MAC 2311 Test Two Proofs. 1) Prove: d ⎡sin x ⎤⎦ = cos x dx ⎣ ( ) ( ) ( ) f x+h − f x sin x + h − sin x d sin x cosh+ cos x sinh− sin x ⎡⎣sin x ⎤⎦ = lim = lim = lim = h→0 h→0 h→0 dx h h h ⎡ ⎛ cosh− 1⎞ ⎛ sinh ⎞ ⎤ ⎛ ⎛ cosh− 1⎞ sinh ⎞ lim ⎢sin x ⎜ + cos x = sin x lim + cos x lim ⎥ ⎜⎝ h ⎟⎠ ⎜⎝ h→0 h ⎟⎠ ⎜⎝ h→0 h ⎟⎠ = h→0 h ⎟⎠ ⎝ ⎣ ⎦ ( (sin x )(0) + (cos x )(1) = cos x 2) Prove: ) ( Therefore, ) d ⎡sin x ⎤⎦ = cos x dx ⎣ d ⎡cos x ⎤⎦ = − sin x dx ⎣ ( ) ( ) ( ) f x+h − f x cos x + h − cos x d cos x cosh− sin x sinh− cos x ⎡⎣cos x ⎤⎦ = lim = lim = lim = h→0 h→0 h→0 dx h h h ⎡ ⎛ cosh− 1⎞ ⎛ sinh ⎞ ⎤ ⎛ ⎛ cosh− 1⎞ sinh ⎞ lim ⎢cos x ⎜ − sin x = cos x lim − sin x lim ⎥ ⎟⎠ ⎜⎝ h ⎟⎠ ⎜⎝ h→0 h ⎟⎠ ⎜⎝ h→0 h ⎟⎠ = h→0 h ⎝ ⎣ ⎦ ( (cos x )(0) − (sin x )(1) = − sin x 3) Prove: ) Therefore, ( ) d ⎡cos x ⎤⎦ = − sin x dx ⎣ d ⎡⎣ tanx ⎤⎦ = sec 2 x dx ( )( ) ( )( ) ( )( ) ( )( ) )( ) ( )( ) ( )( ) ( )( ) ′ ′ cos x cos x − sin x − sin x d d ⎡ sin x ⎤ cos x sin x − sin x cos x ⎡⎣ tan x ⎤⎦ = = = = ⎢ ⎥ 2 dx dx ⎣ cos x ⎦ cos x cos2 x cos2 x + sin2 x 1 d ⎡⎣ tan x ⎤⎦ = sec 2 x = = sec 2 x Therefore, 2 2 dx cos x cos x 4) Prove: d ⎡cot x ⎤⎦ = − csc 2 x dx ⎣ ( ′ ′ sin x − sin x − cos x cos x d d ⎡ cos x ⎤ sin x cos x − cos x sin x ⎡⎣cot x ⎤⎦ = = = = ⎢ ⎥ 2 dx dx ⎣ sin x ⎦ sin x sin2 x − sin2 x − cos2 x sin2 x + cos2 x 1 d ⎡⎣cot x ⎤⎦ = − csc 2 x = − = − 2 = − csc 2 x Therefore, 2 2 dx sin x sin x sin x 5) Prove: d ⎡sec x ⎤⎦ = sec x tanx dx ⎣ ( )( ) ( )( ) ( )( ) ( )( ) ′ ′ cos x 0 − 1 − sinx d d ⎡ 1 ⎤ cos x 1 − 1 cos x sinx ⎡⎣sec x ⎤⎦ = = = = = ⎢ ⎥ 2 2 dx dx ⎣ cos x ⎦ cos x cos x cos2 x 1 sinx d ⎡sec x ⎤⎦ = sec x tanx ⋅ = sec x tanx Therefore, cos x cos x dx ⎣ 6) Prove: d ⎡csc x ⎤⎦ = − csc x cot x dx ⎣ ( )( ) ( )( ) ( )( ) ( )( ) ′ ′ sinx 0 − 1 cos x d d ⎡ 1 ⎤ sinx 1 − 1 sinx cos x ⎡⎣csc x ⎤⎦ = = = =− 2 = ⎢ ⎥ 2 2 dx dx ⎣ sinx ⎦ sin x sin x sin x 1 cos x d ⎡csc x ⎤⎦ = − csc x cot x − ⋅ = − csc x cot x Therefore, sinx sinx dx ⎣
© Copyright 2026 Paperzz