)CuCF3 Reactions of aryl bromides Br 1.5 equiv [(phen)CuCF3] DMF (0.25 M), 50 °C, 18 h CF3 R R CF3 NC 78% CF3 O 2N CF3 EtO2C 50% 81% CF3 F3C 81% Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem. Int. Ed. 2011, 50, 3793. Trifluoroalkylation by (phen)CuRf [(phen)CuCF2CF2CF3] (1.5 equiv) Ar-I (0.50 mmol) DMF (0.25 M) 50 °C, 18 h CF2CF2CF3 CF2CF2CF3 BnO O 2N Ph 99% (79%)a 91% N CF2CF2CF3 88% 99% CF2CF2CF3 Cl Ar CF2CF2CF3 CF3CF2CF2 92% N Boc Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. Angew. Chem. Int. Ed. 2011, 50, 3793. Organometallic Chemistry of Metal-Heteroatom vs Metal-Carbon Bonds Underlying Principles comparison of the properties of "anionic" ligands Ln M R vs LnM NR2 more polar bond non-polar kinetically abasic basic e- pair vs LnM BR2 vs electrophilic coordination to the non-bonding orbital Pauling Electronegativities: Pd: 2.20 C: 2.55 N: 3.04 B: 2.04 LnM CH2-FG more polar but lacks a non-bonding orbital Acknowledgments C-H Bond Functionalization Karen Waltz Shell: Huiyuan Chen Tom Semple (Shell) Sabine Schlecht Minnesota: Kazumori Kawamura Marc Hillmyer Kevin Cook Nicole Wagner, Nicole Boaen Natia Anstasi Hokkaido: Makato Takahashi Tatsuo Ishiyama Domingo Garcia Norio Miyaura Yuichiro Kondo Jun Takagi, Yusuke Nobuta Chulsung Bae Texas A&M: Doris Kunz Mike Hall Joshua Lawrence C. Edwin Webster, Yubo Fan Timothy Boller Charles Harris Naofumi Tsukada (Si) Karma Sawyer et al. Jaclyn Murphy Christoph Tzschucke NSF, NIH, Shell Carolyn Wei Johnson-Matthey Tim Boebel Frontier Science Dan Robbins Allychem, BASF Carl Liskey Eric Simmons Now available: Cu-Mediated Trifluoromethylation Hiroyuki Morimoto Tetsu Tsubogo Nichole Litvinas NIH NIGMS
© Copyright 2026 Paperzz